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Preface

This volume contains the papers presented at ICCC 2019, the 10th International Con-
ference on Computational Creativity held in Charlotte, North Carolina, USA from June
17th - June 21st, 2019 (http://computationalcreativity.net/iccc2019/). The conference was
hosted at the University of North Carolina at Charlotte.

Computational creativity is the art, science, philosophy and engineering of computational
systems which, by taking on particular responsibilities, exhibit behaviours that unbiased
observers would deem to be creative. With artificial intelligence playing an increasingly
important role in our work, our leisure and our social spaces, the themes covered by
this field are increasingly relevant and important to society. The ICCC conference series,
organized by the Association for Computational Creativity since 2010, is the only scientific
conference that focuses on computational creativity alone and also covers all its aspects.

We received 57 paper submissions, in four categories:

1. Technical papers, posing and addressing hypotheses about aspects of creative be-
haviour in computational systems;

2. System and resource description papers, describing the building and deployment of
a creative system or resource to produce artefacts of potential cultural value in one
or more domains;

3. Study papers which appeal to broader areas of artificial intelligence; which appeal
to studies of the field of computational creativity as a whole; or which draw on
complementary fields such as psychology, philosophy, cognitive science, mathematics,
humanities or the arts;

4. Position papers, presenting an opinion on some aspect of the culture of computa-
tional creativity research, including discussions of future directions, past triumphs or
mistakes and issues of the day.

Each submission was reviewed by our program committee and then received a metareview
from our senior program committee and program chairs, with additional discussion where
required. Papers were accepted based on quality, academic rigour and relevance to one
or more of the conference’s four paper categories. The result is a diverse program that
reflects the changing trends of artificial intelligence and the state of the art in computational
creativity research.

The committee accepted 25 full papers for oral presentation and 12 papers for poster
presentation. The three days of the ICCC 2019 scientific program consisted of a series of
exciting sessions for oral presentations and a special session for posters and demos.

In addition to our main track, ICCC 2019 also hosted a late-breaking papers track for
short reports on emerging and newer work, receiving 19 such submissions. Submissions
to this track were also reviewed by our program committee, and 13 were accepted based
on quality and relevance to the main conference themes. These late-breaking papers were
presented as shorter talks, either alongside full papers or in their own dedicated sessions,
mixing in the latest results from the community alongside the full papers reporting on
established research.

ICCC 2019 continued the tradition established in earlier years of showcasing creative sub-
missions. Creative submissions accepted for exhibition included interactive artworks, vir-
tual environments, computational creative systems and commercial products produced us-
ing computational creativity. 11 submissions to this track were reviewed by two members



of a creative program committee, based on both the product or system and an extended
abstract detailing the contribution. 10 submissions were selected and their extended ab-
stracts have been included in these proceedings. The creative submissions were exhibited
at ICCC 2019 in their own dedicated session, with lightning talks by the contributors to
introduce their works in the main track.

This year’s conference included several co-located events, including the return of our Doc-
toral Consortium, the 7th International Workshop on Musical Metacreation (MUME), and
the first workshop on Computational Creativity and Deep Generative Design. MUME also
organised a live concert as part of the conference program. The conference also hosted its
first Al competition, providing a platform for the Generative Design in Minecraft Compe-
tition to report on results and announce the winners of the 2018/2019 competition.

As in past years, [CCC 2019 awarded a Best Paper Award and a Best Student Paper Award.
To mark the tenth ICCC conference, we also introduced the Most Influential Paper Award,
as a way to honour a paper from the first ICCC conference that has had the most impact
on computational creativity in the years since.

We wish to thank our sponsor, the College of Computing and Informatics at UNC Char-
lotte. We thank the program committee and the senior program committee for their hard
work in reviewing papers. We also thank all those involved in organising ICCC 2019, the
ACC steering committee, and those involved in organising and supporting the workshops,
tutorials and doctoral consortium.

We also wish to thank the Computational Creativity community for the amazing effort and
energy that has allowed this conference to flourish and develop into its tenth year — thank
you to those for whom this is their tenth year, supporting the community’s development
from its modest beginnings, and thank you to those for whom this is their first year,
contributing to another decade of growth and new ideas for this field.

ICCC 2019 Organizing Committee

General Chair: Mary Lou Maher, University of North Carolina Charlotte

Program Co-Chair: Kazjon Grace, University of Sydney
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Toward Digital Progymnasmata

Kyle Booten
Neukom Institute for Computational Science
Dartmouth College
Hanover, NH 03755 USA
kyle.p.booten @dartmouth.edu

Abstract

The classical arts of rhetoric described intricate train-
ing methodologies for making the writer linguistically
flexible and able to avoid stylistic vices. Inspired by the
ancient progymnasmata, this paper presents Progym, an
interactive writing system designed to notice when writ-
ers resort to expected language and encourage them to
avoid these linguistic elements. Two versions of the sys-
tem are presented. The first discourages writers from
using words that, within a large corpus, are often used to
describe a target word. The second discourages writers
from using syntactic patterns found in a small corpus.
In user studies, Progym did indeed push writers away
from these features, though the different versions led to
different styles of revision.

Introduction

From its roots in antiquity through its second zenith during
the Early Modern period, the arts of rhetoric provided learn-
ers with exercises designed to hone their use of language.
While much of rhetorical practice was grounded in the imi-
tation of received forms and authors, this does not mean that
it did not also foster creativity. Among the ancient Greek
progymnasmata (a set of preliminary rhetorical exercises)
were ekphrasis—the description of an object or artwork with
a vivid attention to detail; another such exercise was para-
phrase, the reiteration of a statement with different syntax
(Kennedy 2003). The point of these and other progymnas-
mata was not that they themselves produced full or com-
plete texts; rather they were a kind of “gymnastic training
for the mind...shaping it for certain activities just as athletics
shaped the body” (Webb 2001). A similar spirit of athleti-
cism can be seen much later in Erasmus’ treatise on rhetor-
ical education De Copia (1512 1978), which recommends
various techniques for “diversifying” one’s speech or writ-
ing and avoiding monotony. Demonstrating a rhetorical ex-
ercise meant to promote linguistic flexibility, Erasmus’s text
offers over a hundred and fifty distinct variations on a simple
phrase, the Latin equivalent of “Your letter has delighted me
very much.”

This paper documents the design of a system that pro-
vides computational feedback as a form of rhetorical train-
ing in the context of creative writing tasks. Inspired by the
gymnastic notion of language found in the rhetorical tradi-
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tion, and especially by Erasmus’ example of forcing oneself
into linguistic “copiousness” or flexibility, this system is de-
signed to encourage creativity by steering writers away from
particularly common and expected words and syntactic pat-
terns. Like the classical progymnasmata, the system is not
primarily designed to produce complete or sufficient texts.
Rather it is conceived of as a training tool designed to en-
courage linguistic flexibility. On a technical level, this paper
describes techniques for gathering overly-frequent linguistic
phenomena using text mining. This paper documents the de-
sign of two different versions of this progymnastic system.
Results from user studies document the impacts the system’s
different types of feedback had on the ways that writers used
language.

Related Work
Computational Writing Assistants

Within the field of computational creativity, researchers have
developed systems that assist humans in the production of
creative writing. Some of these computational systems func-
tion as collaborators. Say Anything (Swanson and Gordon
2008) functions as a kind of creative Information Retrieval
system for narrative composition, returning a sentence from
a large collection of texts that is most similar to the human
writer’s. Inspired by this system, Creative Help (Roemmele
and Gordon 2015) uses similar techniques to match human
input with a sentence from a large corpus, although it allows
writers to more flexibly control how they deploy these sen-
tences. The system approaches interactive storytelling as an
Information Retrieval task, with the algorithmic writer re-
turning a sentence from a large collection of sentences that
is the most similar to the user’s. More recent research from
Roemmele (2016) has explored the use of the predictive
models of neural networks as an improvement upon tradi-
tional techniques of Information Retrieval for offering sug-
gestions to writers as they write. Manjavacas et al. (2017)
also used a language model to provide continuations of a
human writer’s text.

Creative computation research on writing assistants has
also drawn on research within the field on the generation
of literary texts. For instance, “Co-PoeTryMe” (Oliveira,
Mendes, and Boavida 2017) is an interactive version of Po-
etTryMe (Oliveira 2012), a system for generating poetry



in multiple languages using a combination of networks of
semantically-related words and a variety of syntactic and
formal constraints, including rhyme and number of sylla-
bles. Co-PoeTryMe makes this poetry generation tool inter-
active by providing an interface for specifying the param-
eters of the generator and for iterative generating and edit-
ing words and lines. Inkwell (Gabriel, Chen, and Nichols
2015) is another system that is both a poetry generator and a
poetry-writing assistant. As an assistant, it combines a wide
variety of individual functions, such as mimicking a writer’s
personality and style.

Creative assistants for writing may also provide some-
thing like “inspiration” rather than engage in full-fledged
collaboration. Gongalves et al. (2017) demonstrated a sys-
tem that uses what they call “subliminal priming” to pro-
vide writers with feedback to help them get over writer’s
block. The Poetry Machine (Kantosalo et al. 2014; Kan-
tosalo, Toivanen, and Toivonen 2015), another repurposing
of a poetry generation system (Toivanen et al. 2012), of-
fers the writer intitial “fragments” of poetry as a way to help
them overcome the difficulty of starting the writing process.
Indurkhya (2016) used a similar approach, providing writ-
ers (in this case, children) with a combination of related
and unrelated words in order to both scaffold the produc-
tion of a narrative and spur creativity. Researchers have also
used crowdsourced images to stimulate creativity and men-
tal well-being during a creative writing task (Gongalves and
Campos 2018).

Progym does not position itself as a “collaborator.” Nei-
ther does it supply the writer with fragmentary suggestions
with the goal that, by integrating them, the writer may make
a text more compelling (or merely overcome some of the
psychological barriers of writing, such as writers block).
Neither does it aim to make the writer feel better while writ-
ing. Rather it offers explicitly negative feedback to direct
writers to be more creative. In this sense, it is a kind of
“coach” (Lubart 2005) as well as a kind of “audience” (Riedl
and O’Neill 2009), albeit an opinionated and in fact critical
one. The main contribution of this paper is to explore how a
system can ask a writer to avoid certain kinds of uncreativity.

Mining Semantic Relations

One version of the Progym system is based on seman-
tic relations between words mined from a large corpus
of texts. The notion of mining texts for semantic rela-
tions was described by Hearst (1992). Related techniques
have been used to mine semantic relationships between
words as a way to generate poetry (Toivanen et al. 2012;
Veale 2013) and metaphor (Veale and Hao 2007). Veale and
Hao’s “Jigsaw Bard” (2011) turns semantic relations mined
from the web into “a creative thesaurus” of metaphors—in a
way, another kind of creative writing assistant.

A main goal of this paper is to take this familiar approach
to extracting semantic connections from large corpora and
use it in the context of a writing assistant that explicitly
wants the user to avoid these statistically-predictable seman-
tic connections between words.
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moon (adj) full new bright young pale old white
great high waning

shine shin’hang set sink arise shed
light climb cast

light ray face surface beam disc or-
bit disk revolution distance

old great tall large big young green
small hollow beautiful

spread bear wave blossom surround
bend bud live hang overhang

shade branch life root shadow side
heart leaf head crown

young little great beautiful fair good
new old dead poor

send sit die reign wear speak live
think smile hear

room chamber apartment death
hand presence command eye taste
heart

moon (verb)

moon (noun)

tree (adj)

tree (verb)

tree (noun)

queen (adj)

queen (verb)

queen (noun)

wolf (adj) hungry gray old big grey great
young large fierce dead
wolf (verb) howl eat prowl devour creep leap

kill roam attack catch
head mouth den skin tooth howl
fang tongue eye tail

wolf (noun)

Table 1: Most Frequently Related Words (Lemmatized) Ex-
tracted from Project Gutenberg Text

Progym V.1: Avoiding Expected Words

The sun is bright. The sun shines. The sun has beams. Com-
pare these plausible assertions to the following: The sun is
dim. The sun blinks. The sun has banners.

The first version of the Progym systems aims to steer writ-
ers away from the former—that is, from plausible but com-
mon ?escriptions of a topic noun and toward less common
ones.

Finding Common Words Common relationships be-
tween words were mined from the a selection of the Project
Gutenberg corpus using the SpaCy dependency parser (Hon-
nibal and Johnson 2015) , which represents any input sen-
tence as a directional graph of syntactic as well as semantic
relationships between words. Using this parser, the follow-
ing relationships were extracted:

-Adjectival Relations For any noun, the system extracted
adjectives that were the child of that noun via an adjmod
(adjectival modifier) dependency relation. For instance,
from the sentence “The old man is weary” it would extract

!'This can be thought of as encouraging “creativity” in the broad
sense that deviation from a statistically-common pattern amounts
to a subversion of a “priming” (Hoey 2007).

20Ostensibly an artifact of inconsistencies in the lemmatization
of verb forms of “shine.”



(man,o0ld) and (man,weary), using the lemmatized
version of the noun.

-Possessive Relations For any noun, the system found all

nouns that were the child of this noun via a poss (pos-
session modifier) dependency relation. For instance, from
the sentence “The dog’s fur is golden” it would extract
(dog, fur), using the lemmatized version of the noun.

-Verb Relations For each noun, the system found the
verb that was the parent of this noun via a nsubj (nomi-
nal subject) relation. In addition, for each noun, the system
found the present participle (tagged VBG) that was the child
of the noun via an adjmod relation. For instance, from
the sentence “The howling wolf chased me” it would extract
(wolf,howl) and (wolf, chase), using the lemma-
tized version of nouns and verbs.

Using these techniques, fragments were mined from each
of 14,928 English-language texts from Project Gutenberg;
this is a collection of open source texts of a mostly literary
nature, and so it was both convenient and, since I wanted to
mine relations that appear in literary language, befitting of
the task. Mining fragments was limited to the first 100,000
characters of each text, a limit imposed to ensure a reason-
able compute time. Each word and each pair was further
verified to be a valid word with the correct part of speech
using WordNet (Miller 1995). To deal with the fact that
certain uses of words may be idiosyncratic to a particular
author, each text within the selection of the Gutenberg cor-
pus was only able to contribute a specific relation between
a noun and another word at most once. Using these criteria,
an average of 322 Adjectival Relations were discovered for
27,444 nouns, an average of 176 Verb Relations were found
for 26,443 nouns, and an average of 45 possessive relations
were found for 6,729 nouns. Table 1 shows some of the top
nouns, adjectives, and verbs found through these relations
for several target nouns.

For each noun, a threshold was set either at 3 or at the
number of occurrences of the pair at the 90th percentile of
all observed relations of that specific type, whichever was
higher. This was done to deal with rare nouns or nouns with
few relations of a specific type, especially since even rela-
tively few Possessive Relations were extracted overall. For
Verb Relations and Adjectival Relations, certain very com-
mon words (such as “is” and “such”) were treated as stop
words and excluded. This process produced, for each noun,
a list of Boring Words—Boring Verbs, Boring Adjectives,
and Boring Nouns.

Interface

The Progym system is deployed as a web-based interface
designed specifically for the user study (see Figure 1). The
interface itself is straightforward and minimalistic, present-
ing the user with a series of ten text input areas. It is in-
tended to be used in the context of an ekphrastic task in
which a user must write ten sentences about a specific noun.
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10 POETIC SENTENCES DESCRIBING THE MOON:

I The moon shines upen the lake. Revise

The word 'shines’ is a bit overused when describing the moon. Can you
come up with a fresher, more unexpected description?

|| Submit

Figure 1: Progym’s Interface

Each time the user “submits” a sentence, the system part-of-
speech tags the sentence and checks its adjectives, lemma-
tized verbs, and lemmatized nouns against that noun’s Bor-
ing Words. If a Boring Word is detected, Progym presents
the user with a message asking them to revise it—e.g. “The
words ‘fluffy’ and ‘white’ are a bit overused when describ-
ing a cloud. Can you come up with a fresher, more unex-
pected description?” If the input sentence contains, for in-
stance, both one of the target noun’s Boring Adjective and
one of its Boring Verbs, it randomly focuses on one part-
of-speech, and at most two different words of this part-of-
speech. Users can then revise and resubmit their sentences,
once again triggering the system’s evaluation so that for the
critical comment to disappear all Boring Words must be
purged from the sentence.

User Study 1

For the purposes of the user study, Amazon Mturk crowd-
workers were asked to write ten “poetic” sentences, each
describing a different aspect of the moon or a tree’
These words were chosen as they are both relatively high-
frequency nouns with correspondingly ample numbers of
Boring Words (for “moon,” 29 Boring Nouns, 26 Boring
Verbs, and 53 Boring Adjectives; for “tree,” 15 Boring
Nouns, 56 Boring Verbs, and 111 Boring Adjectives). In
addition, from Percy Bysshe Shelley’s “To the Moon” to
Coleridge’s “This Lime-Tree Bower My Prison,” both top-
ics have a long history as objects of ekphrastic description.
Workers were either given feedback by Progym (n = 33 for
moon, n = 42 for tree) or not (n = 44 for moon, n = 47 for
tree).

Use of Expected Words

Progym’s functions for identifying the use of Boring Words
were repurposed for the analysis of the sentences written
by the Mturk participants under the four conditions, Tree-
Assisted (by Progym’s suggestions), Moon-Assisted, Tree-
Unassisted, Moon-Unassisted.

Participants could revise a sentence multiple times, and
the system recorded each revision to each of the partici-
pant’s ten sentences. As these writers revised according to
Progym’s feedback in the assisted conditions, they lessened
the number of Boring Words in their texts. Looking at the
earliest version of sentences, Moon-Assisted poems had an

3The Github library quickstart-mturk was adapted with
the permission of its author, user akuznets0v.



average of 7.31 Boring Words (SD = 3.17); looking at the
most recent (i.e. “final”) version of sentences, they had an
average of 3.90 (SD = 3.60), a statistically significant differ-
ence according to a two-tailed t-test, #(82) = 7.10, p <.001.
Looking at the earliest version of sentences, Tree-Assisted
poems had an average of 6.03 Boring Words (SD = 3.49),
while the most recently-revised versions had an average of
3.21 (8D = 4.26), also a statistically significant difference
according to a two-tailed t-test, #(64) = 6.81, p <.001.*

Likewise, writers who had the assistance of the system
ended up with sentences with fewer Boring Words overall
than the control (unassisted) condition. The ten-sentence ex-
ercises of Tree-Unassisted and Moon-Unassisted conditions
had an average of 10.91 (SD = 4.76) and 6.93 (SD = 3.16)
Boring Words, respectively. By contrast, the ten-sentence
exercises of Tree-Assisted and Moon-Assisted conditions
had an average of 3.90 (SD = 3.60) and 3.21 (SD = 4.26), re-
spectively. This differences between assisted and unassisted
conditions were statistically significant for tree conditions
according to a two-tailed t-test, #(87) = 7.68, p <.001, and
for moon conditions, #(75) = 4.35, p <.001).

Analyzing the unassisted conditions provide a way to
check that Progym’s sense of what counts as a Boring Noun
for a particular word is sensible. Compared to the above-
stated average of 10.91 Boring Words for the noun “tree”
in the Tree-Unassisted condition, an average of 3.19 (SD =
2.32) Boring Words for the noun “moon” (i.e the “incor-
rect” words) were found, a statistically significant differ-
ence, #(92) = 9.90, p <.001). Likewise, compared to the
above-stated average of 6.93 Boring Words for the noun
“moon” in the Moon-Unassisted condition, an average of
4.09 (SD = 2.50) Boring Words for the noun “tree” were
found, a statistically significant difference, #(86) = 4.62, p
<.001. In other words, Progym’s noun-specific lists of Bor-
ing Words mined from Project Gutenberg texts were pre-
dictive of the ways that participants in the user study wrote
about these two particular nouns.

Qualities of Revision

To analyze the ways that participants wrote when confronted
with Progym’s criticism, for all sequential pairs of revisions
((so0, $1), (81, $2)...) the Levenshtein distance in terms of to-
kens was calculated, with one outlier removed.’ Figure 2
shows the distribution of the frequency of lengths of revi-
sions produced by users in the Inspiration-Assisted condi-
tion. There were 323 revisions total, with an average of 4.31

* Analysis of the data revealed that participants did not always
heed the study-task’s exhortation that they write ten sentences in
ten different text boxes; sometimes they wrote more than one sen-
tence in a text box. To control for the length of users’ writing,
calculations in section result from analysis of the first actual sen-
tence of each user’s ten input texts, as determined by the SpaCy
parser’s sentence tokenization.

3Several of these pairs contained edit distances much greater
than the average. Upon closer inspection, these can be explained
by the fact that entire poems by poets such as Robert Frost were
submitted, with the previous or sequential “revision” of that line
being much shorter and in fact unrelated. Revisions of an edit dis-
tance greater than or equal to 150 were excluded.
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blue —  azure

face —  visage
changing —  periodic
limbs —  appendices
surface —  topography
bends —  SWOoOps
beautiful —  sightly

beautiful —  spellbinding

Table 2: Example Revisions Made Toward Rarer Word

revisions per participant (SD = 3.58). The majority of revi-
sions were of an edit distance of 1.

What were the nature of these one-token changes? By en-
couraging writers to avoid common words, the system also
pushed writers toward greater linguistic diversity. Those re-
visions were gathered in which the user’s original sentence
and first revision of this sentence were equal in number of
tokens but differed by exactly one token—i.e. in which one
token (wp) was “replaced” by another (w;). Out of the 108
wp tokens, there were only 64 unique ones. By contrast,
there were 102 unique w; tokens, a statistically significant
difference according to a chi-squared test, x2(1) =35.62,p
<.001. In essence, the collection of “revised” words was
more varied than the collection of “unrevised” words.

It was hypothesized that pressure from Progym may en-
courage writers to eschew common words, replacing them
with rare ones. Google Ngram Viewer® provides a way of
roughly testing whether one word is more common than the
other. For each pair of sequential revisions that were equal in
number of tokens but differed by one word, Ngram Viewer
was used to check whether the word in the first sentence, w,,,
or the word that replaced it, w,,+1, was the more frequent.7
Out of 167 of such comparisons, w41 was the rarer word
in 116 (69%), a statistically significant difference according
to a chi-squared test, x2(1) = 25.30, p <.001. The differ-
ence was a bit more extreme looking only at those revisions
in which the first version of a sentence was equal in num-
ber of tokens to its “final” version but differed by one word;
of these (W first,Wiast) PAIrS, Wiqs¢ Was the rarer word 76%
of the time (65 out of 87), a statistically significant differ-
ence, x2(1) =21.25, p <.001. This suggests that Progym in-
spired participants to use less-frequent words. Table 2 shows
a sample of the single word revisions in which a word was
substituted by a rarer one.

Progym V.2: Beyond the Word

The second version of Progym differs from the first in two
respects. First, rather than focus on individual words, it en-
courages the users to turn away from too-common syntax.
Second, rather than compare the writer to specific relations
mined and distilled from a very large number of texts, it
compares the writer to a relatively small number of exam-

®https://books.google.com/ngrams

"Datapoints for the year 2000, the default most recent year,
were compared. Automatic spelling correction was applied using
the PyEnchant library.



You can do anything you want to do, you just need to push yourself sometimes to get them done.

you can do —

VB your NN < Focus your energy and you can make leaps and bounds

RB VB up +— NEVER GIVE UP

you are JJ < You are smart and intelligent.

don’t VB < Don’t give up. You’ll be glad you didn’t.

if you VBP < If you stop now, all the work you’ve put in thus far will have been for nothing.

Table 3: Rhetorical Stubs Used by Progym V.2 (Most Frequent in Corpus), with Examples

ples. Using the same interface as before, “inspiring” sen-
tences were gathered from Amazon Mturk crowdworkers.
These workers were told: “Imagine that you are writing for
somebody who needs your words to help them accomplish
a difficult task or overcome some adversity.” In all, ten sen-
tences each from 49 crowdworkers were collected.

These sentences became a small corpus of examples to
which Progym would compare any new inspiring sentence,
testing its novelty against them. The goal of this version of
Progym is to push users away from the one-word edits typ-
ical of interactions with V.1 by focusing on longer syntactic
units rather than individual words. It does so by comparing
the syntax writers use to begin their inspiring sentences.

For each sentence in the example sentences, at most the
first three tokens were either represented as this token’s part-
of-speech tag or, if this token was in a list of stop words?,
the token itself. For instance, the sentence “Focus your en-
ergy and you can make leaps and bounds” is represented as
(VB, your, NN). Figure 3 shows the most frequent stubs in
this small corpus with examples. This technique of build-
ing abstract—but not totally unlexicalized—representations
of text is inspired by the “stretchy patterns” described by
Gianfortoni, Adamson, and Rosé (2011). Since the goal
of this exercise was to target patterns that may be overused
in specifically inspiring sentences (rather than sentences in
general), the top 20 most frequently used of such patterns in
an excerpt of the Gutenberg Corpus were excluded, leaving
308 in all (see Table 2) .

