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Abstract

Semantic frames are a fundamental ingredient in computa-
tional implementations of Conceptual Blending (CB) theory.
Therefore, we may ask the question of how to build them or
where to retrieve them. This paper offers a solution which is
to explore large-semantic networks for repeating structures
resembling frames. We also include a feature the frames
could have to give them a sense of completeness. Potential
patterns were searched with a Multi-Objective-Evolutionary-
Algorithm (MOEA) giving wider and ampler results when
compared with a Single-Objective stochastic search.

Introduction
The Conceptual Blending (CB) framework (Fauconnier and
Turner 2002) was suggested as a cognitive theory interpret-
ing how conceptual integration processes occur in the hu-
man mind, as well as the creation of meaning, argumentation
and the transmission of ideas (Coulson 2006). Although not
devised by its authors to explain the formation of creative
constructs, CB has been successfully used as the main en-
gine in many Computational Creativity (CC) systems such
as (Pereira 2005; Gonçalves, Martins, and Cardoso 2017;
Cunha et al. 2017; Eppe et al. 2018; Martins et al. 2019).

The theory involves interactions between four mental
spaces: two input spaces, a generic space and the blend
space (Fig. 1). The latter contains the “output” of the CB
process. Each mental space corresponds to a partial and tem-
porary structure of knowledge built for the purpose of local
understanding and action (Fauconnier 1994). In some im-
plementations of CB, including ours, the mental spaces are
stored as semantic graphs. These are networks of vertices
(the concepts) connected by directed edges (the relations).
Each relation/edge states a fact between a subject and an ob-
ject such as:

partOf (wing, bird).

CB theory also mentions frames which are required in
some computational models of CB (Pereira 2005), including
one we have been working on (Gonçalves, Martins, and Car-
doso 2017). They are needed to guide the blending process
towards stable and recognisable wholes. Frames represent
situations or interactions involving various participants and
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Figure 1: The four mental spaces of CB theory with two ex-
amples of input spaces: horse and bird. One possible blend
of these input spaces could slightly resemble the Pegasus.

can be very general as well as very specific (Johnson and
Fillmore 2000). Frames can be organised either as a lattice
or a taxonomic structure. For example, within the domain
of motion, the transportation frame provides movers with
means of transportation along a path (Baker, Fillmore, and
Lowe 1998). A more intuitive example is the frame marriage
where, amongst other properties, two people have witnesses
and share vows. In this case, a possible mental space con-
taining this frame would be Mary’s marriage. In practical
terms, a semantic frame is composed of either specific or
abstract concepts connected by relations between them with
the whole representing a meaningful entity, event or other
abstract composite concept.



We now state the motivation for the current work. The
first is the intention of finding useful and interesting frames
on large-scale networks. The subject of finding appealing
semantic frames was previously addressed with a computa-
tional model (Gonçalves, Martins, and Cardoso 2018), be-
ing the system described in this paper a direct descendant.
Additionally, we were wondering if it was possible to find
structures resembling frames in the same Knowledge Base
(KB) functioning as the source of input spaces. Secondly,
although some repositories of frames do exist - FrameNet
(Ruppenhofer et al. 2016), MetaNet (David et al. 2014) and
Framester (Gangemi et al. 2016), amongst others - we do
think they are better aimed at linguistic systems and not eas-
ily usable by computational models of CB. Hence our sec-
ond motivation, the building of a sufficiently comprehensive
repository of frames to help with computational implemen-
tations of CB. The third motivation is the implementation
of visual tools to help researchers who work with semantic
frames in general.

After this introductory section, we follow with a short de-
scription of the CB theory, then with the importance of se-
mantic frames in CB and our latest approach to frame min-
ing. Later, we present and discuss the results and conclude
on our findings, followed by what we expect as further work.

Conceptual Blending (CB) Theory
The input spaces serve as the initial sources of knowledge
and supply the content that will be blended. A partial map-
ping is first established between both input spaces, reflecting
a sense of similarity between them. This mapping associates
the input spaces and is mirrored in the generic space, encap-
sulating the elements shared by the input spaces. A custom
selection of this mapping is used to partially project struc-
tures from both input spaces - including nearby elements -
integrating them in an emerging structure called the blend.

The integration of input elements from the input spaces
(Fauconnier and Turner 1998) in the blend space is split in
three sub-tasks: composition, completion and elaboration.
The first is the projection of elements from the input spaces
into the blend space. Completion corresponds to the use of
existing knowledge in the form of background frames and
the generation of meaningful structures in the blend. Elabo-
ration performs cognitive work in the blend according to its
ongoing emergent structures. The order of these tasks does
not need to be pre-determined and several iterations may be
necessary (Pereira and Cardoso 2003).

The CB process allows for substantial diversity of gen-
erated blends that - depending on the quantity of knowl-
edge being handled - may be computationally unbounded
(Martins et al. 2016). To guide the integration process
towards highly integrated, coherent and easily interpreted
blends, (Fauconnier and Turner 2002) proposed eight op-
timality principles. We outline two principles stating the
relevance of frames according to Fauconnier and Turner:

Integration - the blend must be perceived and manipu-
lated as a unit. Every element in the blend should have inte-
gration.