Progym V.2 asks users to generate inspiring sentences,
testing how they begin against these banned “Rhetorical
Stubs” found in the previously-gathered example sentences.
When there is a match between the writer’s sentence and
one of the examples, Progym once again provides feedback
like this: “The phrase ‘You are ready’ reminds me of other
inspiring messages, like ‘You are amazing and nothing can
stop you.” Could you try making yours a little more cre-
ative?” Rhetorical Stubs are meant to strike a balance be-
tween the semantic openness of merely a part-of-speech take
sequence and the specificity of the sequence of tokens them-
selves, drawing attention away from the choices of words
toward the underlying structure of the sentence. In other
words, while one may substitute the participle “running”
with any number of words (e.g.“sprinting,” “hustling,” and
“galloping’), one may not so easily replace a closed-class
word such as “you.” The design choice of the “Rhetori-

8Here the standard list in the Natural Language Toolkit (Bird,
Klein, and Loper 2009) was used and supplemented with tokens
to accommodate how the SpaCy parser tokenizes contractions (e.g.
©1).
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cal Stub” was made to stimulate revisions unlike those one-
word revisions users made when interacting with V.1.

User Study 2

Amazon Mturk crowdworkers were tasked with writing ten
inspiring sentences, either assisted by Progym (n = 35) or
unassisted (n = 38).

Use of Rhetorical Stubs

Progym’s function for identifying the use of banned Rhetor-
ical Stubs was re-purposed for the analysis of the sentences
written by the Mturk participants under two conditions,
Inspiration-Assisted and Inspiration-Unassisted.

As writers revised according to Progym’s V.2’s feed-
back in the assisted conditions, they lessened the number
of banned Rhetorical Stubs in their texts. Looking at the
earliest version of sentences (i.e. before any revision based
on Progym’s suggestions), the poems of the assisted con-
dition had an average of 3.69 banned Rhetorical Stubs (SD
= 1.74); looking at the most recent (i.e. “final”) version of
sentences, they had an average of 1.26 (SD = 1.87), a statis-
tically significant difference according to a two-tailed t-test,
1(68) = 5.55, p <.001. Participants writing with assistance
of Progym V.2 ended up with sentences with fewer banned
Rhetorical Stubs compared to the control (unassisted) con-
dition. The ten-sentence exercises of Inspiration-Unassisted
and Inspiration-Assisted had an average of 4.47 (SD =2.02)
and 1.26 (SD = 1.87), respectively. This difference was sta-
tistically significant according to a two-tailed t-test, #(71) =
6.94, p <.001.

To test whether the Progym V.2’s small number of Rhetor-
ical Stubs were, as one would expect, a reasonable “training
set,” a comparison was made between the number of banned
Rhetorical Stubs in the Inspiration-Unassisted condition and
(as an example of non-inspirational sentences written un-
der similar experimental conditions) the Unassisted Tree and
Moon conditions from the previous user test. One would ex-
pect the banned Rhetorical Stubs generated from the exam-
ple sentences have better “coverage” of additional inspiring
sentences than uninspiring ones. (Otherwise, those Rhetor-
ical Stubs may simply be characteristic of sentences gener-
ally produed by Mturk workers, no matter what the rhetori-
cal or expressive purpose.) Indeed, compared to an average
of 4.47 of those Rhetorical Stubs found in the Inspiration-
Unassisted condition, there were an average of 1.41 (SD =
1.52) found in the collection of Moon and Tree-Unassisted
conditions, a statistically significant difference according to
a two-tailed t-test, #(127) = 9.33, p <.001. In this case, even
a small number of example sentences were predictive of the
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Figure 3: Revisions with Progym V.2 (Inspiring Sentences)

kinds of Rhetorical Stubs that would be written in other ex-
amples of inspiring sentences.

Coverage Due to Delexicalization Making Rhetorical
Stubs is more computationally complex than simply using,
for instance, the first three tokens from the example inspiring
sentences in the training data (what might be called “Simple
Stubs” [n = 402]). However, because they are more “gen-
eral” (i.e. mostly delexicalized), the Rhetorical Stubs made
out of these had better coverage over the data. Compared to
a per-poem average of 4.47 of those Rhetorical Stubs found
in the Inspiration-Unassisted condition, there were only 2.47
Simple Stubs (SD = 2.02), a statistically significant differ-
ence according to a two-tailed t-test, #(74) = 4.25, p <.001.
Delexicalizing was thus an effective way to “stretch” data.

Qualities of Revision

Once again, all sequential pairs of revisions
((s0,81), (81, 82)...) were analyzed for the edit-distance
(in terms of tokens) between the two. Figure 3 shows
the distribution of the frequency of lengths of revisions
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produced by users in the Inspiration-Assisted condition (as
in the calculations for V.1, with several outliers removed).
Comparing this to the frequency of lengths of revisions
produced by users interaction with V.1, which were mostly
a single token in length, these revisions show a tendency
toward revisions of multiple tokens. There were 143
revisions total, with an average of 4.09 per participant (SD
= 2.89). The average edit distance of the revisions created
by participants using V.1 was 3.00 (SD = 5.35, median = 1),
while the average edit distance of the revisions created by
participants using V.2 was 5.87 (SD = 4.52, median = 5), a
statistically significant difference according to a two-tailed
t-test, #(464) = 5.57, p <.001. Moreover, as can be seen
by comparing and Figure 2 and Figure 3, the lengths of
revision completed with V.2 are more diverse. While for V.2
the top revision length was indeed 3 (reflecting the fact that
the prompt drew attention to a Rhetorical Stub made from
three tokens), revisions were more likely to be other lengths
than revisions made with V.1 were likely to be lengths other
than 1. This diversity can be described statistically: the
entropy of the revisions performed with V.2 (n = 143) was
2.55 bits. By contrast, the entropy of a random sample
of the same number of revisions performed with V.1 was
1.34 bits, this lower entropy signalling less diversity in the
revision lengths.

Like Progym V.1, V.2 seemed to encourage linguistic di-
versity. For each sequential pair of revisions, the first or “un-
revised” Rhetorical Stub (rsg) and the subsequent revision
(rs1) were gathered. Out of the 93 rs( patterns, there were
only 56 unique ones. By contrast, there were 85 unique s
patterns, a statistically significant difference according to a
chi-squared test, XQ(I) =22.98, p <.001. The collection of
“revised” Rhetorical Stubs was more diverse than the col-
lection of “unrevised” ones. By putting pressure on writers
to avoid certain common Rhetorical Stubs, Progym nudged
them toward linguistic variation.

There was no evidence that revisions using V.2 led to an
increase in the rarity of words within a text, though the
consideration of this was limited by the small number of
(Wn, Wp41) word pairs (n = 15). Of these, w1 was the
rarer word in 9 of them—not a statistically significant dif-
ference, x2(1) = 0.60, p >.05.

Another Pattern of Revision For all sequences of revi-
sion of at least length 2 (i.e. in which the writer revised a
sentence once and then revised again, n = 37), were gath-
ered, and the first, second, and last (final) versions of these
sentences were compared. In 6 of these, the writer first
changed the sentence such that one of the first three to-
kens was different but it still matched the same “forbidden”
Rhetorical Stub as the original sentence before ultimately
revising the sentence more dramatically in a way that mani-
fested a different Rhetorical Stub. For instance:

- You are enough just as you are.

- You are perfect just as you are.

- your attitude determines your direction [sic]

In such cases, it seems that the flexibility of the Rhetorical

Stub has pushed the writer beyond simply swapping out a
word with another related word of the same part of speech.



Discussion

Two versions of Progym were tested. Each version effec-
tively steered writers away from certain linguistic elements
that the system desired them to avoid. The two versions of
Progym led to different styles of revision: participants writ-
ing with V.1 produced mostly single-word changes, shifting
a common word to a rare one. Those writing with V.2 en-
gaged in more extensive revision in terms of the number of
tokens changed. Both small and large corpora of examples
were useful for creating a background of “expected” lan-
guage against which writers were asked to depart and en-
couraging linguistic diversity. This study was limited in the
sense that it focused on only on several conditions (the Tree
vs. Moon conditions, and the Inspiring conditions). Future
research could explore a wider set of each of these.

Conclusions

This paper’s title begins with the word “toward” in order to
make clear that its goal is to test the validity of a path. The
main conclusion to be drawn from it is that even relatively
simple techniques for predicting what users will write can be
used to steer them away from these predictable moves and
encourage linguistic diversity as well as different techniques
of revision. One may imagine, further down the path, a wide
variety of digital progymnasmata that would train writers to
spurn mundane formulations or vary their styles.

Future versions of digital progymnastic systems could no
doubt make use of more complex computation to determine
whether a writer is veering into some too-common pattern
or formulation. For instance, one might use a more complex
statistical approach to identify clichés (Smith, Zee, and Uit-
denbogerd 2012) or make use of statistical models of char-
acter types (Bamman, O’Connor, and Smith 2013) to de-
tect when users are falling into common tropes. Likewise,
a more complicated interface could allow the writer to have
more control over the system—for instance, by specifying
that they want to practice avoiding familiar syntactic con-
struction or words, by adjusting the level of difficulty, or by
specifying certain discourses that they want to depart from
(e.g. the syntactic constructions of Romantic poetry in par-
ticular). A larger problem is how to address the fact that
writers may use “boring” words or syntactic constructions
in nonetheless interesting ways. For instance, while to write
that “the moon is white,” may be overly expected, to write
that “the moon is white like your Toyota Prius” may seem
less so. Likewise, a sentence may use expected words orga-
nized in rhetorically powerful ways; a more complete sys-
tem would keep an eye out for figures such as anaphora or
chiasmus (Dubremetz and Nivre 2015). However, just as
simple systems of text generations can serve as a baseline
for more complex systems (Montfort and Fedorova 2012),
it is useful to explore a pair of relatively straightforward
techniques for steering writers away from “predictable” lan-
guage to which more complex ones may be later compared.

This paper has focused on the way that Progym “medi-
ated” (Vygotsky 1980) writers’ writing process. However,
while crowdsourcing interactions with the system allowed
for statistical analysis of these interactions, this research
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could be complemented by a more naturalistic and quali-
tative study of student or professional writers using this sys-
tem. Further research into this and other literary interfaces
could and should explore how they could be taken up in par-
ticular educational contexts over longer time-scales of liter-
acy (Lemke 2000). One might reasonably wonder whether
training with such tools over periods of time has effects on
one’s mode of composition the same way that attending a
spin class every week has effects on one’s body. Further re-
search could also focus more closely on the perception of
overall “creativity”—whether writers feel as though the sys-
tem makes them more creative, and whether readers perceive
texts written with this system as more creative.

Unexplored too are the political and ideological potentials
of this kind of progymnastic exercise. Researchers have be-
gun both to critique and attempt to reverse the biases (espe-
cially gender and racial biases) in large data sets and the
models trained upon them (Bolukbasi et al. 2016). One
could imagine a kind of progymnasmata that targets overly
familiar and biased ways of talking about male or female
characters, for instance, and encouraging the writer’s depar-
ture from stereotypical use of language (such as a tedious
insistence that a queen be “fair”’; see again Table 1).

Work in computational creativity has focused on how to
make creative writing more pleasant, less cognitively and
psychologically taxing (Kantosalo et al. 2014; Gongalves et
al. 2017; Gongalves and Campos 2018). Progym clearly
aims to make the task of writing harder rather than eas-
ier. Future research could also consider the psychologi-
cal aspects of users’ interactions with intentionally-critical
progymnasmatic systems and could consider techniques of
gamification to motivate writers to engage with them.
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Abstract

We introduce a new spreadsheet based interface called
SpaceSheets for creating novel images and other me-
dia. Unlike traditional digital tools, ours is parame-
terized entirely by a neural network with no prepro-
grammed rules or knowledge representations. The ca-
pability of SpaceSheets to support visual exploration
and communication is demonstrated within the context
of several domains including facial images, fonts, and
english words. SpaceSheets is demonstrated to support
the experimentation and exploration of latent spaces en-
abling more effective design experimentation.

Introduction

Problem solving can be viewed as a search for a solution
within a space. In design, this process involves generating
solutions and evaluating their consequences relative to goals
and constraints (Simon 1995). These experiments are en-
abled through representations in the form of drawings and
diagrams. Computational design tools enable users to con-
struct and manipulate representations digitally. These tools
often impose a high cost to design experimentation due to
the mismatch between low-level design operations in ex-
pressing more abstract design intent.

Generative models learn more compact representations of
the training data in a vector space of latent variables. Latent
variables are sampled from high-dimensional latent space
and can be decoded back into observable values. Addi-
tionally, semantic operations can be performed within latent
space using vector arithmetic (White 2016).

Spreadsheet interfaces are a ubiquitous part of office pro-
ductivity suites. They enable users to perform experimen-
tal calculations using a set of formulae which define rela-
tionships spatially. Automatic recalculation supports exper-
imentation by enabling users to observe the results of their
actions immediately and act accordingly.

We developed SpaceSheet (Figure 1) to leverage the fa-
miliarity and power of spreadsheet interfaces for the pur-
pose of design experimentation within latent space. It has
been adapted to enable non-experts to explore and experi-
ment within latent spaces.
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Figure 1: The SpaceSheet being used to perform an average
between two latent variables

Background
Conceptual Spaces

Generative models are a popular approach to unsupervised
machine learning. Generative neural network models are
trained to produce data samples that resemble the training
set (Karpathy et al. 2016). Because the number of model
parameters is significantly smaller than the training data, the
models are forced to discover efficient data representations.
These models are sampled from a set of latent variables in a
high-dimensional space, called a latent space. Latent space
can be sampled to generate observable data values. Learned
latent representations often also allow semantic operations
with vector space arithmetic (Figure 2), a phenomenon dis-
covered previously in the latent space of language mod-
els (Mikolov et al. 2013).

Generative models are often applied to datasets of im-
ages. Two popular generative models for image data are
the Variational Autoencoder (Kingma and Welling 2013)
(VAE) and the Generative Adversarial Network (Goodfel-
low et al. 2014) (GAN). VAEs use the framework of prob-
abilistic graphical models with an objective of maximizing
a lower bound on the likelihood of the data. GANSs instead
formalize the training process as a competition between a
generative network and a separate discriminative network.
Though these two frameworks are very different, both con-
struct high-dimensional latent spaces that can be sampled
to generate images resembling training set data. More-
over, these latent spaces are generally highly structured and
can enable complex operations on the generated images by
simple vector space arithmetic in the latent space (Larsen,



Figure 2: Schematic of the latent space of a generative
model. In the general case, a generative model includes
an encoder to map from the feature space (here images of
faces) into a high-dimensional latent space. Vector space
arithmetic can be used in the latent space to perform se-
mantic operations. The model also includes a decoder to
map from the latent space back into the feature space, where
the semantic operations can be observed. If the latent space
transformation is the identity function we refer to the encod-
ing and decoding as a reconstruction of the input through the
model.

Senderby, and Winther 2015).

In the latent space of generative models, many high-level
attributes can be represented as a vector (Figure 3). Using
techniques from (White 2016), multiple attributes can be
decoupled further to create a visualization of possible states
across multiple semantic vectors (Figure 4). For example,
when trained on a dataset of portraits, latent vectors can be
computed for “smiling” and “mouth open” which then ap-
plied to new face images.

Figure 3: Traversals along the smile vector using a GAN
model from (Dumoulin et al. 2016)

Prior to the discovery of neural network latent spaces
supporting semantic operations, cognitive science had hy-
pothesized the existence of knowledge representations that
were primarily geometric instead of symbolic. One primary
proponent was Girdenfors who proposed a framework of
”Conceptual Spaces” as structured multi-dimensional fea-
ture spaces to support modeling information processes such
as concept learning and prototype theory (Gérdenfors 2011).
Notably, conceptual spaces were proposed as a model of
how people structure concepts, independent of any pro-
posed computational implementation of how they might
come about.

We adapt the terminology and claim that latent spaces
of generative neural networks function as conceptual spaces
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Figure 4: Decoupling attribute vectors for smiling (x-axis)
and mouth open (y-axis) allows for more flexible latent
space transformations. Input shown at left with reconstruc-
tion adjacent. Using a VAE model from (Lamb, Dumoulin,
and Courville 2016)

which can be used as non-symbolic knowledge representa-
tion layers in other tools. With this framework, we examine
the ability of this representation layer built from the latent
space of a generative neural network model to support a new
type of spreadsheet interface tool. The tool itself is domain
independent and is shown to be useful in several domains.
In exploring these particular domains, our tool constructs
subspaces of the larger conceptual space of possibilities as a
parameter space of a spreadsheet driven exploration tool.

Supporting Design Experimentation

Design principles have been identified by (Resnick et al.
2005) and (Terry and Mynatt 2002) for user interfaces to
support design experimentation and exploration.

These principles can be summarised by the three user
interface requirements proposed in Design Principles for
Tools to Support Creative Thinking (Resnick et al. 2005)
(paraphrased): It must be very easy to try things out and
then backtrack when unsuccessful. Tools should be ‘self-
revealing’ in what they can achieve. Make it very fast to
sketch out different alternatives

These principles are supported by (Terry and Mynatt
2002) where they identify three activities in the process
of reflection-in-action (Schon 1984) that should be sup-
ported by user interfaces for design experimentation. They
are: Near-Term Experimentation, Generating Variations,
and Evaluation.

Near-Term Experimentation is used to describe actions
which intend to “discover and instantiate the next move”
(Terry and Mynatt 2002, p. 39). In a user interface, users
would make hypotheses about the next action to be made,
and test their hypothesis by “invoking a command and ad-
justing its settings to achieve the imagined effect”. The users
would then “either accept the command, tweak the parame-
ters more, or undo it and try another tact” (Terry and Mynatt
2002, p. 40).

Variations are created by the designer to explore alter-
natives deeply. It enables them “to better understand the
problem, its boundaries, and potential solutions” (Terry and
Mynatt 2002, p. 40). An example of this is where design-



ers make “multiple variations of a specific component by
creating them side-by-side on a large canvas ... and iterate
on promising versions to arrive at an acceptable solution”
(Terry and Mynatt 2002, p. 40).

Users need to evaluate their progress as they work on a
task. This happens after near-term experiments, as well as
after generating variations: “the moment in which the indi-
vidual reassesses the problem and their understanding of it,
before making the next move” (Terry and Mynatt 2002, p.
40).

Spreadsheet as a Design tool

Spreadsheets may seem like an unlikely design tool. How-
ever, the ability to express relationships between cells make
it functionally suited to express operations in latent space.
Additionally, it satisfies the three user requirements for
software to support design experimentation — Near-Term
Experimentation, Generating Variations, and Evaluation as
proposed by (Terry and Mynatt 2002).

Near-term experimentation is supported by the automatic
updating feature of the spreadsheet. Users are able to set
up scenarios of logic and calculate the results to ‘what if’
questions instantly by modifying the cell values. This estab-
lishes a tight feedback loop between the user’s actions and
its implications. When coupled with the ability to undo ac-
tions, it enables users to discover and instantiate moves, and
backtrack if the results are unsatisfactory.

The generation of variations is supported by enabling
users to duplicate instances of data onto other cells within
the document. These copies can then be modified indepen-
dently from the original data.

Evaluation is supported by enabling users flexibility in
how they choose to organise data in the document. Users
can set up custom templates in a layout which best supports
their preferences and the problem to be solved.

In addition to their promise in supporting design exper-
imentation, spreadsheet software is well-established within
office productivity suites. Users with an understanding of
how conventional spreadsheets function are able to transfer
their understanding to the use of the design tool.

SpaceSheet

SpaceSheet consists of a data picker exposing latent vari-
ables to operate with and a spreadsheet to define operations
between the variables. In both, latent variables are decoded
into observable images.

Data Picker

The data picker is a predetermined set of latent variables
which have been organized into a grid. The set of variables
in the data picker act as the points of reference from which
the latent space can be explored from. Diversity has been
prioritized in the selected set to maximize the variety of pos-
sible outcomes that can be explored. Multiple data pickers
have also been implemented as tabs to provide various pre-
baked distributions of latent variables.
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Spreadsheet

The spreadsheet is the main workspace of the tool. It en-
ables users to express relationships between cells using for-
mulae. Operations between cells containing latent variables
are computed with vector arithmetic, and its result is de-
coded into an image. Common operations can be defined
by clicking on buttons at the top of the spreadsheet. These
buttons are selection-aware, and highlight to suggest opera-
tions based on the selected cells. A live SpaceSheets demo
is available online' and the appendix contains a list of sup-
ported operations and sample workflows.

Applications

=LERP(E6, 36, 0.60)

AVERAGE LERP = MINUS | SUM | MUL SLIDER RANDVAR | MOD

B

AAAAAA
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Figure 5: SpaceSheet with Font Model

Initial efforts are focused on experimenting in various do-
mains to encourage the development of a general-purpose
model agnostic set of operations. A SpaceSheet to explore a
generative model of fonts (Bernhardsson 2015) has been im-
plemented to be used as a design tool (Figure 5). User testing
indicated that the tool enabled designers and non-designers
alike to explore design variations easily (Loh 2018).

=SUM(A2, MINUS(B1, A1)

AVERAGE | LERP MINUS

A B

Figure 6: SpaceSheet with word2vec

"https://vusd.github.io/spacesheet/



The concepts have also been extended to domains other
than images and with models that are not generative, such
as the Word2Vec model (Mikolov et al. 2013). This version
of the SpaceSheet can be used to find word analogies and
perform interpolations using nearest neighbors (Figure 6).

A SpaceSheet has been created to enable the exploration
of the BigGAN model (Brock, Donahue, and Simonyan
2018). In this implementation, the primary DataPicker for
this implementation has been curated to enable users to ex-
periment with a variety of image classes (Figure 7).

Figure 7: BigGAN SpaceSheet with a generic DataPicker
across all image classes

Custom DataPickers of other classes, or combinations of
other classes can be created using the DataPicker creator
(Figure 8). The DataPicker creator enables users to a) ex-
plore and select one or more classes from a searchable, hi-
erarchically organised tree checklist, b) control the amounts
of each class to composite in the resulting class, and c¢) pre-
view example reconstructions of the resulting class before
creating a DataPicker of the resulting class. Once created,
this new custom DataPicker will be available for use in the
spreadsheet (Figure 9).

Figure 8: BigGAN SpaceSheet custom DataPicker interface

Evaluation

User testing of SpaceSheets on a model of fonts (Loh 2018)
revealed that the tool enabled a novel method to experiment
with designs. Users explore design possibilities from a top-
down approach by deriving meaning and navigating within a
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Figure 9: BigGAN SpaceSheet with a custom DataPicker
made from combining a user-provided ratio of the "Bubble”,
”Granny Smith”, and ”Velvet” image classes

preconstructed model, rather than constructing a model from
the bottom-up.

This method of working was reported to be more support-
ive of design exploration, more efficient, and capable of en-
abling non-designers to explore design possibilities. Unsur-
prisingly, it required new skills and intuition to be used to its
full effect. A lack of knowledge in deriving and applying at-
tribute vectors from latent space limited users’ expressivity
and control over their experiments. Due to this, interpola-
tion was found to be the most intuitive and common method
to arrive at search targets.

Expressing low-level transformations such as positioning
and scale through SpaceSheet often resulted in distorted re-
constructions which did not match the expectations of the
user. This is attributed to a mismatch in the high-level prob-
abilism of sampling latent spaces is an ill-fit to express con-
crete design intent. However, this uncertainty has been re-
ported to be serendipitous when distortions in the recon-
struction added to the aesthetics of the design.

Discussion

SpaceSheets explores the potential of latent spaces to be
used as a tool for design experimentation. The research finds
it to enable a novel method to work with designs which sup-
ports more efficient, high-level design experimentation to
designers and non-designers alike.

User intuition and skill in deriving meaning from latent
spaces is fundamental to conduct design experiments with
a fine level of control. This intuition can be considered
a skill which can be developed through continued experi-
ence with the flexible, low-level interface provided by the
SpaceSheet. Although latent spaces enable designers to ex-
press more meaningful design operations computationally,
it provides redundant uncertainty for low-level design oper-
ations. It is with this understanding that latent spaces are
best considered as a complementary new primitive to build
smarter design tools.
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Appendix: Implementation Details

slider element

Supported Operations
Operation Description Formula
Sum Adds a list of numbers / variables SUM (vall, val2, vals3,
Minus Subtracts two numbers / variables in se- | MINUS (vall, val2)
quence
Multiply Multiplies a list of numbers / variables MUL (vall, val2, val3,
Linear Interpolation | Calculates the value in between two num- | LERP (from, to, amount)
bers / vectors at a specified amount
Average Calculates the average of a list of numbers | AVERAGE (vall, val2, val3,
/ vectors )
Distance Calculates the euclidean distance between | DIST (vall, wval2)
two numbers / vectors
Modulate Creates a scrubbing interface which can | MOD (cell, degree, radius)
modulate a cell
Random Variable Creates a random latent variable RANDVAR (seed)
Slider Creates a number which is controlled by a | SLIDER (min, max[, step])

Several alternative cell types have been implemented to create interface elements which support more effective search and

Interactive Cell Types

ef

Figure 10: RANDVAR, MOD and SLIDER cells.

exploration. These are instantiated by the operations:

RANDVAR (seed)

The RANDVAR (random variable) cell instantiates a latent variable from a random seed. This enables users to operate using
latent variables beyond the limited set afforded by the Data Picker. A button displays when the cell is hovered over which

enables users to randomise the cell directly.

MOD (base, degree,

The MOD (modulate) cell exposes a joystick interface which enables users to scrub locally around a given latent variable to
arrive at similar latent variables. The degree of difference can be controlled by the joystick’s distance from the center of the

cell.

SLIDER (min, max

distance)

[,step])

The slider cell enables users to create a number controlled by a slider element.
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Example Workflows

Figure 11: An interpolation between two latent variables

Interpolation

Extrapolation

Figure 12: Extrapolating from two points.

Extrapolating from latent variables can be used to emphasise attributes which vary between its anchors. In this example, the
difference between the highlighted anchors - blond hair, large smile, etc. - have been emphasised by extrapolating beyond the
end anchor.

Averaging

Figure 13: Calculating the average reconstruction of a group of latent variables
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Analogy

Figure 14: An analogical construction. The bottom right cell applies the difference between the top cells to the cell on the
bottom-left

Given three reconstructions (top-left, top-right, bottom-left), the SpaceSheet calculates the bottom-right corner by analogy.
This is achieved by applying the difference between the top variables to the bottom-left variable. In this example, a toothy grin
has been applied to the man.

Attribute Vectors

Figure 15: Isolating a ‘blonde’ vector by subtraction (left). Adding the attribute vector to a new latent variable (right)

Specific attributes can be applied as operations to latent variables. Attribute vectors can be isolated by subtracting a latent
vector with desired attributes with one without the attributes. This attribute vector can be added to another latent variable to
apply the isolated attribute. The example image shows this two-step process. In the first, a ‘blonde’ attribute vector has been
isolated by computing the difference between the highlighted cells. This vector is then applied in the right image by addition.
The result is a more blonde version of the initial latent variable.
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Abstract

This paper presents a computational model for concep-
tual shifts, based on a novelty metric applied to a vector
representation generated through deep learning. This
model is integrated into a co-creative design system,
which enables a partnership between an Al agent and
a human designer interacting through a sketching can-
vas. The Al agent responds to the human designer’s
sketch with a new sketch that is a conceptual shift: in-
tentionally varying the visual and conceptual similarity
with increasingly more novelty. The paper presents the
results of a user study showing that increasing novelty
in the Al contribution is associated with higher creative
outcomes, whereas low novelty leads to less creative
outcomes.

Introduction

Creative systems are computational systems that either
model human creativity in some manner or are designed
to support and inspire creativity. Over the last few years,
three main approaches to these systems have emerged: fully
autonomous creative systems, creativity support tools, and
co-creative systems. Fully autonomous creative systems,
part of the field of computational creativity, are designed
to generate creative artifacts or exhibit creative behaviors
(Colton et al. 2015; Das and Gambick 2014). Creativ-
ity support tools, on the other hand, are technologies that
can support human creativity by accelerating or augment-
ing some facets of the creative process (Shneiderman 2007;
Voigt, Niehaves, and Becker 2012). Finally, co-creative sys-
tems incorporate concepts from both fully autonomous sys-
tems and creativity support tools: they enable human users
and computer systems to work together on a shared creative
task (Davis et al. 2015a; Yannakakis, Liapis, and Alexopou-
los 2014).

In this paper, we introduce the algorithms for a co-
creative sketching tool called the Creative Sketching Part-
ner (CSP), which involves collaboration between a designer
and an Al agent on a shared design task. Figure 1 illus-
trates the CSP tool, in which the design task is described
at the top and the three sketches below represent the re-
sponses to this task. The two sketches at the top represent
the user’s initial sketch on the left and the Al agent’s re-
sponding sketch and label for the sketch on the right. The
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Figure 1: The Creative Sketching Partner interface.

sketch at the bottom of the canvas is the user’s new sketch,
with the shaded region showing the user’s additions inspired
by the AI agent’s sketch. The system utilizes a compu-
tational model of conceptual shifts (Karimi et al. 2018b;
2018a) to guide users toward different aspects of the design
space based on the amount of visual and conceptual similar-
ity to the user’s sketch input. Visual similarity entails iden-
tifying a sketch that shares some structural characteristics,
whereas conceptual similarity identifies a concept that has
some semantic relationship. We present users with stimuli
that have either both high visual and conceptual similarity
(like a pen and a pencil) or low visual and conceptual simi-
larity (like a dolphin and a chair).

Karimi et al. (2018c¢) introduced a framework of ways
to evaluate creativity in co-creative systems. It was found
that current co-creative systems research tends to focus on
measuring the usability of the system, rather than on op-
erationalising creativity. This demonstrates an opportunity
for adopting metrics from computational creative systems in
order to empower co-creative systems with the capacity to
measure the creativity of their contributions to the output.
For our conceptual shift model, we adopt one of the most
commonly measured components of creativity from compu-
tational creative systems: novelty (Grace et al. 2015). Nov-
elty is associated with measuring how different an artifact
is compared to another set of artifacts (Grace et al. 2015).
The novelty can be based on a comparison with a univer-
sal set of artifacts, which we will call a universal measure,



or on a set of artifacts that the user has previously experi-
enced, which we will call a personal measure. In this paper,
we use a universal measure based on a large dataset of la-
belled sketches and deep learning that enables two kinds of
representation: one that enables a measure of visual similar-
ity and one that enables a measure of conceptual similarity.
From these metrics, we have constructed a universal com-
posite measurement of novelty that is a combination of the
distance between feature vectors in the visual space and the
conceptual space.

We hypothesize that, when a system provides stimulus in
the form of design concept responses that are highly novel
to the user’s design, it leads to more transformative creative
outcomes. In these cases, the designer is able to draw upon
distant visual and semantic features to inspire their creative
process, such as adding features from another design do-
main. In contrast, when the system displays stimulus design
concepts that are less novel to the user’s design, it corre-
sponds to less creative outcomes. The features of similar
designs do not provide highly novel input to the process,
leading to design iterations that share many attributes with
the designer’s original sketch. To explore this hypothesis
we performed a user study utilizing a Wizard of Oz system
to see how altering the novelty of the Al agent’s response
affected the creativity of the user’s response. Participants
experienced three conditions: low, intermediate, and high
novelty in the system’s response. After the sketching expe-
rience, participants were interviewed and surveyed to deter-
mine how the Al agent’s responses affected their creativity.
We found that, based both on our quantitative and qualitative
results, the high novelty conceptual shifts stimulated more
creative thinking than the low novelty ones.

Related Research

Over the last few decades, digital tools have been introduced
as a way to support design creativity (Johnson et al. 2009).
These tools offer a variety of functions that allow designers
to share their digital sketches and suggest new ideas to facil-
itate creativity. More recently, intelligent systems have been
developed that enable collaboration with designers in real
time. These systems, also referred to as computational co-
creative systems, work alongside human users to encourage
their creativity, support inspiration, and stimulate the user to
continue creating. ViewPoints Al (Jacob et al. 2013) is an
example of an artistic co-creative system that has applica-
tions in dance and theater. It uses a compositional technique
that perceives and analyzes human movements and gestures
to facilitate an Al response in real time. Morai Maker (Guz-
dial et al. 2019) is an example of a co-creative game level
design tool that assists users in authoring game level content.

Co-creative sketching systems are an active area of re-
search in the computational creativity community. One such
example is the Drawing Apprentice, which is a co-creative
drawing partner that collaborates with users in real time
(Davis et al. 2015b). The system uses sketch recognition
to identify objects drawn by the user and selects a comple-
mentary object to display on the screen. Complementarity is
defined by the semantic distance between the user’s sketched
object and the target object. DuetDraw (Oh et al. 2018) is
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another example of a co-creative sketching tool that works
alongside the user by recognizing what the user draws and
drawing related content to complete a shared scene. In our
work, we use visual and conceptual similarity to select an
object from a distinct category to be drawn on the screen in
order to support the design process. Instead of selecting a
sketch from the same conceptual category, such as Drawing
Apprentice, the CSP uses a computational model of concep-
tual shifts (Karimi et al. 2018b) to determine an appropriate
target sketch from a dataset.

Conceptual shifts in design can occur when a sketch of
one concept is recognized as being similar to a sketch of an-
other concept (Karimi et al. 2018b). Identifying and capital-
izing on conceptual shifts is an important component of the
design process, as it allows designers to perceive their de-
sign ideas from different perspectives. There are two modes
of perception that have been defined in design: seeing-that
and seeing-as (Suwa and Tversky 1997). Seeing-that refers
to the concrete properties of a sketch and their function in the
overall design, whereas seeing-as refers to interpretation, in
which sketch elements can be considered through multiple
perspectives. Conceptual shifts have the potential to inspire
designers to adopt the seeing-as mode of perception, explor-
ing how their emerging design could be connected to a vari-
ety of distinct concepts presented as stimuli.

Identifying conceptual shifts could also help users over-
come design fixation (Purcell and Gero 1996). Designers
often have a hard time disengaging from the ideas they de-
veloped and learned over time. This effect, called fixation,
may be reduced by presenting designers with a sketch of
another object that shares some visual and conceptual in-
formation. We presume that, when presenting a conceptual
shift successfully triggers seeing-as perception, a designer
could be distracted from fixation, and potentially develop
novel contributions to their design. This could lead to the
discovery of innovative solutions for a design task.

The study of creative design has lead to a characteriza-
tion of different types of creativity. Gero (2000) has intro-
duced six forms of design creativity that can form the basis
for computational aids: combination, exploration, transfor-
mation, analogy, emergence, and first principles. Combina-
tion happens when two distinct design concepts are added.
Exploration relates to changing some variable values asso-
ciated with a design concept. Transformation involves alter-
ing one or more variables of a design concept through ex-
ternal processes. Analogy is characterized by mapping be-
tween structural elements of two dissimilar objects. Emer-
gence occurs when extensional properties of a design con-
cept are identified beyond the intentional ones. First princi-
ples use computational knowledge to relate function to be-
haviour and behaviour to structure. The CSP introduced in
this paper can be considered a computational aid to design
that can support the first four of these forms of creativity in a
co-creative design context: combination, exploration, trans-
formation, and analogy.

Quantifying Conceptual Shifts

Quantifying conceptual shifts is challenging because con-
cepts are not typically represented or evaluated numerically.



Our premise is that the larger the shift, the more creative the
resulting design. In order to quantify the scale of a concep-
tual shift between two sketches (in our case the user’s sketch
and the system’s proposed response), we need a representa-
tion space in which we can measure similarity or novelty.
The more similar the second sketch is to the first, the less
novel the second item is and (we hypothesize) the less likely
that it will trigger a conceptual shift. When the two items
are less similar, the more novel the stimulus and (again, we
hypothesize) the more likely it will result in a conceptual
shift.

We focus on novelty in generating conceptual shifts be-
cause it has been shown to be a key component in predicting
creativity (Grace et al. 2015). The assumption in measuring
novelty is the existence of a representation that allows ob-
jective measurement of difference. In (Grace et al. 2015),
the corpus of designs in the design space were represented
as a set of features that formed the basis for correlation and
regression analysis. The feature set was extracted from a
database in which the information about the designs was
manually entered as a set of features with categorical and
numerical values. This representation enabled various ways
to measure novelty, but not a single novelty score.

In the CSP, we measure novelty by comparing two
sketches: an initial sketch presented by the user and a second
sketch selected from a large dataset of sketches. Novelty is a
combination of two components: the visual similarity based
on the visual data and the conceptual similarity based on the
label for the sketch. We use deep learning models to extract
a vector representation in two design spaces: a visual space
using a large dataset of sketches, and a semantic space us-
ing a word embedding model. We consider the novelty to be
a combination of the classification of visual novelty in the
visual space and conceptual novelty in the word embedding
space.

We classify novelty into three categories: low, intermedi-
ate, and high. Low novelty occurs when two sketches share
a large amount of visual and conceptual information, inter-
mediate novelty is when two sketches share some visual and
conceptual information, and high novelty occurs when two
sketches share little visual and conceptual information. We
presume that low novelty lies within the expectation of the
user, and that the system’s response might be most likely to
help the designer add more details to their initial design. In-
termediate novelty could instead inspire the designer to ex-
plore possible new design ideas associated with their initial
design. High novelty has the potential to widen the user’s
thinking process, making it more likely to help them in-
corporate new design features from a completely different
design space. Based on this presumption, we hypothesize
that increasing the novelty of the CSP stimulus will corre-
late with more creative outputs.

Conceptual Shift Algorithm

In this section we describe an Al model of conceptual shifts.
The model selects an object from a database of sketches to
be displayed on the canvas as a stimulus during a co-creative
session. Our model has two components: visual similarity
and conceptual similarity. Visual similarity recognizes pairs
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of sketches from distinct categories that share some underly-
ing visual information. Conceptual similarity identifies the
semantic similarity between the labels of the sketches.

Figure 2 shows the computational model the Al agent uses
to select a sketch of the desired level of novelty in response
to the user’s input. The visual similarity module computes
the distances between the cluster centroids of distinct cate-
gories and maps the user’s input to the most similar sketches
from categories to which it does not belong. The concep-
tual similarity module takes the pairs of selected category
names from the previous step and computes their semantic
similarity. In this section, we describe how CSP generates
a numerical value for visual and conceptual similarity and
determines the conceptual shift candidates based on high,
intermediate, and low novelty.

Visual Similarity Module

The visual similarity module uses a large public dataset of
human-drawn sketches, called QuickDraw! (QD) (Jongejan
et al. 2016), with more than 50 million labeled sketches
grouped into 345 categories. In preparation for calculat-
ing visual similarity, we have 2 steps: a learning step and
a clustering step. In the learning step, the sketches are used
to build a vector representation of the sketch’s features. In
the clustering step, we use the resulting feature vectors for
sketches in each category to create clusters of visually simi-
lar sketches. This process provides a feature vector represen-
tation for calculating the novelty between the user’s initial
sketch and sketches in the QD dataset using visual similar-

1ty.

Deep Learning Model of Sketches for Visual
Similarity

As in the case of natural images, sketches can also be pro-
cessed as a grid of pixels, (h, w, d), in which h is the height,
w is the width, and d is the number of channels. However, in
this case, d will be 1 because the sketches are monochrome.
To develop a representation for visual similarity we em-
ployed a convolutional neural network (CNN) model due
to their success in providing high level visual information
and discriminating visual appearances, such as shapes and
orientations (LeCun, Bengio, and Hinton 2015). We started
with a pre-trained model, VGG16 (Simonyan and Zisserman
2014), with 13 convolutional layers, two fully connected
layers, and a softmax output layer. The model is primar-
ily trained on the ImageNet dataset (Deng et al. 2009) that
contains more than 20 million labeled natural images. We
then fine-tune this model on the QD dataset with the objec-
tive of classifying a sketch into one of the 345 categories.
We use 30,000 training samples and 10,000 validation sam-
ples per category, and trained for 1.5 million training steps.
Observation shows that the accuracy reaches 52.1% after 1
million steps and remains the same afterwards. We extract
a neural representation of each sketch by taking the output
of the first fully connected layer, for 4096 values per sketch.
However, this model has low accuracy and a high compu-
tational cost because of the large number of parameters in
the VGG16 architecture and processing sketches as a grid of
pixels.
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In order to solve this problem, we tried another represen-
tation of sketches: a sequence of pen strokes, inspired by
the work done by Ha and Eck on Recurrent Neural Network
drawing (Ha and Eck 2017). In this case, each stroke is a
list of points with 3 elements: (Ax, Ay, p). Ax and Ay
are the coordinates with respect to the previous point, and
p is a binary number that determines whether the stroke is
drawn or not (i.e. just moves the pen). Here we use a deep
learning model called Convolutional Neural Network-Long
Short Term Memory (CNN-LSTM) (Carbune 2017). The
model has three one-dimensional convolutional layers and
three LSTM layers. We train the model from scratch on the
QD dataset with the same objective, training, and validation
samples as the CNN-only model. Results show that, after 1
million training steps, accuracy reaches 73.4% and remains
the same afterwards. Each sketch is represented by the last
LSTM layer, for 256 values per sketch. Table 1 summarizes
the results for accuracy and the average-per category infer-
ence time for both models. Accuracy measures a true posi-
tive rate, while inference time represents the total amount of
time it takes to extract features from all sketches of a cate-
gory. The CNN-LSTM model is clearly both faster and more
accurate, and we use it hereafter.

Proceedings of the 10th International
Conference on Computational Creativity 2019
ISBN:978-989-54160-1-1

Clustering visually similar sketches in each
category

The sketches in a category exhibit a large variability visu-
ally. For our visual similarity measure to be meaningful,
we group the sketches in each category into clusters and use
the feature vector of the cluster centroid as the representa-
tive sketch. This process is a form of denoising, where the
intra-cluster variability is suppressed. We perform cluster-
ing using a K-means algorithm and determine the optimal
number of clusters via the elbow method. By analyzing the
variance versus the number of clusters, we observed that for
most categories the optimal number of clusters is between 7
and 12—we set the number of clusters to 10 across all cat-
egories. The distances between the cluster centroids from
distinct categories are computed and stored in a matrix of
size 3450 x 3450: 10 clusters of sketches for each of 345
categories.

Given the source sketch and label from the user, Lg,
we first extract visual features using the pre-trained CNN-
LSTM model that produces 256 values. We then locate the
representative cluster within its category (according to the
label of the user’s sketch) by selecting the closest centroid
based on the L2 (i.e. Euclidean) distance. Using the distance



VGG-16 CNN-LSTM
Accuracy 52.1% 73.4%
Inference time 18,0008 960S

Table 1: Classification accuracy and the inference time using
two different deep learning models.

matrix, we then select the top 20 most visually similar target
clusters from other categories, Ly, as the ones with mini-
mum distance from the representative cluster. The similarity
is computed as 1 — d,,, where d,, is the Euclidean distance
normalized across the most visually similar candidates. As
the similarity values for the selected target sketches change
smoothly, we classify those that fall in the top 33rd per-
centile of the distribution as low novelty, between 33rd and
66th percentile as intermediate novelty, and above 66th per-
centile as high novelty.

Conceptual Similarity Module

The conceptual similarity module uses a word embedding
model (Mikolov 2016) trained on the Google News corpus
with 3 million distinct words. The visual similarity module
provides a set of candidate sketches to the conceptual sim-
ilarity module based on the categories of low, intermediate,
and high novelty. We extract the word2vec word embedding
features (Mikolov 2016) from these category names. The
similarity between the category of the source sketch and the
selected target sketch is computed as 1 — d., where d,. is
the cosine distance between the feature vectors of category
names. The larger number indicates that the two sketch cate-
gories are more likely to appear in the same context, whereas
a smaller number indicates that the two are less associated
with each other. In order to determine the conceptual shift
categories, we select those where the visual and conceptual
similarity are both high, medium, or low. This is done by
selecting candidates for which the difference between vi-
sual and conceptual similarity values are below 0.05 and the
overall similarity component is computed as the average of
visual and conceptual values.

User Study

We conducted a user study to evaluate the effectiveness
of our conceptual shift model in a co-creative design ses-
sion. We investigated how the novelty of the system’s re-
sponse could inspire user creativity and correspond to differ-
ent types of design behaviors. Our hypothesis is that increas-
ing the novelty of the system’s response can help designers
add new features and/or functions from another design space
to their initial drawing, thus leading to more creative out-
comes. By contrast, when the system is in the low novelty
condition, the designer is presented with the similar features
to the initial drawing, which leads to less creative outcomes.

In this study, we used a within-subjects design, such that
each participant experienced three conditions with a two-
minute break between them. In the first condition the de-
sign task is a chair, and the system produces a result that
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is highly novel with respect to the participant’s sketch. In
the second condition the design task is a streetlight, and the
system produces a result associated with intermediate nov-
elty. In the third condition the design task is a bridge, and
the system produces a result that is classified as low novelty.
Participants were not aware whether they were in a high, in-
termediate, or low novelty condition. A context is provided
to help guide each design task, such as “draw a streetlight for
safety at night on a city street of a small town.” When the
system’s output object is presented to the user, it is accom-
panied by a label indicating what the object is. Each design
task takes approximately 7 minutes. The order of the three
conditions for each participant was randomized to account
for any ordering effects.

We used an online sketching tool, called SketchTogether
(Bonazza 2019), that enables multiple users to contribute to
a shared canvas in real time. This application allowed us to
run a Wizard-of-Oz interaction for the user study in which
we used the results of the deep learning model for determin-
ing high, intermediate, and low novelty sketches, but a per-
son performed the interaction of placing the selected sketch
on the shared canvas. Participants underwent a 5-minute
training session that included an explanation about the in-
terface tool and the design tasks. After training, participants
are asked to start the first design task. The instruction given
to the participants were to draw an object according to the
design task and iterate on that drawing based on inspiration
from the system’s response to their sketch. Following each
experimental condition, we asked participants Likert scale
survey questions associated with that design session. The
questions we asked after each task were:

1. Did the system’s sketch response inspire you to come up
with creative ideas for your design objects?

2. Did the system’s sketch response lead you to come up
with a different type of design object?

The answers to the survey questions were recorded for
quantitative analysis. After the last design session, we asked
participants the following questions in an interview:

1. How did the sketches presented by the system affect your
creative process?

2. Was it more helpful when the sketches presented by the
system were more or less similar to your input?

3. In which of the three design tasks did the system’s sketch
inspire you most?

4. Do you have any comments for participating in this study?

The answers to the interview questions were used for
qualitative analysis. The entire session for each participant
took almost 30 minutes.

Results

The user study included 24 participants recruited from the
College of Architecture at a public university in North
America. Gender distribution was 15 males and 9 females.
The criterion for participating was whether students perform
sketching frequently for their design practice. We recorded
survey and interview responses for all participants. In this
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different design.

section, we describe our analysis based on the participants’
responses in order to investigate our hypothesis.

Quantitative Analysis

We compared the results from the user’s feedback on the
three design tasks associated with high, intermediate, and
low novelty conditions. We grouped the responses into high,
neutral, and low ratings: 4 and 5 are considered high, 3 is
neutral, and 1 and 2 are low. For each condition we count
the number of ratings based on this grouping.

Analysis of creative ideas

Participants were asked to rate the responses provided by
the system after each design session. With this question,
we aimed to understand whether increasing the novelty of
the system’s response inspired their creative thoughts. We
found that 91.66% of the participants thought that the sys-
tem’s response inspired creativity when the system was in
the high novelty condition (HNC) compared to 29.16% in
the low novelty condition (LNC). These results indicate that
when the system’s response is more novel with respect to
the user’s sketch (HNC), it is associated with more creative
outcomes, which may encourage the user to come up with
new design ideas for their initial drawing. When the system
was in intermediate novelty condition (INC), 54.16% of the
participants were highly inspired by the system’s response.
Figure 3a shows the distribution of the ratings for the three
conditions.

Analysis of design object inspiration

Transformational creativity happens when a designer
changes one or more structural variables of the current de-
sign object to produce new variables (Gero 2000). This im-
plies that the system’s response has the potential to inspire
the user to transform some features of a design concept by
adding new features from another design space related to the
system’s response. We explored whether increasing the nov-
elty of the system’s response can lead to transformational
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creativity in which the participant’s designed object signif-
icantly deviates from their initial sketch. All participants
rated high in response to changing their design when the
system was in HNC. This indicates that when the system’s
response was less similar to the participant’s input (HNC),
they were able to transform their initial sketch. By contrast,
when the system was in LNC, none of the participants re-
ported that the system helped them come up with a different
type of design object. when the system was in INC, 41.66%
of the participants rated high in response to changing their
design and 58.33% rated low or neutral (see Figure 3b).

Qualitative Analysis
To understand how the novelty of the system’s response can
help designers come up with creative ideas for their initial
task we analyzed the participants responses to the interview
questions conducted after the design tasks were complete.
We aimed to explore the relationship between stimulus nov-
elty and design thinking.

Thematic Analysis

We performed a thematic analysis of the responses the par-
ticipants gave to the interview questions. Overall, three main
themes were found from the interview answers.

e The tool helps with the design process
e High novelty helps changing the design
e Low novelty helps completing the design

In the following section, we elaborate on each of these
themes.

Supporting the design process

Most participants found the tool useful, as it can help with
the design-thinking process as well as iterating and gener-
ating new design ideas. P11 exemplifies how the sketching
tool helped their design process, “The sketches presented af-
ter I did my initial sketch, change the creative process, mak-
ing me think of different object and using that design phi-
losophy and then the second object to affect the first.” This



participant described how the system’s output sketch helped
them think of different design ideas and iterate on their ini-
tial design sketch. This demonstrates that the tool gener-
ally supports the iterative nature of the early design process.
Additionally, P14 comments: “it sort of help[ed] me to see
how I think about design, like they teach us just to design,
I never really thought about how I go about that process of
designing and so having this sort of precedent to work with
is more useful to me.” This participant shows the role such
a tool could play in design education. It helps to provide
precedents that can inform the design process and inspire
additional thinking on the topic.