Pattern Completion - elements in the blend should be
completed by using existing patterns as additional inputs. A

completing frame should be used that has compressed ver-
sions of important vital relations between the inputs.

Hunting for Semantic Frames
The frames are assumed to be patterns composed of more
than one relation between three or more concepts. An ex-
ample is seen in Fig. 1 as the three connected relations pur-
pose, partOf and ability. The system searches for recurring
patterns such as those in a KB that contains semantic graphs
representing the input spaces. The concepts present in the
patterns are converted to variables (words starting with a
Capital letter) and a Prolog query is made from the pattern.
Using the example shown in Fig. 1 this would be the follow-
ing query:

ability(A, C), purpose(B, C), partOf (B, A).

A frame is satisfied if instantiating its variables with differ-
ent concepts present in the KB, the frame’s conditions agree
with the KB’s facts. The number of unique possibilities for
these variables (as well as their combination) represents the
prevalence of the frame’s structure in the KB. We see this
as an important factor and it is one of multiple objectives
to be solved. The remaining objectives are explained in the
following section.

Multi Objective Evolutionary Algorithm (MOEA)
The search for patterns resembling frames is handled by a
MOEA evolving a set of chromosomes where each encodes
a pattern. These are mutated according to the relations ex-
isting in the KB, adequately adding relations from the KB
or removing existing ones from the pattern. The mutation is
done while maintaining consistency between the relations in
the pattern and in the KB.

In (Gonçalves, Martins, and Cardoso 2018), the fitness of
each pattern was a weighted sum of various objectives. It is
now a set of various competing objectives. This allows for
a further exploration of the search space, covering a higher
diversity of frames within the range of all the objectives. A
GUI (Fig. 2) was also implemented to help with the visual-
isation of the Non-Dominated Set (the solutions not domi-
nated by others).

Three objectives were outlined, all to be maximised. The
first is the number of solutions a frame has. The second
is the number of unique labels existing in the pattern’s re-
lations. The third is an idea we named ucycles (short for
undirected cycles). The stochastic algorithm of the previous
work rarely found patterns with ucycles (at most one in a
million patterns) and thus the justification for an additional
objective. Our reason for frames with ucycles is more of a
subjective one, but we think that those frames have a sense
of completeness, because the concepts in a ucycle are inter-
related and closed as a whole.

A ucycle of a graph is a path of distinct edges where any
vertex is reachable from itself, ignoring the direction of the
edges. The number of ucycles a pattern contains is calcu-
lated using an adapted depth-first expansion. It goes through
all the connected vertices of the pattern while skipping pre-
viously expanded relations to prevent the algorithm from



Figure 2: Graphical User Interface of the MOEA with three
objectives and the Non-Dominated Set (red squares).
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Figure 3: Example of a frame with an undirected cycle.

getting stuck. The expansion traverses all connected edges
existing in the pattern, regardless of their direction (Fig. 3).

Counting the Materialising Frames
Our multithreaded querykb tool counts the number of solu-
tions satisfying a possible frame, one of the objectives in
our MOEA. The number of occurrences of a pattern can
be immense, and many patterns occur too many times to be
counted using a 64-bit integer. Instead, the count is inter-
nally represented as a Big Integer. The logarithm to the base
10 of this Big Integer is then returned to the MOEA. Since
we only care about the number of solutions and not what
they actually are, we can often avoid explicitly enumerating
all of them. Consider the simple conjunctive query

p(U, V ), q(X,Y ).

A naive approach to counting the number of solutions to this
query would explicitly enumerate all substitutions ranging
over U, V, X, and Y that make this conjunction true. How-
ever, to count the number of solutions we can just multiply
the cardinality of p by the cardinality of q. Our tool gen-
eralises this intuition to handle cases where variables are
shared between conjuncts. As it evaluates a conjunctive
query, it maintains an intermediate relation that pairs substi-
tutions with integers. The integer associated with a substi-
tution represents how many substitutions have been merged
into that single substitution. Substitutions are merged when
they are equivalent modulo bindings for variables that do not
appear later in the query. For example, when the tool evalu-

ates the first conjunct of the query

p(X,Y ), q(Y, Z).

it will produce an intermediate relation with n entries, where
n is the number of distinct values of Y such that p(X, Y) holds
for some X. Each entry associates a substitution for Y with
the number of bindings for X such that p(X, Y) holds for
that fixed value of Y; that is, the entry represents the result
of merging together all the discovered substitutions ranging
over X and Y that have that binding for Y.

To maximise the opportunities to merge substitutions, we
use a query planning heuristic that exploits the structure of
the graph representation of the query. In this undirected
graph, vertices represent variables and edges signify that
two variables appear in the same conjunct. Our heuristic
searches for a bridge E whose endpoints have high degrees
(a bridge is an edge whose deletion leads to a larger number
of components). Call the component at one end of the bridge
A and the component at the other end of the bridge B. The
heuristic constrains the query evaluation plan so that all the
conjuncts that appear in A are evaluated before the conjunct
represented by E, and all the conjuncts that appear in B are
evaluated after the conjunct represented by E. This means
that by the time query evaluation reaches the conjunct rep-
resented by E, the bindings for all the variables in A (except
the endpoint of E) have been merged away, as these vari-
ables cannot appear in any conjunct in B. The same heuristic
is then recursively applied to the components A and B. For
a component containing no bridges, we order the conjuncts
using a heuristic that eagerly minimizes the domain of sub-
stitutions in intermediate relations.