P4 described how helpful the system is when they say, “/
think the system’s response is very helpful, because it gives
me a leverage on adding to my initial design or just give me
some clue or hint to change my design to make it better.”
Here, the participant comments about how the tool helps
them iterate on their design by adding or changing different
elements of the initial sketch based on the ‘clues’ or ‘hints’
provided by the system’s output. P5 agrees with this senti-
ment when they said, “the way that we communicate is great
because you add something and I am going to redesign it
and so it’s great.” This participant focused on the communi-
cation channel established between the user and system, and
described how this channel helped in the redesign process.
In a similar vein, P25 describes how “it kind of guided me
through some conventional ways of improving my design”
which shows how the tool serves to shepherd users through
the design process by providing new avenues to explore and
inspiration to change the user’s initial design.

High novelty inspires changing the design

We found that high novelty conceptual shifts inspire partic-
ipants to change the overall shape of their design by adding
new features from another design space related to the tar-
get sketch. In this condition, 21/24 reported that it is more
inspiring when the system’s response is less similar to their
initial design. P11 commented: “I think to create an inter-
esting result it was more helpful to have a dissimilar object
as opposed to a similar, because it allows you to change
the form and different ideas instead of just kind of a similar
shape affecting it.” This participant indicates that when the
system’s response is less similar to their initial design (high
novelty condition), it helps to change the structure, such that
it is possible to incorporate different ideas from the target
sketch. Similarly, P10 commented: “It was easier to make
changes when it was more different. I think when something
is already similar sometimes my brain already has a same
set of ideas, but when I am presented with something dif-
ferent the contrast helps me to generate a new idea.” This
participant was able to come with a new idea when he/she
was presented with a sketch that was less similar to the ini-
tial drawing.

When P16 was presented with a sketch of an aircraft-
carrier after designing a chair, they described how the sys-
tem’s sketch opened up new possibilities for them, “The
aircraft-carrier may have chairs but it doesn’t elicit specific
form especially giving the prompt that is going to be at the
kitchen table. Thinking about new possibilities that can hap-
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pen definitely opens the new design criteria.” This example
shows that the chairs of the aircraft-carrier introduced new
design criteria that inspired the participant to sketch a new
kitchen chair with the features of aircraft-carrier seats, such
as more comfort. Additionally, when P21 was presented
with a sketch of a speedboat after designing a chair, they
also found new possibilities in the design space, “The re-
lationship between the two, even though they are used both
in the same task or same function because of the difference
that one is on water, one needs to be outdoor, the different
needs and purposes between the two was influencing me bet-
ter to create something new between them.” Similarly, P22
used the features of the system’s response to reason about
their initial sketch, “The aircraft, because of its curves and
the materiality, so thinking about the skin of the material,
maybe thinking about its curves so that led me to think about
the curves which maybe helped me to think of armrest.” In
this example both the structure and the concept of the tar-
get sketch inspired the participant to change the shape to be
curvy as well as adding new functionalities such as armrests.

Low novelty helps complete the design

Overall, 3/24 participants commented that it is more help-
ful when the sketch that is presented to them is more sim-
ilar to their initial drawing (low novelty condition). P4 ex-
plains why the sketch of fence that was highly similar to
their initial drawing of bridge was more helpful, “because
there were clear features and structures that could help by
adding, mainly the similar features.” In this case, the par-
ticipant preferred to finalize the original drawing by adding
more details and structures rather than changing the exist-
ing features. Similarly, P9 commented: “I like the product
of end results when stuff [is] more similar. Because I could
pull from the profile of fence and add to the bridge...So, you
take something from it and add it to your design.” From
both P4 and P9, we can conclude that when the system is
in low novelty mode the designer mainly adds more details
to the initial drawing rather than transforming the shape or
adding new features to the drawing. Most participants found
the low novelty condition less helpful. For instance, P12 de-
scribed how they liked less similar designs, “I would say it
was more helpful when it was less similar because then you
are not just copying the instances from the other design.” P8
agreed with this sentiment when they said: “high similarity
is kind of within my expectation.”

In both cases of P8 and P12, the low novelty conceptual
shift designs do not help to significantly change the original
drawing. Instead, they are used to combine some elements
of the two sketches. P13 echoes this general viewpoint when
they said: “I think if you are presenting something that is al-
most exactly the same, you are going to introduce the same
idea again.” Similar to P8, this participant also emphasizes
that low novelty conceptual shifts are within their expecta-
tion. P22 also commented: “I feel that similar designs didn’t
give me as much creative freedom.” These examples demon-
strate that low novelty conceptual shifts may help to com-
bine the elements of the two sketches, rather than encourag-
ing the user’s creative thoughts. Both likely have a role in
co-creative design systems, serving different purposes.



Conclusion

This paper presents a computational model of conceptual
shifts for a co-creative design system called the Creative
Sketching Partner. The tool is meant to inspire design cre-
ativity by presenting a sketch of a distinct category that
shares some visual and conceptual information with the
user’s input sketch. We describe the role of deep learning in
creating a representation space for measuring distance be-
tween the visual and conceptual features of a sketch. We
have detailed the process for classifying potential response
sketches as low, intermediate, or high novelty with respect
to the designer’s sketch. A user study is presented in which
the participants are given a design task and then experience
three different versions of the tool: low, intermediate, and
high novelty responses. Both quantitative and qualitative re-
sults from the user study demonstrate that the high novelty
conceptual shift designs inspire creative thinking more than
the low novelty condition.
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Read Me Like A Book:

Lessons in Affective, Topical and Personalized Computational Creativity

Tony Veale
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Abstract

Context is crucial to creativity, as shown by the signif-
icance we attach to the labels P- and H-Creativity. It is
context that allows a system to truly assess novelty, or
to ensure that its topical artifacts really are topical. An
important but an often overlooked aspect of context is
personality. A CC system that is designed to reflect a
specific aspect of the creative temperament, whether it
is humour, arrogance or whimsy, must stay true to this
assumed personality in its actions. Likewise, a system
that creates artifacts that are rooted in emotion must
be sensitive to the personality or mood of its audience.
But here we must tread carefully, as the assessment of
personal qualities often implies judgement, and so few
of us like to be judged, especially by our machines. To
better understand the upsides and pitfalls of topicality-
and personality-based CC systems, we unpack three of
these systems here, and explore the lessons they offer.

The Wonder of You

Creativity can be an intensely personal affair. We put our-
selves into what we create, relying on our experiences and
values to build artifacts we hope others will value too. In
doing so, we reveal our personalities. When we create for
others and assimilate the values of an audience, creativity
becomes personal and personalized. While it is a tenet of
computational creativity (CC) that an agent need not be a
person to be creative, a creative system may nonetheless
need a personality, or an appreciation of the personalities
of others, before it can create like a human (Colton er al.
2008). ‘Software is not human,” to quote the CC refrain,
yet CC systems must appreciate what matters to a human.
In any case, we can only know a CC system’s personality,
and it can only know ours, by what we do or say, making
personal/personalized CC a special case of contextual CC.
For CC systems that create in language, context is itself a
linguistic artifact, as rooted e.g., in our social media time-
lines. Here we describe how best to use linguistic context
to deliver various forms of topical and personalized CC.
Specifically, we will explore the role of linguistic con-
text in the operation of three Twitter-based CC systems,
ranging from one that uses context to ensure topicality to
ones that view context as the imprint of a user personality.
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For personalization, the Twitter footprint of a target user —
whether their official bio or their recent tweets — offers a
textual context in which to situate the generation process.
For topical creativity, the aggregated timelines of an array
of online news sources, from a Twitter-addicted president
to the breaking headlines of mainstream media, provide a
dynamic context for machine creativity. We explore three
modes of CC via these systems: a marriage of linguistic
and artistic creativity that maps the digital personality of a
user, as reflected in what they tweet, into metaphors that
are both textual and visual; a topical creator that generates
metaphors for news stories rather than news readers; and
a book recommender system that leavens its user-tailored
suggestions with humour, and which invents its own book
ideas to supplement the titles in its well-stocked database.

The principle that unites all three systems is the role of
information compression in CC. One space of information
may be compressed or decompressed to yield others, and
produce insightful generalizations or vivid elaborations in
the process. Thus, compression is required to map a news
story to a linguistic metaphor, as the metaphor need only
capture the gist of the story. In fact, such information loss
is desirable when it leads to generalization and ambiguity,
as metaphors should be objects of profound wonderment.
When moving from online user personalities to metaphors
we require the opposite, decompression, to inflate a low-
dimensional space of personality types into an elaborate,
high-dimensioanl space of possible character metaphors.
Current sentiment analysis techniques can place a user in
a space of a dozen or so psychological dimensions, while
metaphors will occupy a space that — even after a process
of dimension reduction — has hundreds of dimensions. In
fact, even the extraction of psychological dimensions is a
compression process, since the textual timelines that feed
into sentiment analysis are converted into high-dimension
distributed spaces built with word co-occurrence statistics.

In the next section we focus on personality-driven CC
with a system that maps recent user moods into metaphors
and pictures. Our approach is data- and knowledge-based,
marrying textual data from a user profile with a symbolic
model of the cultural allusions that underpin a machine’s
metaphors. Following that, we give statistical form to the
notion that metaphors reside in a space of possibilities, so



as to re-imagine metaphor creation as a mapping from one
space, a topic model of the news, into another, a space of
metaphors that shares exactly the same dimensions. These
are whimsical systems that make sport of news and mood,
so we present one more system, a CC book recommender
that uses simple information-retrieval techniques to guide
its suggestions, but which also uses machine creativity in
some unsubtle ways. This specific system was built for a
recent science communications event, and user feedback
offers us some lessons on the willingness of humans to be
judged by machines. Although whimsy can diminish the
severity of a perceived criticism, humour must be wielded
with care by our autonomous CC systems, especially if it
is unbidden, or used for the furtherance of serious goals.

Metaphor Mirror On The Wall

Consider the problem of generating apt metaphors for the
news. As a story breaks and headlines stream on Twitter,
we want our metaphor machine to pair an original and in-
sightful metaphor to each headline. So a headline about
extreme weather might be paired with a metaphor about
nature’s destructive might, or a political scandal might be
paired to a crime metaphor. As metaphor theorists often
speak of multiple spaces — e.g. Koestler (1964), Lakoff &
Johnson (1980) and Fauconnier & Turner (2002) all see
different viewpoints as different spaces — it is tempting to
model each space in a metaphor with its own vector space
model (VSM), by equating vector spaces with conceptual
spaces. Yet this analogy is misleading, as different VSMs
— constructed from different text corpora — must have
different dimensions (even if they share the same number
of dimensions) and we cannot directly perform geometric
comparisons between the vectors of two different VSMs.
Since the principal reason for building a VSM is the ease
with which semantic tests can be replaced with geometric
ones, we should build a single vector space that imposes
the same dimensions on each conceptual metaphor space.
It is useful then to view news headlines and metaphors as
comprising two overlapping subspaces of the same VSM.
For a news subspace we collect a large corpus of news
content from the Twitter feeds of CNN, Fox News, AP,
Reuters, BBC and New York Times, and use a standard
compression technique — such as LDA (Latent Dirchlet
Allocation; Blei et al., 2003), LSA (Latent Semantic
Analysis; Landauer & Dumais, 1997) or Word2Vec (Mik-
olov, 2013) — to generate a vector for each headline. We
additionally build a large metaphor corpus by running the
Metaphor Magnet system of Veale (2015) on the Google
n-grams (Brants & Franz, 2006), to give millions of meta-
phors that stretch across diverse topics. Rather than build
separate vector spaces for the news and metaphor corpora,
we build a single vector space for both by appending one
corpus onto the other before applying dimension comp-
ression. Within this joint VSM, every past metaphor and
future headline is assigned a vector of precisely the same
dimensionality. It is now a simple matter to measure the
angle between the vector for an incoming headline and
those of previously encoded MetaphorMagnet metaphors.
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The metaphor whose vector presents the smallest angle
(the largest cosine) to an incoming news vector is chosen
as the one with the most relevance to that news item. We
built our joint space by compressing 380,000 news items,
210,000 tweets (from sources including @nytimesworld,
@CNNbrk and @FOXnews) and 22,846,672 metaphors
from MetaphorMagnet (which were made available to us
on request) into the same LDA space of 100 dimensions.
We used the gensim package of Rehiifek & Sojka (2010)
to build the space, and concatenated word lemmas to their
POS tags to provide a richer feature set to the model.

The best pairings produced by this conflation of spaces
are tweeted hourly by our bot, called @MetaphorMirror.
The thematic basis of the compression means that some
pairings show more literal similarity that others, as in:

From @WS]: Sultan Abdullah of Pahang has been
chosen as Malaysia’s new king.

T
From @MetaphorMirror: What is a sultan but a
ruling crony? What is a crony but a subservient sultan?
What drives ruling sultans to be toppled from thrones,
appointed by bosses and to become subvervient cronies?

As is evident here, MetaphorMagnet’s hardboiled world-
view shines through in these pairings, offering meanings
and perspectives that, while not actually present in a head-
line, can be read into the headline if one is so inclined. So
some pairings show that the VSM has learnt the lessons of
history by reading the news, and this shines through too:

From @AP: Congo's new President Felix
Tshisekedi sworn into office; country's first peaceful
transfer of power since independence.

T
From @MetaphorMirror: How might an elected
incumbent become an unelected warlord? What if
elected incumbents were to complete tenures, grab
power and become unelected warlords.

Any stereotyping in this response is a product of the VSM
and its large corpus of past news, rather than any bias in
MetaphorMagnet. Though the latter has a symbolic model
of warlords and democrats, it is the news space that unites
this generic model with the specific history of the Congo.
So even as a system strives for topicality, it must have one
foot planted in the past if its outputs are to seem informed.

Fifty Shades of Dorian Gray

Much research has been conducted on the analysis of hu-
man personality as reflected in our lexical choices. Chung
& Pennebaker (2008) describe a tool and a resource, the
LIWC (or Linguistic Inquiry & Word Count), for estim-
ating personality traits such as anger, affability, positivity,
topicality, excitability, arrogance, analyticity, awareness,
worry, anxiety and social engagement from a writer’s text
outputs. The web version of the tool, AnalyzeWords.com,
which calculates values for these 11 dimensions by anal-



yzing one’s recent tweets, tells us that @Oprah is upbeat
and affable as a tweet writer, while @realDonaldTrump is
upbeat but angry. To create metaphors for a specific per-
son, such as Donald Trump or Oprah, a machine can treat
a recent AnalyzeWords profile as an 11-dimension vector
in personality space, and seek to map this coarse vector to
a higher-dimensional space of metaphorical possibilities.

Given the disparity in dimensions between these spaces
(11 versus 100) and their different means of construction,
we cannot build a joint vector space by just concatenating
data. Lacking a dataset to train a neural network to do this
mapping across the spaces, we use a symbolic approach to
inflate the AnalyzeWords space into 100s of dimensions
that capture the qualities highlighted in our metaphor set.
So we inflate the smaller space by hand-crafting logical
formulas — or transformulas — to estimate approximately
300 qualities as functions of the eleven core dimensions.
Transformulas can conjoin, disjoin and negate these core
dimensions. All core dimensions are mapped to the scale
0 to 1.0 (from 0 to 100), and so all transformulas calculate
values in the range O to 1 also. The negation of a quality
simply inverts this scale, so not angry can be calculated to
be (1 - angry). Consider the transformula for neurotic:

neurotic(u) = worried(u) x analytic(u)

That is, since neurotics tend to overthink their worries, we
estimate the neuroticism of user u to be the product of the
core dimensions worried and analytic. Likewise, we can
say that someone is narcissistic to the extent that they are
arrogant and self-aware (given to talking about their own
feelings), or creative to the extent they are analytical and
upbeat. While transformulas do not reflect an empirical
truth about a person, they codify a kind of ‘folk’ symbolic
reasoning that lends itself to explicit verbal explanation.
Importantly, they allow any Twitter user u to be described
in terms of the vivid qualities that are used in the NOC list
(Veale, 2016) to characterize its gallery of famous people.
So, once our transformulas have mapped AnalyzeWords’s
11 dimensions into the rich voculabulary of the NOC list,
a Twitter user can be compared and matched to its iconic
membership. In this way, @FElonMusk may show a strong
similarity to Walter White of Breaking Bad, while @real
DonaldTrump might produce a match to Lex Luthor. Such
metaphors are a reach — all good metaphors are — but each
can be explained in symbolic terms using the logic of the
transformulas that link them to their most recent tweets.
As such, transformulas turn text-analytic calculations into
talking points that a creative linguistic system can exploit.

Consider again the example of @ElonMusk, engineer
and entrepreneur. From an AnalyzeWords.com profile that
places his tweets high on the core dimensions upbeat and
analytic and low on the dimensions angry and self-aware,
the transformula qualities optimistic (upbeat x analytic),
dispassionate (analytic x not angry), unfeeling (analytic x
not sensory) and determined (upbeat and not angry) can
be inferred. Since three of these transformula qualities —
unfeeling, determined and dispassionate — are typical of
machines, and the fourth, optimistic, is not, our metaphor
generator might describe Musk (in light of his most recent
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tweets) as an “optimistic machine.” As his AnalyzeWords
profile also suggests the qualities laid-back, educated and
scientific, the latter two of which are typical of research-
ers, it can also describe Musk as a “laid-back researcher.”

| painted “Optimistic Machine” from
@elonmusk’s tweets with determined
badger-grey, unfeeling Sith-black and
dispassionate robot-silver-grey.

Fig. 1. A personalized metaphor for @ElonMusk.

These metaphors, as tweeted by the metaphor-generating
bot @BotOnBotAction, are shown in Figures 1 and 2.

| made “Laid-back Researcher” from
@elonmusk’s tweets with scientific Walter
White, educated priest-black and laid-
back Lebowski-weed-green.

Fig. 2. Alternate personalized metaphor for @ElonMusk.

The bot creates a new piece of visual art to complement
its metaphors, by creating a 1-dimensional 4-state cellular
automaton that unfurls over many rows/generations — and
rendering its four states with colours chosen to match the
highlighted qualities of the metaphor (see Veale & Cook,



2018). As a flourish, the bitmap of an Emoji annotated
with one of the words in the metaphor — so an atom for
“scientific” in Fig. 1, and a robot for “robot” in Fig. 2 —is
integrated into the image and coloured to suit its new con-
text. Using a colour lexicon in which 600 of the metaphor
machine’s stereotypes are mapped to apt RGB codes (e.g.,
silver-grey for robots, black for priests), it is possible to
assign a specific hue to even the non-visual qualities (see
Veale & Alnajjar, 2016). Each metaphor is then framed so
as to cement this link, so that the black of Fig. 1 is named
“educated priest black” while that of Fig. 2 is “unfeeling
Sith black.” The tweeted metaphor, comprising four inter-
twined sub-metaphors, tells us what each of these colours
stands for, and suggests how we should feel about them.

It is important to note that @BotOnBotAction operates
on an opt-in basis for most users. The bot will not target
them, or metaphorize them, unless explicitly asked to do
so with the hashtag #PaintMySoul. This kind of personal-
ized computational creativity is not always flattering or
welcome, and may even — in some cases — be considered
abusive. The exception to this opt-in rule concerns high-
profile celebrity users of Twitter, who use the platform to
promote themselves to millions of followers. The bot uses
the website TwitterCounter.com (now defunct) to obtain a
list of the most well-known personalities on Twitter, such
as Mr. Musk, and freely generates metaphors and images
for these luminaries in the downtime between its explicit
user commissions. Artists and satirists have always made
targets of the powerful and famous, who hardly notice the
impudence of a single provocateur; our bot is no different.

Making a Hash of Computational Creativity

Personalization and topicalization offer orthogonal means
of grounding the products of CC in the here and now of a
user’s reality. Personalization shows that a creative syst-
em understands its users, whilst topicalization shows that
it appreciates the current and historical context that conn-
ects them both. These alternate means of grounding inter-
sect in the task of recommendation, for a good recomm-
ender engine must understand both the personal dimens-
ions of its users and the topics that matter most to them.

In this section we describe the rationale and the mecha-
nisms of a recommender system for books as embodied in
a Twitterbot named @ReadMeLikeABot. As with @BotOn
BotAction, the bot obeys a mostly opt-in policy for its int-
eractions with users, who request ideas for new books to
read by using the hashtag #ReadMeLikeABook. When the
bot is invoked in this way, it uses the text of the invoking
tweet as the basis for its recommendation. If this does not
offer a foothold to the recommender engine, the bot looks
instead at the short Twitter biography that each user def-
ines for their account. If this is empty or unrevealing, the
bot finally considers the most recent tweets of the user as
a source of topical material for its book suggestions. As in
@BotOnBotAction, those recent tweets also offer a basis
for inferring something of the personality of a user, which
may additionally colour the bot’s book recommendations.
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The bot also has two activation modes that do not obey
a strict opt-in policy. The first is perhaps partially opt-in,
insofar as one can request a recommendation for another.
In this mode, a user tweets #ReadHimLikeABook followed
by the Twitter handle of a friend; the bot also accepts the
tags #ReadHerLikeABook and #ReadThemLikeABook. As
with @BotOnBotAction, the second mode is a filler mode
for when the system finds itself between explicit requests.
In this case, it exploits the fact that many of the authors in
its books database are themselves on Twitter, and so aims
to start a conversation about modern literature that draws
contemporary writers into an online discussion of books.
Authors opt-out of this mode by simply blocking the bot.

Recommender systems are typically either user-based
or content-based. In the former, a perceived similarity bet-
ween users permits a system to recommend items favored
by one to the other. In the latter, the similarity function is
defined over the items themselves, so a user that favors a
given item is likely to favor a similar item too. These two
modes are far from orthogonal, as a similarity function for
users can be defined over the set of items they both favor,
whilst a similarity function for items can be defined over
the set of users that favor them both. In short, as a system
learns more about its users, it learns more about the items
it has in its database of possible recommendations. Impor-
tantly, @ReadMeLikeABot is not designed to track users,
or to learn very much about them, other than that which is
public in their Twitter accounts. The bot remembers what
it recommends simply to ensure that it does not make the
same suggestion again in too short a timeframe. The bot’s
user-based recommendations are personality-based, while
its content-based recommendations are fopic-based, where
each is inferred on the basis of Twitter usage alone.

Recommendation systems are a practical application of
Al yet the task of suggesting existing items permits very
little in the way of novelty, no matter how insightful a re-
commendation may be. Where then lies the computational
creativity of a system like @ReadMeLikeABot? We view
book recommendation not as a creative task in itself, but
as an occasion for creativity that allows an expressive CC
system to demonstrate a witty and whimsical personality.
Consider aspects of linguistic creativity such as metaphor
and irony. While a bot like @ MetaphorMagnet can gener-
ate meaningful metaphors with a characteristic voice of its
own, its outputs are mostly apropos of nothing, for the bot
must rely on its readers to see a serendipitous relevance in
its outputs, in whatever context they consume them. Our
@ MetaphorMirror bot finds this relevance for itself in the
topicality of the news, yet the bot remains a showcase for
metaphorical capability rather than a practical application
in its own right. Linguistic creativity is a welcome season-
ing for language, rather than the meal itself; it works best
when it augments rather than supplants our practical aims.
When viewed as a recommender of books, @ReadMelLike
ABot is not a CC system. Yet the act of suggesting content
to a user on the basis of its insights into the user’s person-
ality allows a system to be creative in the expression of its
insights, and to find a genuine use for irony and metaphor.



Unauthorized Autobiographies

@ReadMeLikeABot maintains a tiered database of content
to recommend. Its first tier contains 500 or so books that
are well known, highly regarded, and by authors of some
renown. Whenever a book from this tier is recommended,
the system can be confident that the user has most likely
heard of it, and will likely see its relevance. Each book in
this tier is also associated with a set of qualities that des-
cribe not just the book itself but the traits of the readers
that are most likely to read it. We might assume, then, that
philosophical readers enjoy philosophical books. In this
way, qualities such as smart, philosophical, warm, hostile
and upbeat can be linked, via appropriate transformulas,
to Twitter users who exhibit the same personality traits.
The bot’s second tier is much larger, but also much less
authoritative. Its 15,000 or so books have been extracted
from DBpedia.org using the website’s SPARQL endpoint.
We exploit the linguistic regularity of DBpedia’s category
terms to also extract a set of themes for every book. When
a book is listed under a semantic category with the label
Xs_about_Y or Y_in_fiction, we extract Y as an apt theme.
We also mine the hierarchical relations between DBpedia
categories to build a semantic network that relates these
book themes to each other, such as Artificial Intelligence
to Neural Networks. This genre and theme network is then
the basis of the bot’s content-based recommendations.
The last tier, and certainly the most unusual, comprises
6000 or so humorous fabrications, wholly invented book
ideas that wear their artifice on their sleeves. These titles
show the usefulness of CC to a recommender system, for
when the system has no new content to recommend to a
user, it can always fall back on its own in-jokes to fill the
gap and keep the user engaged. These inventions must be
seen as the literary jokes they are if the bot’s credibility as
a recommender is not to be diminished in the process. To
generate these witty fabrications, we use the NOC list of
Veale (2016), a large multifaceted database of pop-culture
icons that provides vivid descriptions for over 1000 fam-
ous people, both real and fictional, modern and historical.
For each person, the NOC provides a set of categories —
e.g., billionaire for Donald Trump, or politican for Hillary
Clinton — and a set of typical activities, such as building
giant walls for Trump and tolerating adultery for Clinton.
The NOC is a generic, application-neutral resource, but
as these examples show, no little humour is baked into the
database from the get-go. The NOC list was first built for
the WHIM project (the What-If Machine), and the task of
generating whimsical book ideas can be seen as a what-if
scenario: what if Genghis Khan, or Bono, or Tony Stark,
wrote a book and told us what they were really thinking?
What-if book generation is a simple task using the NOC:
a system combines a famous person with an apt category
and an associated activity, as in the following examples:

The Comedienne's Guide to Ranting About Liberals
The Rockstar’s Guide To Avoiding Taxes
The Son’s Guide to Disappointing the Family

These faux books are credited to, respectively, Roseanne
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Barr, Bono, and Fredo Corleone. When the NOC entity is
fictional and has a known creator, this information is also
used in the generation of literary what-ifs. Consider these:

Captain Ahab's Guide To Chasing a Great White Whale
Dr. Stephen Strange's Guide to Performing Magic Tricks
Yoda’s Guide to Promoting Mysticism

These books are credited to Herman Melville, Stan Lee
and George Lucas, respectively. What-ifs also give us the
opportunity to imagine incongruous pairings of authors:

The Geek's Guide to Studying Science
The Psychiatrist's Guide to Probing the Mind
The CEO's guide to Pioneering New Technologies

The first is credited to Peter Parker and Wesley Crusher;
the second to Drs. Sigmund Freud and Frasier Crane; the
third to Tony Stark and Steve Jobs. In general, any lingu-
istic framing of pop-culture factoids that pokes fun at the
book industry will suffice here. Publishers themselves see
the value of parodic cash-grabs, and shelves already groan
under fictive offerings like the following, by Pablo Esco-
bar, Tyrion Lannister and Wile E. Coyote, respectively:

Lifting The Lid on The Medellin Cartel
Exposed: The Secrets of The House Lannister
An Insider’s Guide to A.C.M .E.

Recall that such non-books are only ever recommended to
the user when better matches from a higher tier cannot be
found, or when all have been offered to that user already.
Their value is largely found in repetition, then: the more a
user interacts with the bot, the further down its tiers the
bot must descend, and more the bot will reveal its sense of
humour, about books and about the book industry itself.

They Shall Not Grow Bold

Much research has focused on the recognition of sarcasm
and irony in text, especially as it is used in social media.
This emphasis on detection is not surprising, given that so
much of the language that matters is created by humans.
In contrast, very little research has addressed the creative
task of generating irony and sarcasm, no doubt because
we already find our machines to be inscrutable enough in
their dealings with humans. But more than that, sarcasm
and irony cannot exist outside of a specific communicat-
ive goal: we can generate metaphors in a null context and
leave it to the reader to unearth their implied meaning, but
irony and sarcasm require a firm context to push against.
In short, they need realistic expectations to bring to bear,
and a context that undermines them in ways for all to see.
For a machine to generate irony and sarcasm well, it must
be given enough of these expectations to be versatile, and
an ability to identify those contexts that clearly fall short.
Personality-driven recommendation supplies these exp-
ectations in convenient qualitative and quantitative forms.
When the bot has a topic-based reason to recommend e.g.,
an intellectual book to a reader who scores low on the an-
alytic dimension, or is poorly scored by the transformula
for intellectual, this mismatch between topic and person-



ality is just the failure of expectation that irony demands.
In this case, topic-based recommendation creates the exp-
ectation, and personality analysis defies it, giving the bot
a logical reason to snarkily poke fun at the disparity. Sup-
pose the bot does suggest an intellectual book, on cosmo-
logy, say, to a user with an avowed interest in cosmology
that appears to fall well short of the intellectual bar; how
should it wittily allude to this failure of expectations? The
bot can learn from how humans deal with disappointment
by looking to how we express our dissatisfaction through
irony. So a web search for intellectual finds the following
ironic similes: about as intellectual as a Cheez Doodle, as
a cucumber, as a brush, a hole in the ground, a wart hog,
a potted plant, a bulldog, an emu, and others too rude to
repeat here. What links each of these mental images is not
a shared feature but a common framing; in each case, the
author prefaces a simile with “about” to signify the sem-
antic imprecision of a creative liberty. We can exploit this
framing device to seek out many other ironic similes on
the Web for any quality one cares to undermine, to give a
bot a rich palette of ironic options to use on its own users.
When a user’s Twitter profile scores low for a quality
that is estimated either directly (using AnalyzeWords) or
indirectly (via a transformula), the bot will dip into its bag
of ironic similes for that quality. Choosing at random, it
can frame what it retrieves in a variety of colourful ways.
Suppose the quality is philosophical, and the bot retrieves
the simile about as philosophical as a bowel movement.
Perhaps the bot also intends to recommend the philosoph-
ical novel Steppenwolfe by Hermann Hesse, as the user’s
recent tweets mention loneliness and alone. It can frame
this pairing of a book to a simile in the following ways:

Hey @bookreader, if you're as philosophical as a bowel
movement then maybe you should read ‘Steppenwolfe’
by Hermann Hesse on the theme of solitude.

Hey @bookreader, | used to be as philosophical as a
bowel movement until | read ‘Steppenwolfe’ by
Hermann Hesse on the solitude theme.

Hey @bookreader, given your personality profile | don’t
know which philosophical book is more you:
‘Steppenwolfe’ by Hermann Hesse on the solitude
theme, or ‘The Bowel Movement’ by Stephen Tolkein.

The first framing was used in early field tests of the bot,
in its prelaunch in the weeks before the 2018 Science and
Communication conference (for which the bot was comm-
issioned). As might be expected, its in-your-face humour
was not popular with everyone, and was a cause for some
dismay to the event’s organizers. The “If you’re X” cons-
truction did little to salve the pain of a sudden insult from
an abusive bot, even if the user had invoked it explicitly.
The second framing proved to be more successful, since it
now turned the bot’s humour inward, on itself, rather than
outward on users who might see themselves as its victims.
The third framing turns it outward again, on the user, but
in a more subtle guise that presents it not as a direct insult
but as a playful joke at the expense of the book industry.
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Note how the bot is forced to invent an author for its liter-
ary in-joke, which it does by cutting up the author names
from its first tier of books. The third framing is especially
apt when the bot’s tweet is accompanied by a graph of the
user’s 11-dimension personality profile (see below), since
it allows one to appreciate the basis for the bot’s response.
But the second framing has another advantage, in that it
allows the bot to speak directly to the topic of the recom-
mended book. Consider this particular response to a user:

On the prettiness theme, @anonymized, | used to be
as attractive as a brown cardigan until | read "The
Picture of Dorian Gray” by Oscar Wilde. How about
you? | crunched your recent tweets:

Upbeat (61%)
Worried (28%)
Angry (52%)
Depressed (25%)

Plugged In (86%)

Personable (71%)

Arrogant (65%)

Spacy (60%)

Analytic (74%)
Sensory (65%)

When the bot is between user requests, it attempts to start
a conversation about books and their ideas. It does so by
posing literary questions to its readers, as in this tweet:

On the religion theme, which of these books is more
provocative than the other? "The Satanic Verses" by
@SalmanRushdie, or "Headscarves and Hymens: Why
the Middle East Needs a Sexual Revolution" by
@MonaEltahawy? | compared their recent tweets.

The question itself typically provokes much less convers-
ation on Twitter than the side-by-side personality analyses
that the bot provides of the authors’ most recent tweets.

@SalmanRushdie @monaeltahawy

Upbeat (45%) Upbeat (47%)

Worried (47%) Worried (31%)
Angry (73%) Angry (61%)
Depressed (39%) Depressed (32%)

Plugged In (71%) Plugged In (72%)




As You Like It: The Question of Evaluation

A Twitterbot that publicizes a user’s psychological profile
is rather like a public speak-your-weight machine. No one
likes to be judged, least of all by a computer, and we can
expect a wide diversity of views on the use of tools like
AnalyzeWords to condition a bot’s creative outputs. These
range from “Awesome!” to “very creepy,” with the rump
of users taking their analyses as a starting point for further
wit of their own. One user replied to the book bot’s ironic
confession ‘I used to be as poetic as a donkey passing
wind until I read “Romeo and Juliet” by William Shake-
speare’ with the wry remark “I’ll have you know that I’'m
still as poetic as a donkey.” Another user, for whom the
bot recommended Alex Comfort’s “The Joy of Sex” (on
the love theme) replied “Wow wow, easy there bot ... buy
me dinner first!” The author @ MaggieEllen replied to the
bot’s comparative analysis of herself to @ AmyTan with a
trope from The Simpsons, “you my overlord now?” before
addressing the specifics of the analysis with the remark
“Just real glad to know @AmyTan and I are both on 300
mg extended release Welbutrin and equally depressed.”
The value of a creative agent lies as much in the creativity
it fosters in others as in the creativity of its own outputs.
That said, users are more open to personalized outputs
when they flatter their targets, and often chafe at the neg-
ative aspects of analyses that are otherwise quite positive.
One famous comedian with a science background, whose
Twitter feed reflects his TV presence — half comedy, half
science — was described by @botOnBotAction as “the best
of Peter Parker and the worst of Jim Carrey: scientific and
intelligent yet cloying and insecure.” The user’s response
was unforgiving: “Not so insecure that I post anonymous-
ly though.” When a science book by the same user, a pop-
ular author, was promoted by the book bot via its Analyze
Words comparison to a similar author, the mention earned
it a comparable rebuke “Not sure this analysis has a single
thing to do with the books; but you enjoy yourself.” When
creative systems get personal, so too will their audiences,
making it difficult to objectively evaluate their outputs.
This makes an extrinsic evaluation of such systems pre-
ferable. Ghosh & Veale (2017) explore the contribution of
a user’s Twitter profile — specifically, their AnalyzeWords
profile — to the assessment of whether their most recent
tweet is sarcastic or not. We expect mood and personality
to be factors in the determination of a sarcastic mindset,
as recent emotions — from anger to arrogance — will shape
the perception of a user’s intent in a given tweet. In that
case, we expect a neural model of sarcasm detection to be
improved by the addition of accurate personality features
that are active in the relevant time frame. Ghosh & Veale
report a statistically significant gain in detection accuracy,
of approximately 6% to 7%, when AnalyzeWords features
are incorporated into their neural architecture. If personal-
ity features can improve the appreciation of creative texts,
they can certainly play a key role in their generation too.
Topicality-driven bots like @MetaphorMirror afford a
more direct evaluation, since it is the news context, and
not a specific user, that is directly addressed in the output.
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Vector Space Low Avg. Good V.Good

LDA stories+tweets|| 1.1% 478% 411% 10%
LDA stories only 33% 656% 30% 1.1%
LSA stories+tweets 10% 60%  30% 0%
LSA stories only 178% 644% 167% 1.1%
Word2Vec 10% 578% 322% 0%
Random baseline 455% 467% 6.7% 1.1%

Table 1. Distribution of Aptness by choice of model.

We used CrowdFlower (now Figure-Eight) to elicit hu-
man ratings for 90 metaphor / headline pairs from differ-
ent models. A scale of 1 ... 5 was used for ratings on three
dimensions: aptness, comprehensibility, and influence, the
last of which marks the extent to which a metaphor shapes
a rater’s response to a headline. Six different models were
used to select the ‘best’ metaphor for each of the 90 head-
lines: an LDA topic model built with a corpus of 380k
news stories and 210k news tweets; an LDA model built
with the 380k news stories but no tweets; an LSA model
built with 380k stories and 210k tweets; an LSA model
built with 380k stories but no tweets; a Word2Vec space
of pretrained vectors, so no news stories or tweets were
used; and a baseline model that pairs a random metaphor
to each headline. For each variant of the LDA and LSA
models, 22.84M MetaphorMagnet metaphors were conc-
atenated to the news content (stories with/without tweets),
so these models produced joint news + metaphor spaces.

Mean ratings for each dimension in different models
were not very discriminating. In each case, LDA (stories
+ tweets) pipped all others to the top spot. For Aptness —
how apt is a metaphor for a headline? — the means ranged
from 2.95 (+ standard dev. 1.27) for LDA (stories+tweets)
down to 2.20 + 1.2 (random baseline). Comprehensibility
— the understandability of each pairing — ranged from 3.59
+ 1.05 (for LDA, stories+tweets) down to 2.54 + 1.12
(random baseline), and Influence ranged from 3.01 + 1.24
(LDA stories+tweets) to 2.09 = 1.24 (random baseline).
The differences across models were not statistically sign-
ificant, except in comparison to the baseline. Yet mean
performance disguises deeper differences. If we quantize
the human ratings of aptness into four equal-sized buckets
(Low, Average, Good and Very Good) so as to identify the
model that places the most metaphor:headline pairs into
the Good or Very Good buckets, we obtain the findings of
Table 1. More than half of pairings suggested by the LDA
(stories+tweets) model end up in one of these top buckets,
suggesting that this model produces the most apt results.

Conclusions: Don’t Give Up The Day Job

Oscar Wilde once wrote that “art has as many meanings
as man has moods.” The point of affective computational
creativity is not just to enlarge the space of artifacts that is
explored by a CC system, or to make those artifacts more
revealing about the processes that generated them:; it is to
make those artifacts more revealing about their audiences.



This potential for personalization and topicalization has
not gone unnoticed in other CC work. With regard to The
Painting Fool, a versatile generator of portraits (and other
painterly forms), Colton et al. (2007) built on the work of
Pantic & Rothkrantz (2003) to give the Fool a sense of the
mood of the subject it is painting, so that it might capture
this understanding in its outputs. A linguistic tool such as
AnalyzeWords is of little use when dealing with a video or
a camera still, but Colton et al. note the value of FACS,
the Facial Action Coding System of Ekman (2002). Some
users of CC systems wear their emotions on their faces;
others reflect them in their social-media communications.
Depending on the modality of the interaction — and perso-
nality certainly turns CC into an interactive process, even
if users are scarcely aware of their own contributions — a
system must exploit whatever affective cues it can find.
Topicalization has also revealed a strong potential for CC
exploitation. Like personalization, it makes the outputs of
a generative system more relevant to the users for whom
they are created. For example, the PoeTryMe poetry gene-
rator of Gongalo Oliveira (2017) augments its core knowl-
edge stores (such as semantic and conceptual networks) in
a number of ways, including the use of live Twitter feeds
to ground its outputs in the here-and-now of social media.
By showing an awareness of users and their world, these
systems present themselves as more self-aware too. They
present themselves not as closed generative bubbles, like
the imprisoned wretch of Searle’s Chinese Room thought
experiment (1980), but as agents of a wider world that can
predict how their creative outputs will impinge on others.

If viewed as ‘human’ creators, CC systems such as The
Painting Fool, PoeTryMe and MetaphorMagnet would all
be seen as full-time creators whose work is their calling.
Most CC systems conform to this all-or-nothing pattern;
their creative work is everything, and the systems have no
‘lives,” whatever this might mean, beyond their generative
responsibilities. @ReadMeLikeABot is a useful exception
to this generalization. To this CC system, as it is to most
humans, creativity is merely a sideline to a ‘day job’ that
is not in itself a creative exercise. Book recommendation
is a task that requires Al but has little obvious use for CC,
yet this bot shows that a system that benefits from an app-
reciation of a topical context, or a user’s personality, can
also reap benefits from the creative framing of its outputs.
Conversely, the CC component of these systems may also
benefit from exposure to the stuff of its mundane day job,
by giving it a contingent knowledge of possibilities that it
might never recognize in a purely creative mode. We can
go further, and argue that all CC systems can benefit from
a day job that exposes them to the mundane concerns of
the people they must serve, so as to later transmute those
concerns into something both familiar and non-obvious.
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Abstract

We propose a deep learning algorithm that can detect
content and discover co-occurring patterns of the con-
tent in fine art paintings. The following intellectual mer-
its are the motivations of our project.

First, the content detection provides a baseline of Com-
putational Iconography (CI), which is to understand
what objects/subjects can be seen in fine art paintings.
Second, we argue that the found co-occurring patterns
chart meaningful connectivity across content in art.
Third, we imbed our system in Computational Creativ-
ity (CC) in a broad sense. By the nature of our system
of machine learning, it creates informative connections
between different modalities (images/words), which are
not initially constructed or intentionally specified. Our
system is automatically trained to discover the connec-
tive patterns reflecting artists’ creativity, which are la-
tent in the large dataset of paintings.

To build a content detector, we adopted an Inception-
V3 (ImageNet) and fine-tuned it over 40,000 paintings
with the words extracted from their titles. We validate
that our system detects content information fairly (68%
precision rate at the top content). Also, we find that
the last fully connected layer parameters of Inception-
V3 are trained to encode general co-occurring patterns
between content. We validate that the co-occurrence
can be interpreted as relatedness among content in art.

Introduction

In this paper, we present a computational method that can
understand the content of fine art paintings. By bringing our
problem on the broader stance of general art, we highlight
our system interprets art, especially in terms of the content,
which is one of the three principles for understanding art:
form, content, and context (Dyke 1887; Lowry 1967).

More specifically, we adopt a deep learning approach and
argue how it automatically creates many virtual connections
from a target painting to the multiple relevant pieces of in-
formation called content: the objects, activity, or other infor-
mation that can be seen in the painting. First, we implement
a content detector to connect a fine art painting (image) and
relevant output words (content). It creates plenty of textual
information about a given visual entity. Second, as a bi-
product of the content detector, we find that distributed vec-
tor representations, of mutual distances capture the general
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Figure 1: Content Detector

co-occurrence patterns among content. We prove that the
co-occurrence of content can be interpreted as the relevance
among content in art, which is embedded in large training
set of paintings.

Our proposal for the computational content analysis can
have the following practical and intellectual merits. The
found virtual connections would be useful to associate
words to the images/words we are focused on, so it drives
us to other resources flowing into other relevant paintings. It
enables us to reach more paintings from a few key words of
general content. This suggests a feasible application of our
system to improve general accessibility to digital art retrieval
systems. Currently, art retrieval systems require highly spe-
cialized knowledge such as title, author, genre, time period,
or style of paintings, which ordinary users may not know
well.

Furthermore, building computational models for under-
standing human creative products can be a fundamental part
of the field of Computational Creativity (CC). We argue our
computational model links to broad perspectives of CC. Al-
though our methodology does not precisely articulate how
artists’ mind operates on their creative artifacts or create
novel products, it does focus on artworks which are objects
of human creation, and it may give us insight into the pat-
tern of connections among concepts, words, and visuals that
artists use when making their images.

Our machine takes in many paintings as inputs and learns
to connect images and words as a reflection of how the in-
put artifacts are presenting. The connections are not pre-
constructed or designed by the authors or from any external
knowledge of art. They are instead solely the result of the



huge processing capacity of the machine to work with im-
ages and words. We believe that by analyzing such a large
number of paintings, the machine is able to reflect the as-
sociative patterns of images and co-occurring concepts that
human artists may be using when they create their artworks.
Our system may be related to the broad definition of CC
(Bown 2012), in that a computationally creative system is
not necessarily modeled on the human mind or on human
goals, but does apply to the occurrence of creation.

In previous computational art analysis, most research
works have focused on visual appearance and its descrip-
tions, i.e., visual forms, such as brush strokes (Elgammal,
Kang, and Den Leeuw 2018; Hendriks and Hughes 2009)
and stylistic analysis (Kim et al. 2018; Elgammal et al.
2018). However, as we consider three art principles, which
are primary elements for understanding art (Lowry 1967),
analysis grounded purely in visual forms may not be a suf-
ficient approach. We can better appreciate art if we un-
derstand content, including the subject matter and histori-
cal context of interpreting that content. In art history, this
approach is called the study of iconography and iconol-
ogy, with its most notable practitioner being Erwin Panofsky
(1892-1968). Hence, we devise a computational framework
for content and it provides the baseline work for Computa-
tional Iconography (CI).

To build our content detector, we adopt and fine-tune a
deep neural network architecture, Inception-V3 (Szegedy et
al. 2016), for which the input is an image (painting) and
the output is a probability mass function (pmf) as shown
in Figure 1. In the model, the pmf’s support domain V is
2,048 words, so through probabilistic representation, we can
quantify the relevance of each word to an input image /. For
fine-tuning, we only re-train parameters of the last fully con-
nected (FC) layer and other parameters are transferred from
a pre-trained ImageNet. While the training proceeds, we ob-
serve an interesting property: the network starts learning to
capture associative patterns between the output words. For
more details, (W;) in Figure 1, the weight vectors are trained
to be a distributed representation set, i.e., their mutual dis-
tances can encode certain relationships between the content
(words) in paintings. Although we intentionally train the
machine to create linkages between an image and words,
but the machine also autonomously learns to capture rela-
tionships among words, too.

We can observe the following features.

e Words denote concepts that are visually similar from the
perspective of the machine, if (and only if) the word rep-
resentations are likely to be close each other.

e Concepts often co-occur within a painting, if (and only if)
the corresponding word representations are likely to be
close each other.

From the above analysis, we can notice distinct charac-
teristics of our vector representation through differentiation
with the word embedding systems in Natural Language Pro-
cessing (NLP). In NLP, word embedding models (Mikolov
et al. 2013) encode syntactic or semantic similarities be-
tween words through the context of the likeness to their
neighboring words. On the other hand, our embedding sys-
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tem encodes word relationships based on the visual similari-
ties or co-occurring patterns of the concepts over a whole set
of fine art paintings, i.e., instead of adjacent words, paintings
become major contextual resources to extract relationship
between words.

We specially point out that the second co-occurrence
property could offer us clues about which subjects and con-
cepts typically occur simultaneously in paintings. Using
this, we could easily find repeated motives across paintings.
In practice, it is one of main tasks of iconography, but may
not be easy if we only have the pure semantics of the words
available, or if we look for them only through the human
naked eyes. For instance, in our distance analysis, the two
words ‘Virgin’ and ‘Angel’ are the closest words. Their pure
semantics are not highly correlated, but we confirm that they
are two primary co-occurring components for the subject of
‘Annunciation’. It is a popular theme in paintings during the
Middle Ages and Renaissance.

The method may not be able to find immense and deli-
cate symbolic meanings as art historians have done, such as
Erwin Panofsky’s discovery of a connection between lilies
and Mary as a symbol of her chastity in Mérod Altarpiece
(Panofsky 1971). However, clues are sometimes enough
to initiate deeper directed studies, especially when we deal
with the massive archive of paintings. Furthermore, we also
know a fact: iconographic analysis should begin with the ob-
ject that can be seen from the art works (Munsterberg 2009).

In summary, we claim the followings.

1. Our system detects content information fairly well. As

the system is designed to detect multiple labels, the loss
objective in training does not measure actual performance
well. We validate the performance through the following
alternative methods: (1) Comparison between machine
pmfs and words populations. (2) Human subjects survey
with students in art history.

2. Our system discovers co-occurring patterns and it implies

certain relatedness among content in art. We validate the
claim through the correlation analysis between the de-
gree of co-occurrence (mutual distances between the vec-
tor representations for two key words) and the relevance
(number of results to searching queries of intersecting two
key words).

In the following sections, we will explain the whole pro-
cedure of implementing a content detector and achieving
distributed representations. We will also explain evaluation
procedures and its results. In the last discussion section, we
will draw a practical application of our system on current
digital art searching platforms.

Related Works

Our problem shares a common goal with some prior re-
searches about computational content analysis in art collec-
tions (Carneiro 2011; Carneiro et al. 2012; Crowley and Zis-
serman 2014; Picard, Gosselin, and Gaspard 2015).

To our best knowledge, Gustavo (2011) (Carneiro 2011)’s
graph-based learning algorithm was the first computational
approach to detect content in art works. He annotated dig-
ital art prints with 28 pre-defined semantic labels. Before



his work, most computational art analysis had focused on
visual forms such as brush strokes (Polatkan et al. 2009;
Hendriks and Hughes 2009) or stylistic analysis (Jafarpour
et al. 2009).

Later, Gustavo et al.(Carneiro et al. 2012) proposed other
computational approaches (random, bag of features, label
propagation, and inverted label propagation) to detect 75
content classes from monotonic paintings. By dividing the
targeted annotations into global semantic, local composi-
tion, and local pose, they tried to detect more structured se-
mantics from the more general paintings than their previous
works.