Results and Discussion
The KB supplying the facts was a custom version of Con-
ceptNet V5 (Speer and Havasi 2012) with 1 229 508 con-
cepts and 1 791 604 relations. We removed from the KB
four relations: isa, derivedfrom, synonym and similarto. In
our opinion, these relations are very generic and do not seem
to be fruitful for the CB process. Without these the KB had
35 types of relations.

We used the MOEA Framework (Hadka 2015) with
NSGA-II (Deb et al. 2000) as the evolutionary algorithm.
The population size was 4096 chromosomes per epoch.
The MOEA was executed on a machine with two Intel
Xeon eight-core E5-2667v2 processors and 64 GB of RAM.
JVM’s heapsize was set to a maximum of 48 GB. The
querykb tool used a block size of 256, 32 threads and a pro-
cessing time limit for each pattern of five minutes. Five
experiments were executed averaging 48 ± 24 hours and
700± 200 epochs per experiment.

We accumulated all the experiments in single dataset with
90 964 patterns. Given the colossal amount of patterns we
developed a graphical tool to help with both the filtering and
selection of promising frames (Fig. 4). We did not find on
the web a graphical tool allowing a visualisation of such a
large number of graphs, which inspired us to create ours.
It shows the patterns as semantic graphs, allows their sort-
ing according to both the objectives and properties of graphs
and filtering patterns within a given range of properties or



Figure 4: The semantic graph visualisation tool which also
serves as a filtering aid for frames.

objectives. The tool supports the rendering of most types of
semantic graphs and will be made freely available1.

We now disclose a few patterns that we believe are in-
teresting, including humorous ones. The patterns’ variables
are instantiated with examples of concepts (shown in blue)
which fully satisfy the pattern in order to be easier to under-
stand. The patterns can be seen in Figs. 5 and 6 with both
figures differing on the existence of ucycles. The composi-
tion of the patterns is highly variable, mainly regarding the
relations but we think that they can be used as representa-
tion of frames, given their recognisable structure. All these
patterns had at least 1 000 occurrences in the KB.
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Figure 5: Example of three patterns from the experiments.
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Figure 6: Three patterns with ucycles, the first two with one
ucycle and the rightmost pattern with two.

The pattern in Fig. 5a may represent a frame where a
place (mesopotamia) has a given spoken language (akkadian
language), partitioned in sub-regions (one of which is baby-
lon) with some element (the goddess Ningal) belonging to

1https://github.com/jcfgonc

the region’s context. Fig. 5b showns a pattern depicting an
entity (sulfur) made of entity (sulfide) being part of a larger
object (coal) found at a specific place (chemistry lab). Fi-
nally, given the peculiar concepts shown in Fig. 5c we leave
the interpretation of this amusing pattern to the reader. We
further add that some KBs (such as ConceptNet) contain er-
roneous, biased and funny facts (Baydin, de Mántaras, and
Ontañón 2012) such as these. However, we think that in the
context of CC those facts might be fruitful.

Fig. 6 contains three examples of patterns with ucycles.
The pattern in Fig. 6a represents an entity (postage stamp)
located somewhere (post office) with both the entity and the
place having the same activity (mail letter) through differ-
ent possibilities (usedFor and capableOf ) Fig. 6b serves as
a good case history of two entities (mathematicians George
Boole and Claude Shannon) having the same interest/field
but with one influencing the other. Hence, this frame could
be classified as the “source of inspiration” frame. Lastly,
Fig. 6c relates two activities (dancing and playing) with
conditions (go to party) as well as outcomes (having fun).

Conclusions
We have presented a system designed to discover repeating
patterns in large-scale semantic graphs which can be used
as frames in computational models of CB. We illustrated
how the system mines KBs for interesting patterns using
a MOEA and a specialised tool to more efficiently com-
pute the frequency of the patterns involved in the process.
We also believe that using frames containing ucycles could
benefit the blending process with the contribution of closely
connected elements with a sense of completeness.

Further Work
We plan to create a repository with the most interesting
frames found so far. We could also execute our frame find-
ing system in other KBs such as NELL (Mitchell et al. 2015)
to discover even more promising frames. Another idea to be
explored is the definition of a large set of useful frames in an
ontology. But above all, the KB of frames is expected to be
used in a follow-up of our computational model of CB. The
impact of frames in the emerging blends will be then better
understood, as well as their required characteristics. Those
characteristics would then be used to improve our MOEA
in the search for suitable frames. We might also improve
our querykb tool by using a more sophisticated query plan-
ning mechanism (for example, one that estimates the sizes of
intermediate relations given what is known about the KB).
Alternatively, instead of finding the exact number of solu-
tions, we could try to find an approximate count, perhaps by
extending the recent algorithm of (Iyer et al. 2018).
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