Elliot et al.(Crowley and Zisserman 2014) used a transfer
learning scheme. They showed that object classifiers trained
by natural images can effectively detect objects in paintings.
They compared the performances of two Support Vector Ma-
chine (SVM) classifiers, in which each machine is trained
with one of two feature sets: Fisher vector representations or
vector collections from an intermediate layer of the Convo-
lutional Neural Network (CNN). In the result, the CNN out-
performed the Fisher vector representation. However, their
experiments were limited to object-oriented concepts, such
as chair, bird, and boat, and there were only 10 classes.

David et al.(Picard, Gosselin, and Gaspard 2015) used the
same methodologies as the work of Elliot et al.(Crowley and
Zisserman 2014), but applied them to annotate cultural her-
itage collections. During the experiment, they classified arti-
facts in one of 459 semantic classes. Differently to the result
of Elliot et al.(Crowley and Zisserman 2014), the perfor-
mance of the Fisher vector representation was slightly better
than one of the CNN features.

In our methodology, we applied the deep-learning method
to understand the content in fine art paintings and validated
its performance. For the data set, we did not use any pre-
defined words like those of previous works. Instead, we col-
lected words from the titles of paintings and selected 2,048
words based on the words’ statistics. Along with content de-
tection, we also found associative patterns (co-occurring or
visually similar) between the content in paintings.

Methodology

Our primary goal is to design a system that can represent a
conditional pmf: P(V|I), where V represents a word whose
domain is a 2,048 words set and I is an input image. Based
on probability, we will try associating highly probable words
with an input image and validate their association.

Architecture

To design the probabilistic system, we utilize a multiple la-
beling training by modifying an original machine learning
algorithm, Inception-V3. We train the same network archi-
tecture by using its original objective function. However, as
the original algorithm can handle only multiple class prob-
lems (class labels are mutually exclusive) setting only one
class as probability one, we have to change the framework
to enable it to carry multiple non-zero probabilities. For a K
multi-class problem, the network’s output produces a pmf
whose k-th element implies the probability of the k-th word
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(vg) given an input image I. The original objective function
is a softmax cross-entropy for training data samples. Let aj,
be the k-th value before the softmax layer in the network of
Figure 1. Then the output probability Pj and the objective
function E of N samples are the following.

exptk
Py = P(V =w|l) = —b (1)
L ETPF
N K
E==>"% Inn-log,(P)
n k

In equation 1, I, 5, is an indicator function stating whether
or not the n-th sample belongs to class k. In our project, to
handle the multiple labels, we re-define an objective func-
tion E’ with a .Jy, ,, instead of the indicator function.

ay

exp
PkZPV:UkI = —3% (2)
V=0l = m o
N K
E' ==Y Jin-log.(P)
n k

In equation 2, the summation of Jj, ,, over all & is equal to

one (X5 Jin = 1), and each value is Jy, , = L, if the n-th
input image has a k-th word and the total number of labels of
the image is L. We can interpret the F’ as a negative log like-
lihood function if we draw a case in which multiple words
for each sample image are independently generated by the
Py. Suppose we have three labels (vy,v2,v3) for an image,

then a P(v1, va, v3|I) equals Hizl(Pk). Then we can com-

pute the £/ = —% 2:1 loge(Py,) for the sample image and

its labels. If we consider each pair (I,v1), (I,v2), (I,v3) as
independent samples, then it is the same as the original mul-
tiple class objective function E except for the normalization
factor of % Internally, we use multi-class training L times
and compensate its multiple uses by dividing it by L. In this
sense, the modification does not harm the primary concept
of cross entropy that the original algorithm intends and it can
handle multiple label training.

The Last Fully Connected Layer Weights

In NLP, a skip-gram model (Mikolov et al. 2013) can learn
distributed representations of words by capturing statistical
patterns with their neighboring words in a text corpus. If two
words’ neighboring words are often similar, their representa-
tion also become close. Inspired by the idea, we hypothesize
that the last layer weights of our network can also encode an
associative relationship between the 2,048 output words. If
two images are visually similar but labeled by two different
words, then the two word representations are expected to be
close.

We can think of two cases in which images are the same
or visually similar, but labeled by different words. For the
first case, in general, low-level concepts are visually similar
if they have a common ancestor in the concepts’ hierarchi-
cal system. For example, specific kinds of flowers such as
lanaculus, rose, or camellia are necessarily mapped into very



« X:1st PCA component
* Y :25t PCA component
3
Range of Four Regions
1 X>1
—0.05 <Y <0.05
X
«~ 2 1 =, X<-1
—0.05<Y <0.05
3 —0.05< X < 0.05
Yy=1
4
4 —0.05< X < 0.05
y<-1
E3

Figure 2: Four Regions in two components of PCA space
(Blue dots: 2-D PCA transformed points of validation data)

close points in the top hidden layer of a neural network layer,
but each of the points are to be labeled with different names.

For the second case, if some concepts often co-occur in
paintings, it corresponds to the case in which the paint-
ing images are the same but labeled by different concepts.
For instance, Christ, cross, angel, and a subject of lamenta-
tion are often delineated in a painting. Similarly, Madonna,
child, and Saints often co-occur, too.

In this context, we examine the last weights W (2,048
x 2,048) in Figure 1 as distributed representations for the
2,048 concepts, and confirm that they are close to one an-
other if (and only if) their corresponding concepts are visu-
ally similar or frequently co-occurring in paintings.

Validation Methods

In this project, we have two claims. One is we can build
a probabilistic system that can have higher probabilities on
words more relevant to an input painting. The second one is
that parameters (words distributed representations) collected
from the last layer of the system can encode the relationships
between the words in fine art paintings. In the following
sections, we will explain how we have validated the claims.

Content Detection To validate the first claim, we con-
ducted a survey to determine how many subjects agree with
the machine’s 10 most probable words as relevant concepts.
More detailed survey results and its steps are presented
in the later survey section in the Experimental Result. As
the second evaluation method, we performed the following
experiment: we collected image embeddings from the
hidden layer right after Inception-v3 base (in Figure 1) by
inputting training images. Then, we learned two Principal
Components Analysis (PCA) components (occupying 10%
of the total variance of the embeddings). In the found PCA
space, images near the points of [c,0], [—¢, 0], [0,¢], and
[0, —¢] (in our experiment, ¢ is 4) showed a certain degree
of consistency in their content, so we set the following
hypothesis and validated it.

If a machine can detect content from an input painting
well, then the following two statistics will be similar to
each other. One is the sample frequency histograms of
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Table 1: Ranking Ranges for Each Group

Group || Ranking Ranges

Group O || One word ranked 1 (the word itself)
Group 1 Ten words ranked 2-11
Group 2 Ten words ranked 1025-1034
Group 3 Ten words ranked 2039-2048

title-words of four groups of images, located near the points
[¢,0],[—¢,0],]0,¢], and [0,—c]. Each group of images
are the validation images that are PCA transformed to the
regions defined by the ranges of 1, 2, 3, and 4 in Figure
2. Another statistic is the machine’s output pmfs, as we
individually pass four simulated image embeddings into
the network after the Inception-V3 base (in Figure 1).
Each of the four simulated image embeddings has been
computed by an approximate inverse PCA on the vectors

(e, 0], [—¢, 0], [0, ¢], and [0, —c]).

Let d be the number of PCA components, s the number
of validation samples, H the collected sample embeddings
from the hidden layer, and g the size of the dimension of the
hidden layer. As we do whitening PCA on the hidden layer
embedding H (g x s), a PCA transformed 7" (d x s) can be
written as

T=A"72 -0"(H-m) 3)

where m is a mean vector computed from H, © is a matrix
(g x d), whose columns are orthonormal vectors to define
the PCA’s principal axes, and A (d x d) is a diagonal matrix
defining the PCA variances. By using 3, we can simulate the

four embeddings fzz (g x 1) thatequal ©- Az -t,+m, where
t1 = [c,0]',ts = [—¢,0]%,t3 = [0,c]t, and t4 = [0, —c],
z is in [1,4]. Now, we can compute the machine’s output
distribution g, in 4 and the W’ has the same columns of W
except for the last bias column vector wpy;qs. The ¢, is the
network outcome when inputting the simulated embedding

h., into the last FC layer in Figure 1.

. = softmaz(W' - h. + Whias) 4

Words Distributed Representation After finishing train-
ing, we collected the last layer parameter W in Figure 1,
and regarded each of the ¢-th rows (w;) as the distributed
representation of the i-th word. We computed cosine simi-
larities between the representations and formed a matrix M
in 5. Each component M; ; represents the cosine similarity
between the representations of the ¢-th and the j-th word.

toapy.
w; - Wy

M, = Vi, j € [1,2048) (5)

|wil - Jw;]
To find relationships between distance, we sorted each row
of M in descending order and for each row, we set the first
word as group O and collected the other three groups of
words according to their rankings as shown in Table 1.

To verify that closer words in the distributed
representations are more correlated words in art,
we tried searching artworks in GoogleArt&Culture



(https://artsandculture.google.com) with queries of inter-
secting two words. Its first word is the group O word and
another word is from group 1, group 2, or group 3. We
posit that returning more results as we query an intersection
of two words is a reflection of more connections between
the words in the art domain. GoogleArt&Culture searches
artworks by intersecting all input words and matching them
to words in the documents in its database, which have basic
information (author, title, and year) or general descriptions
about paintings. Hence, the number of retrieved art works
should generally decrease with successive groups 1, 2, and
3 if the distributed representations can encode correlations
between words within art.

Experiment Results
Data set — Paintings and words from titles

We used a public collection of fine art paintings, the WikiArt
(https://www.wikiart.org) data set. The collection has more
than 60,000 paintings covering the Renaissance to the Mod-
ern period. Instead of using all of them, we utilized paint-
ings drawn before the 20th-century (50,160 images) and
split them into ‘Train’ (85%), ‘Validation’ (10%), and “Test’
(5%). We used ‘Train’ in training the Inception-V3 and
defining PCA’s principal axes, ‘Validation’ for evaluations
and a survey, and ‘Test’ for presenting test results.

To prepare training samples, we labeled the paintings with
words from each painting’s title. All words from the ti-
tles are good sources for understanding the content of tar-
get paintings, but we do not want to use words that appear
too sparsely or refer to specific entities, such as the name
of a area or a person. Using the Natural Language Toolkit
(NLTK) library (version 3.2.5), we removed any digits, ‘CC’
(coordinating conjunction), ‘DT’ (determiner), ‘TO’ (TO-
infinitive), and ‘IN’ (preposition), and two-letter words from
the titles, and labeled the paintings with the remaining 2,048
most frequent words.

All training images have at least one label. If one does not
have a label, it is not used as a training sample. Many paint-
ing titles can provide informative resources to answer ba-
sic questions about the subject matter, such as what, where,
who, or when (Gombrich 1985), but during some periods
not all titles correlate to content in a helpful way. For exam-
ple, several titles of Paul Klee (1879-1940) and Joan Mir6
(1893-1983)’s works refer to literary works, and many other
titles in modern art are simply descriptive of shapes or col-
ors, composed of numbers, or images are left untitled. For
these reasons, in this project we use the paintings of Re-
naissance, Baroque, Rococo, Romanticism, Impressionism,
Post-Impressionism, and Realism styles.

Fine-Tuning Inception-V3

After modifying the objective of an official model,
Inception-V3 (TF-slim in Tensorflow Ver 1.4), we fine-
tuned it for 300,000 steps. We only updated the last FC
layer, ‘Logits’ and ‘AuxLogits’ (Szegedy et al. 2016), and
other parameters were transferred from a pre-trained model.
The average loss E’ defined in 2 converged from an ini-
tial value of —l0ge(55z = 0.00048) to a value of about
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Table 2: Common Words
common words
landscape, river, bridge, path, trees, forest
portrait, child, virgin, Madonna, man, Christ, self, young
portrait, man, woman, self, young, artist, lady
landscape, life, trees, beach, scene, winter, bridge

PCA region I
First and Positive
First and Negative

Second and Positive
Second and Negative

—l0g.(0.0025), but it did not get lower.

The main cause of our high converged error rate is the in-
trinsic property of titles in artworks. Basically, titles can
have various words choices, and even in subject similar
paintings, depending on author’s focal points, we can choose
words that are semantically different. In other words, there
is not only one correct title for an image. Hence, our simple
probabilistic output modeling, P(V'|I), conditioning only
on an input image, may not be sufficient to capture the vari-
ance of titles.

Evaluations

We validated our three claims by using the three method-
ologies described in the Validation Methods section of the
Methodology. In the following three subsections, we present
the results of the evaluations.

Content Detector: (1) comparison between machine
pmfs and words populations We compared two statis-
tics. The first statistic is the machine output pmf as inputting
a simulated image embedding. Four simulated embeddings
were computed by conducting inverse PCA approximations
on the four vectors: [4,0],[—4,0],[0,4], [0, —4] and from
them we gained four pmfs. The pmfs’ 15 top ranked words
are presented in four left-handed figures (blue) in Figure 3.

The second statistic is a relative frequency of each title
word in a group of images. Four groups of images are col-
lected from the ranges defined in Figure 2. The top ranked
15 words of each group are presented in four right-handed
figures (red) in Figure 3.

To consider their similarity, in each row, we compared the
left and right figures. Then, we listed the common words in
Table 2. We observed that at least six words were common
and were semantically aligned with one another, even when
they were not perfectly matched. It is natural for them not
to be exactly the same each other because the results of the
first column are approximately simulated from the first two
PCA components, and do not consider all dimensions. Inter-
estingly in Figure 3, there were two considerable concepts:
landscape (1% and 4" row) and portrait (2" and 3"¢ row).
One possible explanation for the result may be the dominant
majority of the portrait and landscapes in our data set. In the
WiKiArt data set, there were 18 different genres, but 37% of
the samples were the two genres.

Content Detector: (2) survey results We conducted a
survey to evaluate how the machine’s highly probable words
were relevant to an input image. In the survey, we randomly
selected 40 validation images and annotated them with the
10 most probable words based on the machine output pmf. It
was a blind test and required subjects to do the following (to
quote): “Please check all the words that can describe each
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Figure 3: Comparison of two statistics: word detection and word populations within four pre-defined PCA regions

Table 3: Ten Survey Results

Title Machine Annotation (Precision Q=3Y =5) Title P Machine Annotation (Precision Q=23 Y = 5)
balchik rock(0.8), sea(0.9), cliff(0.9) g Rommeltol 033 d0g(0.9), woman(0.0), dancer(0.1)
the conversation portrait(0.5), woman(0.9), girl(0.6) venice 0.33 paix(0.0), house(0.9), bridge(0.1)
53“;‘:;1‘;2 portrait(0.9), head(0.8), woman(0.9) cristo no horto 0.0 portrait(0.0), child(0.1), virgin(0.4)
country boy portrait(0.85), seated(0.85), death(0.15) the C:;fh‘j;ﬂ:;i‘;;pire 0.0 night(0.1), interior(0.0), tavern(0.0)
annunciation virgin(0.9), annunciation(0.85), saint(0.46) allegory of air 0.0 jerome(0.1), portrait(0.0), dancing(0.0)

painting. Do not check any words if none are relevant.” At
least 12 graduate students in art history responded for each
of the survey images.

We set thresholds from O to 1 with a step size of 0.1, and
obtained a correct word set based on the levels. For example,
for a threshold of 0.3, we considered words as right answers
only when more than three out of 10 people agreed with
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¢.(Y") the number of correct words at threshold Y. Then, a
precision@() at threshold Y over the U = 40 images can be
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Figure 4: Survey Average Precision Rates P@Q =1, 3, 5,
and 10

Table 4: Author Selected Test Result

Title Image Machine 10 most probable words

portrait, rose, woman, girl, lady

the bouquet .
flowers, young, red, roses, miss

apple, trees, oak, orchard, blossom

garden in bloom park, bloom, tree, landscape, grove

villa torlonia fountain

view, bridge, evening, park, landscape
garden, fountain, pond, street, gardens

child, madonna, portrait, girl, virgin

mary with child woman, young, lady, peasant, maria

torso, blue, still, woman, life,

plaster statuette of a female torso portrait, jug, study, nude, plaster

In Figure 4, we present the precision results for @Q=1, 3, 5,
and 10. As @ increases, the precision values decrease and
when the threshold is 0.5, the precision values are 0.68, 0.55,
0.5, and 0.35 at Q =1, 3, 5, and 10. This result validates the
performance of our content detector in two senses. First, the
most probable word shows a 68% average precision rate as
we set the right words only when more than half of subjects
agree on them. Second, as the Q increases, the correspond-
ing precision rate drops. It implies that the machine’s less
probable words do not contribute to increasing the precision
rate. Hence, we can see the ranking of words in the machine
pmf is correlated with the subjects’ responses.

To examine the quality of our system, we listed ten sur-
vey results (Q = 3 and Y = 0.5) in order of the precision
rates in Table 3 and characterized them. For the high-rated
(left-hand) results, most are expressed typically and simply
in terms of each genre. On the other hand, for low-rate
(right-hand) examples, their main figures are expressed as
relatively small in complex circumstances, or a portion of
the figures has characteristics that often represent other con-
tent. For instance, the third ‘cristo no horto’ depicts Christ,
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Table 5: Number of GoogleArt&Culture Search Results
Group [[ Group I [[ Group 2 [[ Group 3
Averaged number of results [[ 12,805 [ 4,983 [ 3,554

Table 6: Descending ordered words

Word | 15 relevant words

trees, pine, oak, olive, bloom, pines, orchard

tree landscape, oaks, blossom, grove, willow, forest, asylum, peach

cross, lamentation, angels, homo, ecce, deposition, virgin

christ holy, adoration, saints, baptist, entombment, ancestors, jesus, crucifixion

virgin, annunciation, vision, baptist, angels, penitent, tobias

angel madonna, resurrection, magdalene, jesus, death, creation, elijah, allegory

bouquet, wildflowers, flowers, roses, lilies, pink

rose . L . : .. -
hollyhocks, violets, irises, lily, vase, Japanese, nasturtiums, iris, daisies

female, seated, reclining, standing, bather, bath, naked

nude model, back, hair, woman, torso, nudes, herself, male

seascape, tide, sunset, sailboats, lunar, harbor

lighthouse . ; ) .
tower, marseille, moonrise, calm, coast, channel, maggiore, steppe, newport

madonna, child, assumption, holy, coronation, saints

virgin angels, annunciation, adoration, christ, mary, trinity, birth, enthroned, baptist

but he wears a mantle of blue, which often represents his
mother. He may be wrongly detected as the virgin Mary. In
the second example, ‘venice’, the rail of the window may be
the reason why the machine detects the bridge as the third
word. For further references, we selected five test-set results
in Table 4. For each example, the 10 most probable words
were annotated based on the machine’s pmf outcome.

Words Distributed Representation As described in the
Validation Methods in Methodology, by pairing two words
(a word of group 0 and another word from one of the groups
1, 2, or 3), we searched GoogleArt&Culture and averaged
the number of returned art works for each group. In the ex-
periment, we only considered the top 400 words among the
machine’s 2,048 output domain words. The upper words
are more frequent and account for more than 65% of the
words frequencies, so we regard them as a representative
set. The three groups’ results were averaged over 400 words
and presented in Table 5. It shows that the number of re-
sults decreases by 60% from group 1 to 2 and by 28% from
group 2 to 3. Hence, based on the assumption that having
more search results implies more connections, we can argue
that closely distributed representations are likely to represent
stronger relationships between words. We presented seven
examples in Table 6. Based on distance analysis, we enu-
merated the 15 closest words for each example.

Discussion

Nowadays, many museum websites provide services to al-
low web users to search their digital collections through
matching the user’s words to basic text information they al-
ready have. The text description can refer to the title, author,
genre, time period, style, or sometimes detailed documenta-
tion written by curators or art historians, but there are lim-
ited ways to search for images beyond the given categories.
To do so, the user must already know what they are looking
for and deploy the correct keywords, both of which require
highly specialized knowledge.

However, if we can search the images aligned with their
content, then all users will be able to access the database,



and search using a broader and more comprehensive scope.
For example, a user could search for all 19th-century
French landscape paintings, either winter scenes and sum-
mer scenes, with or without figures, etc., and locate all the
works in the large database without failing to locate relevant
images.

Distributed representation can also be useful to suggest
other relevant concepts to user’s search words. For example,
when we look for a specific book, browsing nearby shelves
can sometimes produce a more useful book even if the book
is titled with words that we do not initially consider. In art
searches, we cannot access the physical storage of the works,
but instead we gain information about links between content
words, thereby connecting a larger number of art works to
our search.

Conclusion

In this paper, we introduced the first deep-learning approach
to computationally analyze the contents in fine art paintings.
Motivated by significant performances and broad adaptabil-
ity of deep neural networks in computer vision, we adopted
the Inception-V3 as the primary model of our content detec-
tor, validated its performance, and considered its last layer
parameters as informative resources related to content. In
general, the system showed positive correlations with survey
responses, but limitations regarding certain types of paint-
ings especially in complex depictions or compositions. To
refine our models, we are still looking at other advanced
deep-learning algorithms. For example, beyond words, we
could build a system to describe art using natural language.
A recurrent neural network on top of our system would be a
feasible example (Vinyals et al. 2015). Furthermore, the cur-
rent system perceives the whole image at once, but as con-
tent in paintings is often spatially local rather than global,
principles in scene labeling (Farabet et al. 2013) or atten-
tion modeling (Xu et al. 2015) are expected to provide more
sophisticated boards for computational content analysis.

References

Bown, O. 2012. Generative and adaptive creativity: A uni-
fied approach to creativity in nature, humans and machines.
In Computers and creativity. Springer. 361-381.

Carneiro, G.; da Silva, N. P.; Del Bue, A.; and Costeira,
J. P. 2012. Artistic image classification: An analysis on
the printart database. In European Conference on Computer
Vision, 143—157. Springer.

Carneiro, G. 2011. Graph-based methods for the automatic
annotation and retrieval of art prints. In Proceedings of the

1st ACM International Conference on Multimedia Retrieval,
32. ACM.

Crowley, E. J., and Zisserman, A. 2014. In search of art. In
Workshop at the European Conference on Computer Vision,
54-70. Springer.

Dyke, J. C. V. 1887. Principles of Art. New York: New
York, Fords, Howard , Hulbert.

Elgammal, A.; Liu, B.; Kim, D.; Elhoseiny, M.; and Maz-
zone, M. 2018. The shape of art history in the eyes of the

Proceedings of the 10th International
Conference on Computational Creativity 2019
ISBN:978-989-54160-1-1

40

machine. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Elgammal, A.; Kang, Y.; and Den Leeuw, M. 2018. Pi-
casso, matisse, or a fake? automated analysis of drawings at
the stroke level for attribution and authentication. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Farabet, C.; Couprie, C.; Najman, L.; and LeCun, Y. 2013.
Learning hierarchical features for scene labeling. [EEE
transactions on pattern analysis and machine intelligence
35(8):1915-1929.

Gombrich, E. H. 1985. Image and word in twentieth-century
art. Word & image 1(3):213-241.

Hendriks, E., and Hughes, S. 2009. Van Goghs brush-
strokes: Marks of authenticity?

Jafarpour, S.; Polatkan, G.; Brevdo, E.; Hughes, S.;
Brasoveanu, A.; and Daubechies, I. 2009. Stylistic anal-
ysis of paintings usingwavelets and machine learning. In
Signal Processing Conference, 2009 17th European, 1220-
1224. TEEE.

Kim, D.; Liu, B.; Elgammal, A.; and Mazzone, M. 2018.
Finding principal semantics of style in art. [EEE Interna-
tional conference on semantic computing.

Lowry, B. 1967. The visual experience : An introduction to
Art. Englewood Cliffs New Jersey: Prentice-Hall,LINC. and
HARRY N. ABRAMS, INC.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Munsterberg, M. 2009. Writing about Art.
http://writingaboutart.org: New York, Fords, Howard ,
Hulbert.

Panofsky, E. 1971. Early Netherlandish painting: its origins
and character, volume 1. Natl Gallery of Art.

Picard, D.; Gosselin, P.-H.; and Gaspard, M.-C. 2015. Chal-
lenges in content-based image indexing of cultural heritage
collections. IEEE Signal Processing Magazine 32(4):95-
102.

Polatkan, G.; Jafarpour, S.; Brasoveanu, A.; Hughes, S.; and
Daubechies, I. 2009. Detection of forgery in paintings using
supervised learning. In Image Processing (ICIP), 2009 16th
IEEE International Conference on, 2921-2924. 1EEE.

Szegedy, C.; Vanhoucke, V.; loffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818-2826.

Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 3156-3164.

Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend
and tell: Neural image caption generation with visual at-

tention. In International conference on machine learning,
2048-2057.



Learning to Surprise: A Composer-Audience Architecture

Razvan C. Bunescu and Oseremen O. Uduehi
School of Electrical Engineering and Computer Science
Ohio University
Athens, OH 45701
bunescu,ou380517@ohio.edu

Abstract

The ability to generate surprising outputs is essential
for creative behavior. Surprise, or violation of expec-
tation, has been hypothesized to be part of a fundamen-
tal mechanism enabling the capacity for emotion found
in creative fields such as music, art, humor, or litera-
ture. Machine learning approaches to music generation
train one model and sample from its distribution to gen-
erate new outputs. We show that this one-model sam-
pling is fundamentally limited in its capacity for sur-
prise. Drawing on insights from music and humor un-
derstanding, we propose a two-model architecture com-
posed of an audience model for learning expectations
connected to a composer model for learning to surprise.
The new architecture facilitates a natural measure for
surprise that is used in experimental evaluations on a
set of synthetic tasks with binary strings. When in-
stantiated with neural networks, the composer-audience
model is shown to successfully learn to generate deter-
ministic or random patterns of surprise, demonstrating
its potential as a general framework for machine learn-
ing approaches to creative processes.

Introduction and Motivation

Creativity is widely considered to be an essential compo-
nent of intelligent behavior (Boden 1991; Grace and Maher
2015). Surprise is a powerful driver for creativity and dis-
covery, as such it has been used to guide search algorithms
in models of computational creativity and discovery (Yan-
nakakis and Liapis 2016). Owing to its importance for the
creative process, surprise has become one of the core criteria
for the evaluation of creative artifacts, together with novelty
and value (Grace et al. 2015). As reviewed in (Itti and Baldi
2009), surprise is an essential concept in many studies on
the neural basis of behavior, with surprising stimuli shown
to be strong attractors of attention.

Surprise, or violation of expectation, has also been hy-
pothesized to be an essential mechanism through which mu-
sic and stories elicit emotion. According to (Meyer 1961),
the principal emotional content of music arises from the
composers manipulation of expectation. Composers build
expectations in time, which then they purposely violate in
order to elicit tension, prediction, reaction, and appraisal re-
sponses (Huron 2008). While significant progress has been
made towards models that learn harmony, voice leading, and
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even long-term structure, e.g. (Boulanger-Lewandowski,
Bengio, and Vincent 2012), (Hadjeres, Pachet, and Nielsen
2017), (Oore et al. 2018), (Huang et al. 2019), the impor-
tance of surprise for eliciting emotion is not reflected in the
design of machine learning (ML) approaches to music gen-
eration, which use sampling from the trained model distri-
bution to generate new musical output. In this paper, we
show that one-model sampling is fundamentally limited in
its capacity to generate surprising outputs and propose an
architecture for learning to surprise comprised of an audi-
ence model that learns expectations and a composer model
that learns patterns of violations of expectations. We instan-
tiate the proposed architecture with LSTMs and evaluate it
on three synthetic tasks with binary strings. Experimental
results show that sampling from the two-model architecture
enables much higher levels of surprise when compared with
traditional one-model sampling. We conclude the paper by
positioning our model in the context of previous work.

One-Model Sampling is Unsurprising

The vast majority of ML models used for generative tasks
train one model P; on one dataset D that is sufficiently
large to enable a good approximation of the true data distri-
bution. Given a trained model Py, a sampling procedure is
used to generate an output X ~ Pjs(x). When a language
modeling approach is used for sequences of discrete events
x = (x1, 2, ...), such as tokens in text generation or chords
in music composition, it is common to use a left-to-right se-
quential sampling based on the factorization below:

x| x|

Py (x) = [ [ Pularhg) = [ Pu(zrlzr-r, .. 21)
k=1 k=1

Such factorization could be provided for example by a uni-
directional RNN. To generate an output sequence from left
to right, at every step k a token Zj, is sampled according the
model, i.e. & ~ Py(z|hy), where hy, = (Zx_1,...,21) is
the history (or context) of previously sampled tokens. If zj,
itself is high-dimensional, as is the case with chords in mu-
sic, models such as the restricted Boltzman machine (RBM)
(Smolensky 1986; Hinton 2002) or the neural autoregres-
sive distribution estimators (NADE) (Larochelle and Mur-
ray 2011) can be used to compute Pys(x|h) and generate
approximate or exact samples, respectively. More complex



factorizations of the distribution, such as the bi-directional
model of DeepBach (Hadjeres, Pachet, and Nielsen 2017) or
general probabilistic graphical models require more sophis-
ticated sampling procedures, e.g. MCMC methods, varia-
tional methods, or sampling via random projections. Deep-
Bach, for example, uses a pseudo-Gibbs sampling procedure
where at every iteration a note k is selected at random and
then its pitch value &y ~ Pps(zx|hy) is re-sampled. In this
case the history hy, contains all the other notes in the piece.

It is possible for this type of one-model sampling to gen-
erate surprising events. For example, if xj, is a binary vari-
able and Py;(xy, = 1|hy) = 0.9, then on average 1 out of 10
times the sampling procedure will generate the ”surprising”
event £, = 0. The following informal observations can be
made from this example:

Remark 1. Generation of surprise is possible only in event
spaces with non-uniform probability distribution.

Remark 2. The more surprising an event needs to be, the
less likely it is for it to be generated by one-model sampling.

Based on the later, one-model sampling would be ill-suited
for tasks that require generating surprising events with high
probability. Furthermore, one-model sampling generates
surprising events in a completely random manner, which can
be deeply unsatisfying if the task requires control over when
to generate surprise or learning patterns of surprise.

‘We now present more formal versions of these statements,
together with the corresponding proofs. While the two infor-
mal remarks seem obviously true, a formal specification has
the advantage that it quantifies the notion of surprise, which
will also help in clarifying the meaning of more surprising
and its connection to sampling.

Definition 1. Let ¢) € (0, 1] be an expectation level, with
lower levels used to represent higher surprise. Let M be a
model that computes the categorical distribution Py (z|h)
over K categories. A discrete event x observed in a context
h is called v-surprising for model M if Pys(x|h) < ¢/K.

Definition 2. Let S(1, h, M) denote the expectation under
M that a sampled event & ~ Py (z|h) is t)-surprising for M:

S(¢,h, M) = Ezwpy, [P (Eh) < ¢/K]]

where we use the Iverson bracket [P]] = 1 if the proposition
P is satisfied, and O otherwise.

Using these definitions, the formal versions of the two re-
marks above are expressed as Theorems 1 and 2 below.

Theorem 1. S(v,h, M) = 0 for any uniform categorical
distribution M, irrespective of the level ¢ € (0, 1].

Proof. If M is a uniform categorical distribution,
Py(2|h) = 1/K. Therefore [Py (2/h) < /K] = 0 for
any & ~ Pp(z|h), which means that the corresponding
-surprising expectation is S(¢, h, M) = 0. O

According to Theorem 1, a maximum entropy distribution
offers no opportunity for surprise.

Theorem 2. Let M be a non-uniform categorical distribu-
tion and p,, = Pyr(x = k|h) for each category k € 1..K.
Without loss of generality assume that the categories are
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indexed in the order of their sampling probabilities, i.e.
po=0<p; <ps < ... < pr < 1. Then:

(a) % € (pr, pr+1) for some k € 0..K —1.
k
k
(MSWﬁJ@:2;m§¢E~

Proof. To prove (a) note that ¢ € (0,1]ANK > 2= ¢/K €
(0,1/K] C (0, 1]. This means that 1)/ K must belong to one
of the sub-intervals from the following partition of (0, 1]:
K—1
(0,1] = (0, p1] U | (pk: prsa] U (o, 1]
k=1
However, it is not possible for 1)/ K to belong to the last sub-
interval. Since M is non-uniform and py is the largest, this
means px > 1/K > ¢/K = /K ¢ (pk,1]. Therefore,
there can be only two scenarios:

1. /K € (0,p1],if k = 01in (a).
2. Y/K € (pk, pr+1], for some k € 1..K—1 in (a).

We prove (b) separately for each of the two cases. In sce-
nario 1, ¥ /K < p; implies /K < pj, for all categories
k € 1..K. Therefore, [Pyp(Z|h) < /K] = 0 for any z,
which means that the expectation of a ¢)-surprising event is:

S(¥,h, M) =0 (1

Since £ = 0 in this scenario, this means S(¢,h, M) =
¥k /K which satisfies (b).

In scenario 2, because of how the categories were indexed,
we have p; < po < ... < px < ¥/K < pgy1. Thus, for
Py (2/h) < /K to be true, £ must satisfy 1 < & < k.
Therefore, the i)-surprising expectation is:

S(¢,h, M) Einpy [Py (2[h) < ¢/K]]

k
ZPM(i’ = j|h)

2

k
Zﬂjﬁ

j=1

b k
= k —
;:1 Pk P < Z/JK 3)

which satisfies (b). O

Corollary 2.1 below expresses the fact that generating very
surprising events (small )/ K) is impossible in the absence
of very unlikely events (smaller p; < v/ K).

Corollary 2.1. S, h, M) =0ifyp/K < p.

The dependence on the categorical distribution M can be
removed from Theorem 2, as shown in Corollary 2.2 below.

1
Swmwﬁ<wQK)<w

For Bernoulli distributions X = 2, for which the bound
S(1,h, M) < 1/2 in the theorem is tight.

Overall, Theorem 2 and its corollaries show that it is im-
possible for one-model sampling to generate very surprising
events (i.e. very low level ¢) with high probability (i.e. large
expectation S (¢, h, M)).

Corollary 2.2.



Why Controlled Surprise is Important

Using one-model sampling as the sole means of generating
surprise has therefore two fundamental limitations:

1. Generation of truly surprising events, i.e. -surprising
with very small 1), is very unlikely.

2. Surprising events are generated completely at random,
with no mechanism available to (learn to) control surprise
generation.

To better understand why the two limitations are important,
consider the task of generating satirical news headlines. As
observed by West and Horvitz (2019), changing a single
word in a satirical news headline is often sufficient to make
it sound like serious news, as in "BP ready to resume oil
{spilling, drilling}”. Furthermore, the changed word tends
to reside towards the end of the headline. Using the notation
introduced earlier, the context h can be seen as carefully
building an expectation in the audience that is then turned
upside-down by the word zj, appearing at position k towards
the end of the headline. If M is the reader’s model of ex-
pectation and V is the vocabulary, this can be expressed as
Py(zih) < 9/|V| < 1/|V], i.e. zy is 1)-surprising for
M with ) very small. However, according to Theorem 2,
a very small ¢/ makes it highly unlikely that sampling from
a trained audience model would generate such a surprising
event. Even when surprise is allowed at any position in
the headline, the overall likelihood of sampling a surpris-
ing word is still very small because satirical headlines are
usually very short. Thus, a writer generating headlines by
sampling from the language model would have to discard a
very large number of outputs before stumbling upon a satir-
ical one. However, this is not how writers generate satirical
headlines: while some randomness is probably still part of
the process, there is also a significant mechanism at play that
makes the generation of surprise substantially more likely
than mere sampling from a language model shared with the
audience.

The second limitation can manifest in multiple ways, for
example as an inability to determine the required level of
expectation violation or the frequency of surprising events.
To illustrate, consider a headline generator primed with the
word ”BP” that generates phrases sequentially as shown be-
low:

BP =- BP wind farms
= BP wind farms to provide
= BP wind farms to provide grazing land
= BP wind farms to provide grazing land to nearby
ranchers for free.

In the first step, it samples “wind farms”, which happens to
be just a bit surprising, as it is less expected to appear after
”BP” than other phrases, such as “oil tankers”. At the next
step the high expectation verb ”to provide” is sampled. Then
the model samples “grazing land” which too happens to be
just a bit more surprising in this context than other phrases,
such as “electricity”. Finally, the model samples relatively
high expectation phrases, resulting in the complete headline
”BP wind farms to provide grazing land to nearby ranch-
ers for free”. The level of surprise in this headline is much
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milder than in the satirical ”BP ready to resume oil spilling”,
where “spilling” is much less expected than “drilling” given
the previously generated words. While this type of control
over the level of surprise is not available in one-model sam-
pling, it can be achieved using a two-model architecture, as
described in the next section.

A Two-Model Architecture for Surprise

To enable a data-driven control over the generation of sur-
prise, we propose an architecture that contains two models:
an audience model M/ and a composer model 1/ ¢ that
has access to expectations computed by M*. These mod-
els will be trained on separate datasets, D* and D¢, respec-
tively. While the definition of v -surprising events remains
the same as in the one-model sampling case, the definition of
the t)-surprising expectation is generalized to accommodate
the two models, as shown in Definition 3 below.

Definition 3. Let S(¢, h, M“|M¢) denote the expectation
that an event & ~ P§;(x|h) sampled from a composer model
M¢€ is p-surprising for an audience model M “:

S, b, M*|M€) = Ezpg, [[Pyr(2[h) < /K]

where the Iverson bracket [P] = 1 if the proposition P is
satisfied, and O otherwise.

The previous Definition 2 can be obtained from 3 by using
the audience model also as a composer model, i.e. M¢ =
M* = M. The adaptation of Theorem 1 for the two-model
case still holds:

Theorem 3. S(u,h, M| M¢) = 0 for any uniform cate-
gorical distribution M°, irrespective of ¢ € (0, 1].

The corresponding version of Theorem 2 (b) however does
not hold anymore, as Equation 2 now changes to Equation 4:

k
S(,h, M |M®) = > Py (& = j|h) )
j=1

While S(¢,h, M*|M°€) is still 0 for /K < p; =
ming P§,(Z = k|h), it can now become arbitrarily large
when /K > p;, depending on how much probability the
composer allocates to categories that are unlikely in the au-
dience distribution.

In order to learn to control violations of expectations
(VoE), the composer model uses as input expectations com-
puted by the audience model. We use the notation M€ +
M* to show this dependency. It is important that the two
models are trained separately, on different datasets, in this
sequence: M is first trained on data D, then it is plugged
in the M€ < M* architecture for training M on its dataset
D¢ while keeping M“ fixed. This training procedure is
shown in Agorithm 1. During training of the M“ model in
the M¢ < M?* architecture, the same composer sequence
xf, is provided as input to both M* and M°. To gener-
ate samples from the composer at test time, the previously
trained M“ can be used or a new one can be trained on
a different audience dataset D, as shown in Algorithm 2.
When used in generation mode at test time, a token Z7 is
sampled according to the categorical distribution P and



Algorithm 1 TRAINCAMODEL(D?, D¢)

Input: Datasets D® and D*.
Output: Composer model M €.
1: train M“ on D?
2: train M€ < M® on D¢
3: return M€

> Keep M fixed.

Algorithm 2 TESTCAMODEL(M €, D)

Input: Composer model M€.
Input: New audience examples D.
QOutput: Samples ¢ from composer (and ¢ from audi-
ence).
1: train M“ on D
2: sample ¢ ~ M€ <— M? (and 2% ~ M?)
3: return z°¢ (and %)

fed as the next input token to both M and M. We use
¢ ~ M€ < M*? to denote the entire sequence sampled
from the composer, whereas 2% ~ M is used to refer to a
sequence sampled from the audience model.

The composer-audience (CA) architecture M¢ <+ M?
can be instantiated using various ML models, depending on
the type of data that needs to be processed. Figure 1 shows
the architecture used in our experiments with synthetic data,
which relies on LSTM units for processing sequential data.
At the bottom, the audience LSTM processes the input se-
quence and computes at each time step ¢ — 1 a hidden state
hi—1 and the categorical distribution P over the possible
values for the next token. We call this the audience expec-
tation for the next token. Together with the current token in
the sequence, this expectation is used as input to the com-
poser LSTM shown at the top of the figure. Optionally, the
hidden state of the audience model could also be provided as
input to the composer. The composer LSTM then computes
its own categorical distribution P} over the possible values
for the next token.

Possible Scenarios for Text and Music

For the computational humor task described earlier, D¢
could be a large collection of news headlines, perhaps aug-
mented with text from news articles or open domain text.
When trained on it, the M * model would capture the expec-
tation Py, (x|h) of seeing word or phrase z in a textual con-
text h in a normal, largely non-humorous text. The dataset
D¢ on the other hand would be composed only of satirical
news headlines. Accordingly, training the composer model
M€ on D¢ using the CA architecture M€ < M* would
enable M€ to learn patterns of violations of expectations,
such as generating a word that is 1-surprising for M * only
when the audience expectation P, (z|h) for other words is
very large. When used in the M¢ < M“ architecture, the
composer will also be able to learn the tendency for surpris-
ing words to be generated towards the end of the headline.
In contrast, as shown earlier, training only one model on D®
will have very limited capacity for surprise and offer no con-
trol over when to violate expectations. Training one model
on D¢ is not going to work either, as it will not be able to
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Figure 1: LSTM instantiation of M <— M“ architecture.

distinguish between words that are expected by an audience
and words that violate the audience’s expectations.

The two-model architecture could be applied in a simi-
lar way to music generation. The common practice is to
train one model on one corpus of music D and generate mu-
sic by performing one-model sampling from it, a method
that has limited capacity for surprise, as shown earlier. In-
stead, we propose training a composer-audience model, for
which the music corpus needs to be partitioned into an au-
dience corpus and a composer corpus, i.e. D = D* U D¢,
One solution is to choose a ’present” time ¢ and partition D
around that time, i.e. store all music composed before ¢ in
the ”old music” dataset D* whereas all music composed af-
ter ¢ is stored in the “new music” dataset D¢. After training
the M€ <— M architecture on this partition, the audience
model would be re-trained on the entire dataset, plugged
back in the M€ <— M architecture, and new music would
be generated by sampling from M € in this architecture. The
method can be refined in many ways, such as moving into
D¢ all music from D¢ that is deemed too similar or deriva-
tive with respect to D®. Furthermore, the fixed time cutoff
for the partition can be avoided, as shown in the approach
below aimed at addressing individual differences.

The Personalized Composer While it has the advantage
of being simple, training just one M¢ < M* model does
not consider individual differences in humor appreciation or
music enjoyment. With respect to music, significant indi-
vidual differences exist, from individuals who tend to ex-
perience a complex array of intense physiological and men-
tal responses (Panksepp 1995) to individuals who report be-
ing unable to derive pleasure from listening to music (Mas-
Herrero et al. 2014). While individual differences in aes-
thetic reward sensitivity were shown to have a neural ba-
sis (Sachs et al. 2016), differences in musical ability and
familiarity were also observed to be important for experi-
encing intense emotional responses to music (Nusbaum and
Silvia 2011). If we use the individual’s performing or listen-
ing history D = {1, x9, ..., x7} as a proxy for their musi-
cal ability and familiarity, then the CA architecture can be



used to train a composer model using a series of audience
models. As shown in Algorithm 3 below, at each timestep
t an audience model M is trained on all current music
D¢ = {z1,...,x+} and plugged in the M¢ «+ M} archi-
tecture to create together with x4y a training example for
the composer model.

Algorithm 3 TRAINCASERIES(D)

Input: Chronological dataset D = {1, zo, ...
Output: Composer model M€
I: fort=1t0oT — 1do
2 train M on D¢ = {z1,...,x+}
3: train M on examples {M€ < (M, x141) b=1.7-1
4: return M°

,$T}.

Experimental Evaluation

The proposed CA architecture was evaluated on three syn-
thetic tasks using binary strings: 1) violation of all high ex-
pectations, 2) violation followed by resolution of expecta-
tion, and 3) self-perpetuating random VoE. These synthetic
tasks use clear patterns of expectations that enable us to de-
termine the extent to which the models learn the expecta-
tions (audience) and their patterns of violation (composer).
We use two evaluation measures for surprise throughout:

1. Expected maximum surprise:

Spaa(M®|M®) = Egope, {1 — min P&(@jh)}

1<5<|2]
K

Smaz and S, are calculated by averaging the sequence-
level maximum surprise or count, respectively, over a set
of generated sequences. Because all generated strings & in
the experiment have the same fixed length N, the averaged
count Sent (10, M*|M¢)/N can be seen as an estimate of the
average -surprising expectation from Definition 3.

The two models are trained using teacher forcing, i.e. the
true token x is used as input for the next step. We use the
cross entropy loss with respect to all the bits (random or pat-
tern) in the training sequences. We emphasize that there is
no explicit surprise-related loss and the only means for the
composer to learn surprise is from the data. The extent to
which the trained composer surprises the audience reflects
the extent to which the patterns in D¢ violate the expecta-
tions of a model trained on the patterns in D®.

2. Expected count of i-surprise:

Sent(0, M®|M€) = Bz pg, H{% | Pry(25|h) <

Violation of Expectation

In this scenario, the audience model learns when to gener-
ate high expectations, whereas the composer model learns
to violate all expectations that are sufficiently high, where
the expectation level required for VOE is learned from the
data. Training and test examples are generated as quasi-
random sequence of bits that are constrained to contain a
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Training patterns Test
Audience | x{(0011) | z5(1100) | =%(0101)
Composer | z§(0010) | x5(1101) | £°(0100)

Table 1: Audience & Composer examples for VoE.

Algorithm 4 PAIREDTRAINING(D?, D)
Input: Audience dataset D = {z{,...,z%}.
Input: Composer dataset D® = {5, ..., 2% }.
Output: Composer model M*°.
1: fork=1to K do
2 train M on {z{}
3: train M on examples { M€ < (M2, )} k=1..x
4: return M¢

given bit pattern. To compress the dataset description, let
x’]’.”(bl ba...brbg+1, p, N) specify that example number j for
the audience (m = a) or the composer (m = c) is a sequence
of IV bits that are generated at random with the following
constraints:

1. Any time the sequence of bits (b, ba, ..., b) is generated,
it is immediately followed by the bit value by .

2. The complete pattern (by,ba, ..., by, brr1) appears pN
times in the entire string of NV bits (p < 1).

For the rest of the paper we will be dropping the pattern
frequency p and length N from the notation, as these will
be global parameters that stay the same for all examples:
p = 0.1 and N = 200. Table 1 shows training patterns
used for the audience and composer in the experiments for
this section. Below we show example training sequences
generated for two patterns, one for the audience and one for
the composer:

29(0011) = (0,1,0,0,1,1,1,0,1,0,0,1,1,1,1,0,...)
2$(0010) = (1,1,0,0,0,1,0,1,1,0,1,0,0,1,0,1,...)

The composer patterns are designed to be the “opposite” of
the audience patterns: any antecedent string 0, 0, 1 in the
audience sequence above is followed by the consequent bit
1. For the composer sequence, the antecedent is the same but
the consequent is flipped to 0. By training on this data, the
composer is expected to learn that whenever the audience
expectation is high (i.e. for a consequent bit) it should go
against that expectation and generate the opposite bit.
We experimented with two training scenarios:

1. Paired training: In this scenario, shown in Algorithm 4, a
separate audience model is trained for each pattern. When
training the composer model on a composer pattern zf,
we plug in the audience model that was trained on the
corresponding pattern x.

2. Unpaired training: This is the original training scenario
shown in Algorithm 1 which is more realistic, as it does
not require having knowledge of which patterns are used
during training.

For paired training, we used the K = 2 training patterns
shown in Table 1. For the more difficult case of unpaired



training we added 3 more patterns to enable the composer
model to better learn the importance of audience expecta-
tion: x%(1101), £§(1010), 2¢(0110) for the audience, and
the corresponding opposite patterns for the composer. At
test time, the audience model is trained on the new pattern
D = {z°} and plugged in the M¢ + M architecture, as
shown in Algorithm 2. When used for sampling, the M*“
model is expected to generate a string 2 that violates the
expectation engendered by this new pattern. Note that the
M€ model does not see the new pattern = during training.
The LSTMs were trained with Adam (Kingma and Ba
2015) for 10,000 epochs using a learning rate of 0.001. We
generated 1,000 of training sequences of 200 bits each, for
each pattern. The LSTM had two layers of neurons, with 2
neurons per layer for both the audience and composer model
in the paired training mode. For unpaired training, where
just one model had to learn all patterns, these were increased
to 5 neurons for the audience and 4 for the composer. Over-
all, it was important to keep the capacity small so that the
audience does not memorize the input sequences, while en-
suring that the composer does not overfit to the bit pattern.
We report results for two input scenarios for the composer:

1. Using only the audience expectation as input (first result
in the table cells.

2. Using both the bit at the current position and the audience
expectation (results in parentheses in the table cells).

Sampling model M
Audience: M =M*
Composer: M =M*¢

Sm,u:l; (Ma |M)
0.61 (0.64)
0.99 (0.99)

Sent (v, M*|M)
0.07 (0.13)
11.03 (12.14)

Table 2: Expected t-surprise for Paired training: ¢ = 0.1,
Sent 1s per 100 bits, composer accuracy 99% (99%).

Sampling model M | Syaz(M®|M) | Sent(3p, M| M)
Audience: M =M* 0.55 (0.54) 0.02 (0.05)
Composer: M =M*® 0.99 (0.99) 11.17 (11.23)

Table 3: Expected v-surprise for Unpaired training: 1) =
0.1. S¢py is per 100 bits, composer accuracy 99% (99%).

Tables 2 and 3 report the surprise that the audience model
M* experiences on samples 2¢ from composer (two-model
sampling), as well as on samples £ from the audience itself
(one-model sampling). For each model, the surprise num-
bers are averaged over 100 sampled sequences of 200 bits
each. The results show that the audience model is much
more surprised by examples sampled from the composer
model, both in terms of maximum surprise S, and aver-
age count of i-surprising events S.,;. The sequences gener-
ated by the composer satisfy the opposite pattern £ shown
on dark background in Table 1 with an accuracy of 98% or
higher (accuracy numbers shown in the caption).

Delayed Resolution of Expectation

Delayed resolution of dissonance is one major tool com-
posers use to play with the audience’s sense of expectation.
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Training patterns Test
Audience | z{(0011) | x5(1100) | z*(0101)
Composer | z£(00101) | z5(11010) | &°(01001)

Table 4: Audience & Composer examples for Delayed VoE.

To emulate this, we experimented with the dataset shown
in Table 4 where the composer had to first violate the ex-
pectation (flip the consequent bit) and then satisfy it (follow
with the expected bit). For example, by training on pattern
x$(0011), the audience learns to compute a high expectation
for the bit 1 whenever it follows the antecedent sequence 0,
0, 1. Thus, whenever the composer sees the antecedent 0, 0,
1, it also sees that the audience model has a high expectation
for 1 to follow. By being trained on z§(00101), the com-
poser learns that it should generate a 0 when the audience
expectation is high, effectively violating the expectation, and
then follow with the bit 1 expected by the audience.

Tables 5 and 6 show the results in the paired and unpaired
training scenarios, respectively, using the same methodol-
ogy as in the previous section. Here too the results show
that the audience is much more surprised by examples sam-
pled from the composer model, in terms of both maximum
surprise and average frequency of -surprising events.

Sampling model M | Smac(M*|M) | Sent(yp, M®|M)
Audience: M =M*® 0.68 (0.67) 0.13 (0.14)
Composer: M =M*¢ 0.99 (0.99) 12.90 (11.71)

Table 5: Delayed ¢-surprise for Paired training, v = 0.1.
Sent 1s per 100 bits, composer accuracy 99% (99%).

Sampling model M | Spaz (M| M) | Sent(p, M| M)
Audience: M =M* 0.54 (0.55) 0.00 (0.00)
Composer: M =M*° 0.99 (0.99) 11.98 (11.83)

Table 6: Delayed 1/-surprise for Unpaired training, 1) = 0.1.
Sent 18 per 100 bits, composer accuracy 99% (98%).

Longer Patterns For all surprise scenarios from this sec-
tion (delayed VoE) and the previous section (direct VOE), we
also evaluated the composer model on longer patterns at test
time, i.e. using an audience model trained on z%(01101),
x2*(111010), and z%(0101101). Even though at training
time the composer had seen expectation patterns with only
4 bits, its performance on longer patterns was overall very
similar with the performance reported in Tables 2 to 6, in
terms of both surprise measures and accuracy. This can be
seen as further evidence of the ability of the CA architecture
with LSTMs to learn general VOE patterns.

Never-Ending Surprise

In this scenario, surprise is generated by violating high ex-
pectation at random. We first create a training dataset D* =
{0g} for the audience that contains only a sequence of N
random bits 0g. Let D¢ = {01, 02, ...} be a training dataset



for the composer containing two or more sequences that are
similar to oy but not exactly the same. Each sequence in
D¢ is generated by starting from o( and randomly flipping
bits, where at each position in the sequence the probabil-
ity of flipping the bit is given by a Bernoulli distribution
with mean p = 1/N. If Bernoulli(p,N) is a sequence
of N draws from this distribution, then each composer se-
quence o; can be seen as the element-wise exclusive-or be-
tween og and this random vector, i.e. 0; = 09 B r; =
0o @ Bernoulli(p,N). For example, if N = 10, the two
datasets could be as follows:

= {09 =0,1,0,0,1,1,0,1,0,0) }
ry = <Oa 07 17 07 07 07 07 Oa O? O>
ro =(0,0,0,0,0,1,0,0,0,0)
rs = <Oa 07 Oa 17 07 07 Oa 1a O? O>
D¢ = {o1 =09®11=(0,1,1,0,1,1,0,1,0,0),
02 =09 Dry = <07 1a07 Oa 170707 17070>7
03 =09 Dr3 = <O, 1,0, 1, 1, 1,0,0,0,0>}
To train the composer model, first an audience model M is
trained on D®. Then the composer model M€ « (M%,r)
is trained on D€, using as input the expectations computed
by M* for each example o;, as well as the random sample
vectors r;. Upon training in this setting, the expectation is
that the composer model will learn to violate the high ex-
pectations produced by the audience model only at the times
specified by the random control vector r. Thus, if the au-
dience is trained on an arbitrary sequence o then, given a
random control pattern r, the composer should learn to com-
pute mostly the element-wise exclusive-or between the two,

i.e. 0 = oy @ r (deviations may happen due to the sampling
done at each step in the sequence).

Algorithm 5 NEVERENDING(0g, N, p)

Input: An initial sequence of bits 0.

Output: An infinite stream of bit sequences 01, 0o, ....
I: letk =0, D§ = {oo}
2: for ever do

setk=Fk+1

train M} on Dj,_,

let r;, ~ Bernoulli(p, N)

let D§ = {op, ~ M° < (Mg, ry)}

yield oy,

A A

Once the composer model is trained, it can be used to gen-
erate an infinite stream of surprising sequences using Algo-
rithm 5. The algorithm starts by initializing the set of com-
positions D§ with an input sequence og. This can be an ar-
bitrary sequence of N bits, for example all zeroes. At every
iteration of the never-ending generation loop, the current au-
dience model M} is trained on the previous set of composi-
tions (step 4). Then a random control pattern ry, is generated
(step 5) and together with the current audience model M}
are used as input to the composer model M€, which gen-
erates a new surprising sequence oy (step 6). An example
output is illustrated below:

D§ = {00 =(0,0,0,0,0,0,0,0,0,0)}
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r; = (0,0,0,1,0,0,0,0,0,0)

{o1 ®o0p @11 ~ (0,0,0,1,0,0,0,0,0,0)}
(0,0,1,0,0,0,0,0,1,0)
(0,0,1,1,0,0,0,0,1,0)}
=(0,0,0,1,0,0,0,1,0,0)
( )
( )

)

>,
Il

ro =

D5 = {0z 01 Dry =~
DS = {os NOQ@I‘?, ~ (0,0,1,0,0,0,0,1,1,0)}
0,0,0,0,0,0,0,1,0,0

Dj = {oy=o03®dry~(0,0,1,0,0,0,0,0,1,0)}...
The composer LSTM was reduced to one layer with 2 neu-
rons, and both models were trained for 5,000 epochs. The
results in Table 7 show that the audience model experiences

no surprise on samples from itself, whereas samples from
the composer are very effective at eliciting surprise.

ry =

Sampling model M | Spax(M®*|M) | Sent(h, M*|M)
Audience: M =M* 0.00 0.00
Composer: M =M*“ 0.99 1.65

Table 7: Expected Never-Ending -surprise: ¥ = 0.1, S¢py
is per 10 bits, composer accuracy 100%.

Relation to Previous Work

Itti and Baldi (2006; 2009) define the surprise of an
agent M upon observing data D as the KL-divergence
K L( (M|D)||P(M)) between the posterior distribution of
beliefs after the agent observes the data and its prior distribu-
tion of beliefs. This Bayesian definition of surprise is shown
to be a good predictor of events that attract human attention
in video frames. Macedo and Cardoso (2001) define the sur-
prise of an event £/ as 1 — Py;(E). Given that a low prob-
ability alone cannot fully account for surprise (Teigen and
Keren 2003), such as in models with uniform distributions,
Macedo, Reisezein, and Cardoso (2004) refined the defini-
tion of surprise to also consider the most likely event E}, i.e.
log(1+ P(E;)— P(E)). Note that our definition of surprise
naturally solves the uniform distribution dilemma by using a
threshold that depends on the number of categories. Similar
to (Macedo and Cardoso 2001), Horvitz et al. (2005) define
surprising events to be those with low likelihood, e.g. 0.1 or
less. They also go one step further and train a Bayesian net-
work to forecast surprising events 30 minutes in advance for
their traffic flow model JamBayes. In the context of evaluat-
ing creative designs, Maher, Brady, and Fisher (2013) iden-
tify surprising designs as outliers with respect to predictions
based on features from previous designs.

Overall, these approaches were aimed at recognizing or
forecasting surprise. To the best of our knowledge, the
two-model architecture described in this paper is the first
to address the task of producing surprising outputs by learn-
ing patterns of surprise from data. In terms of models that
learn to generate surprising data, the most relevant work is
Schmidhuber’s Formal Theory of Creativity, summarized in
(Schmidhuber 2012). There, the learning agent is entirely
unsupervised and is expected to create novel and surprising
data on its own, using a reinforcement learning algorithm



that rewards the agent when it generates data that helps it
better compress its history of interactions with the environ-
ment. In contrast, our learning approach is data-driven in the
sense that it is trained to minimize loss on data that is given
to it, e.g. bit sequences. At the same time, like Schmidhu-
ber’s creative agent, it does not require explicit supervision
in terms of surprise, i.e. the composer is never told whether
a particular event is surprising or not. The composer learns
to surprise the audience only to the extent that the data pro-
vided to it is surprising for its model of the audience, which
itself learns patterns of expectation from its own data.

There are also other two-model architectures, albeit de-
signed for different purposes, such as the discriminator-
generator model of generative adversarial nets (Goodfellow
et al. 2014) or the student-teacher model used in the music
theory learning system of (Yu and Varshney 2017).
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Abstract

The objective of this study is to design a general
computational model of story creativity as the
fundamental component of a cognitive system. In this
paper, a theoretical framework for computational story
blending is presented. This framework is inspired by
cognitive and computational models of conceptual
blending. Story blending, which is defined as composing
a novel story by combining two input stories, is a
fundamental principle of story creativity. Although the
idea proposed in this paper has not been implemented yet,
this study provides a theoretical basis for a
computational modeling of story blending.

Introduction

Story creativity is the foundation of autonomous integrative
artificial intelligence that can generate a contextual structure
of the present situation, episodic memories, future goals and
plans, the imaginations of the mental states of other persons,
and hypothetical or fictional worlds. Meanwhile, conceptual
blending theory, as proposed by Fauconnier and Turner
(2002), characterizes the fundamental mechanism of human
creative (but ordinary) thinking as the production of a novel
concept by combining different familiar concepts. This
cognitive theory has been applied to computational
creativity studies, such as Eppe et al. (2018), Goguen and
Harrell (2010), and Schorlemmer et al. (2014). This study
seeks a general model of generative narrative cognition from
a cognitive system perspective, whereby cognitive and
computational models of conceptual blending are
informative.

In this paper, a theoretical framework for computational
story blending is proposed toward a general computational
model of story creativity. Story blending is defined as
composing a novel story by combining two input stories. In
this context, a “story” refers to a mental representation of a
narrative, whereas a “narrative” generally refers to
information that is expressed in a communicational context.
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Although the idea proposed in this paper has not been
implemented yet, this study provides a theoretical basis for
the computational modeling of story blending. A more
detailed design and implementation will be presented in a
future paper.

To illustrate the notion of story blending, Figure 1 shows
an example of “narrative” blending by a non-expert human
(a university student). A blended narrative (N3) was created
by combining two given narratives (N1 and N2). This
simple example contains various blending forms, e.g.,
merging temporal—spatial setting, replacing characters and
their roles, and reconnecting the reason for a character’s
action. Moreover, these operations are done in an integrated
manner. Story blending refers to the cognitive process
underlying this type of ability.

The rest of this paper is organized into five parts. First,
previous related studies of narrative intelligence and
conceptual blending are reviewed. Second, the significance
of story blending is described. Third, several fundamental
issues in computational modeling of story blending are
discussed in three sections. Fourth, an architectural design
of computational story blending is described. Finally, a
conclusion and future prospective studies are presented.

N1 (input): A little girl and her
mother were living in a house.
One day, the little girl and her
mother played with building
blocks. Thereafter, the little
girl put the building blocks
away. On the other hand, her
mother made dinner. The little
girl and her mother then ate
the dinner.

N2 (input): It is the year 20xx,
a boy and a robot are living in
a spaceship. One day, the
robot forbade the boy to

press the button on the back
of the robot. However, the

boy pressed that button. Then,
the robot’s memories were
entirely reset. The boy threw
away the robot.

\/

threw away the robot.

N3 (blended narrative): It is the year 20xx, a little girl and a robot
are living in a house. One day, the little girl forbade the robot to
make dinner. However, the robot made dinner. The little girl

Figure 1. Example of “narrative” blending by a human subject.




Background

This section presents a review of previous related studies.

Computational Story Generation

Narrative generation is a challenging issue in artificial
intelligence. In this context, the term “story” generation
refers to the process of generating a content-level structure
of a narrative, rather than an expression-level processes [in
narratological terminology, a story or fabula refers to the
content plane of a narrative, whereas a discourse or syuzhet
refers to the expression plane (Prince 2003)].

There are several different but interrelated approaches to
computational story generation. Some of the major
approaches include the following:

+ Planning-based approaches that model story generation as
a simulation of the characters’ goal-directed actions in a
specific world model (Meehan 1980; Riedl and Young
2010).

* Schematic approaches that formalize the generative
structural knowledge of stories in the forms of story
grammar (Pemberton 1989) and thematic structure
(Bringsjord and Ferrucci 1999), among other forms.

» Case-based approaches that model story generation as the
reconstruction of existing stories in various ways,
including case-based reasoning (Turner 1994), retrieving
possible next actions (Pérez y Pérez and Sharples 2001),
and analogical reasoning (Riedl and Ledn 2009; Ontafion
and Zhu 2011).

Story blending can be regarded as a case-based approach.

Story in Cognitive Systems

Studies on cognitive systems or cognitive architecture are
aimed at developing not only specific intellectual
functionalities, but also general computational theories,
models, frameworks, and systems for developing integrative
intelligence. From a cognitive system perspective, a story or
narrative can be considered as a universal form of
knowledge, memory, or a mental representation of a
subjective world.

Since the early years of artificial intelligence, researchers
have focused on the roles of stories in a human intelligence.
Their studies have led to several computational theories,
including script (Schank and Abelson 1977) and dynamic
memory based on memory organization packets (Schank
1982).

Recent studies have investigated the importance and
universality of stories or narratives. For example, Ledn
(2016) proposed an architecture of narrative memory that
focused on knowledge representation of episodic and
procedural memories and narrative communication based on
these memories. Samsonovich and Aha (2015) proposed a
computational theory of goal reasoning based on a
multilayered narrative structure and the notion of character.
Akimoto (2018a) described the structures and functions of
stories as attributes of an agent’s subjective world from four
perspectives: a) constructing the contextual structure of the
present situation; b) associating the past, future, and fiction
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Generic
Space

Figure 2. Simple illustration of conceptual blending.

with the present situation; ¢) imagining stories about others;
and d) distinguishing between facts and fiction as metastory
information.

For the above-mentioned reasons, an essential issue for
cognitive systems is to achieve a general model of story
creativity.

Computational Conceptual Blending

Conceptual blending theory (Fauconnier and Turner 2002)
explains the fundamental mechanism of human creative
thinking as the production of a novel concept by combining
different familiar concepts. Figure 2 shows a simple
illustration of conceptual blending. An input space (or an
input mental space) refers to a small conceptual packet that
provides source information for composing a blend (or a
blended mental space). A blend is a new space produced by
the combination of two or more input spaces. Here, a shared
structure between input spaces, based on the cross-space
mapping and counterpart connections, is captured into a
generic space. This shared structure becomes part of the
blend. However, the blend also contains other specific
structures, including an emergent structure that is not
directly projected from the input spaces.

Although conceptual blending was originally developed
as a cognitive theory, several researchers have proposed
computational models of conceptual blending. For example,
Goguen and Harrell (2010) formalized conceptual blending
by using algebraic semiotics as the basis for poetry narrative
generation. In the COINVENT project (Schorlemmer et al.
2014; Eppe et al. 2018), the amalgam theory in case-based
reasoning (Ontafiéon and Plaza 2010) was adapted into the
core process of conceptual blending. Computational
modeling of conceptual blending involves various
subproblems.

Because conceptual blending generally has a huge
solution space (i.e., possible combinations), it is necessary
to formalize metrics for identifying “good” blends to prune
the solution space. Eppe et al. (2018) introduced metrics for
evaluating blends in terms of the amount of information,
compression of structure, and balance of information. These
metrics were defined based on the optimality principles of
conceptual blending that were conceptually described by
Fauconnier and Turner (2002). On the other hand,
Confalonieri et al. (2018) introduced domain-specific values



from the perspective of audiences into the process of
conceptual blending.

Constructing an adequate generic space is regarded as a
key aspect of generating a consistent blend. As described by
Besold (2018), analogical reasoning is a foundation of this
process. From another perspective, Hedblom et al. (2016)
adapted image schemas into the process of generalization or
cross-space mapping as a representation of the abstract
qualitative meaning of concepts.

The above-mentioned ideas and computational
formulations of conceptual blending are applicable to story
blending. However, story blending must deal with the
content-level structures of stories, whereas computational
conceptual blending treats the structures of general concepts.
Goguen (2010) introduced a process called structural
blending into poetry generation; this process focuses on
composing a text-level structure. Computational conceptual
blending also provides a basis for story creativity in
inventing ideas of a unique character and an imaginative
world setting. However, the primary focus of story blending
is on manipulating an integrative and temporal structure that
consists of concrete events and entities. This issue is a
difficult aspect of story blending.

Story Blending in a Cognitive System

Story blending is a reasonable approach to a general model
of story creativity for two reasons. First, producing new
information and knowledge based on memory is an essential
attribute of true autonomous intelligence. Second, stories
can be regarded as integrative knowledge for composing a
new story.

As described previously, story creativity is the common
foundation for generating past memories; future
expectations, predictions, goals, and plans; the contextual
structure of the present situation; the imaginations of the
mental states (i.e., theory of mind) of other persons; and
hypothetical or fictional worlds. These aspects are necessary
for an agent that autonomously interacts with its
environment. In this context, the environment potentially
includes all sorts of social and physical situations that an
agent faces. Thus, interaction with the environment includes,
for example, exploring a mountain, eating at a restaurant,
communicating or cooperating with other persons (or
agents) toward a goal, and creating an artistic work within
the constraint of a specific genre.

Regarding the relationship to the environment, creative
story generation can be classified as two types:

* Adaptive story generation: adaptation to an unfamiliar
environment (e.g., the ability to generate a canonical story
in a specific genre or to generate a story for acting
appropriately at a restaurant).

+ Innovative story generation: the challenge of making a
change in the environment by producing a novel and
valuable story or narrative (e.g., to generate a new style
of story in or beyond a specific genre or to invent a new
system of a restaurant).
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Story blending aligns with both adaptive and innovative
story generation. From the perspective of cognitive
development, agents must adapt to new environments by
using their own knowledge accumulated through previous
experiences. The similarity between creativity and cognitive
development is also described by Aguilar and Pérez y Pérez
(2015). On the other hand, from the perspective of cultural
development, an innovative story or narrative is essentially
produced from the prior accumulation of social knowledge
or narratives.

The next three sections discuss three fundamental issues
for computational story blending: how to represent a story,
how to deal with the structural complexity of a story, and
what directs story generation.

Representation of a Story

From a cognitive system perspective, it is important to seek
a general representational framework for a story as a
uniform mental representation. However, this issue should
be comprehensively addressed by considering various
aspects of story cognition, including generation,
understanding, analogy, blending, memory retrieval,
embodiment or multimodality, and action—perception cycle.
Hence, this study undertakes an exploratory design of a
representation framework of a story from the perspective of
story blending.

Stories and General Knowledge

To begin, it is important to distinguish between stories and
general knowledge underlying stories (see Figure 3). The
role of general knowledge here is to provide a common basis
among different stories, even though every story is a unique
item of information containing concrete events and entities
arising at a time and a place. Narrative cognition generally
requires various kinds knowledge, including common sense
knowledge. In story blending, categorical or attributive
knowledge of words and relationships are especially
required for structural comparison and manipulation of and
between stories.

Story,

General knowledge

Figure 3. Stories and general knowledge.

Story,

Story; Story,

Hierarchy of a Story

The fundamental structural units that form a story can be
classified into four types, as follows:

+ Entity: A character or object appearing in a story.

« Event or State: A character’s action or stative

information.

* Relation: A relationship between two entities or two
events or states.

* Time and place: A temporal and spatial setting of a story
or part of a story.



Story General knowledge

Higher Time/Place -----4---------- Temporal/spatial concept

Relation -- “ ----------------------- Relational concept

Event/S@ ------------ Verbal/adjective concept

------------------ Nominal concept

(D
=
= —
=
<

Lower Attribute ------9---------- Nominal/adjective concept

Figure 4. Hierarchy in a story and correspondence to general
knowledge.

Thus, a story S is represented as a tuple <N, V, R, T, P> that
consists of entities (), events or states (V), relations (R),
times (7), and places (P).

The relationships among these structural units can be
interpreted as a hierarchical organization, as shown in
Figure 4. In this hierarchy, the higher unit contains the lower
unit. In particular, an entity contains attributes, an event or
state contains entities as its arguments, a relation forms an
integrative structure by containing two events or states or
entities, and a time or place gives temporal or spatial setting,
respectively, to the contained parts (events or states). The
temporal order of events is also represented by
anteroposterior relations. In addition, an aggregative event
or state and entity is formed by containing two or more
subevents or substates and subentities, respectively. For
example, a “shortcake” can be seen as an aggregative entity
containing “strawberry,” “whip cream,” and “sponge.”
Similarly, the event “Lisa eats a steak in a restaurant” can be
decomposed into several subevents.

Figure 4 also shows the corresponding general knowledge
for each level of story element. Here, every story element is

positioned as a unique instance of the corresponding concept.

Description Format

Because a story is composed of different types of structural
units, designing a unified representation format for these
units is a key issue in reducing the algorithmic complexity
of story blending. Based on the hierarchy of a story, each
unit can be represented by the same list format that consists
of symbols for a head /4 and contained units c:: (4, c1, ..., cu).
Figure 5 shows an example of a simple representation of a
story that is manually produced based on N2 in Figure 1.

How to Deal with the Structural Complexity
of a Story

A story has a complex structure in which various
representational elements are organized. In addition, story

blending requires various semantic and structural processing.

Hence, handling structural complexity is a difficult problem
in computational story blending. Two approaches are
introduced for addressing this problem: multiple abstraction
and blend-centered perspective.
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nl:boy (name Jiro) (body small))
n2:robot (sub n3 n4))

n3:memory)

n4:button (cause (reset memory)))

vl:live (agent nl n2) (location pl))

v2:forbid (agent n2) (counter-agent nl)
(object (press n4)))

v3:press (agent nl) (object n4))

vd:reset (object n3))

v5:throw away (agent nl) (counter-agent n2))

(

(

(

(rl:then vl v2)

(r2:then v2 v3)

(r3:then v3 v4)

(rd4:then v4 v5)
(r5:violation v3 v2)
(r6:cause v3 vi4)
(r7:reason v4 vb5)
(r8:partner nl n2)
(pl:spaceship vl v2 v3 v4 v5)
(tl:20xx v1 v2 v3 v4 vbh)

Figure 5. Example of story based on N2 in Figure 1.

Multiple Abstraction

Abstraction is considered as a general issue in dealing with
a complex problem or object in a computational system.
According to Saitta and Zucker (2013), abstraction is an
essential aspect of intelligence relevant to various cognitive
activities, including problem solving, perception, analogy,
categorization, language, and learning. Although the term
“abstraction” has various meanings in various disciplines,
the basic issues in abstraction can be organized into the
following seven aspects: simplicity, relevance, granularity,
abstract or concrete status, naming, reformulation, and
information content (Saitta and Zucker 2013). Considering
the first two aspects, simplicity means there is a general
agreement that abstraction should reduce the complexity of
tasks, and relevance means that abstraction is mainly
supposed to capture the relevant aspects of problems,
objects, or perceptions.

In story blending, abstraction can be regarded as the
process of extracting manipulable partial information from
a story from a restrictive perspective. This process is clearly
different from generalization, which constructs a generic
structure from input stories. The following are the various
conceivable perspectives for story abstraction: “story-line”
extracts the relational structure of events, excluding
information on the entities; “story-world” extracts the
relational structure of entities, excluding information on the
events; “character perspective” extracts events and entities
that are relevant to a specific character; and “temporal or
spatial setting” extracts times or places from a story.

Based on the hierarchy of a story structure, abstraction
can be defined as a top-down restriction or filtering of
information to be extracted. In this process, the detailed
contents of the extracted units may be parameterized as a
variable or a category in general knowledge. Figure 6 shows
an example of an abstraction (by hand) of the story in
Figure 5 from the “story-line” perspective.



(vl:1live (agent human#l robot#1l) (location
vehicle#1))
(v2:forbid (agent robot#l) (counter-agent

human#1) (object action#l))

(v3:press (agent human#l) (object button#l)
(vd:reset (object memoryi#l))
(v5:throw away (agent human#1l)
robot#1))

:then vl v2)

:then v2 v3)

:then v3 v4)

:then v4 vb)

:violation v3 v2)

:cause v3 vi4)

:reason v4 vb)

(counter-agent

(rl
(r2
(r3
(r4
(r5
(ro6
(x7

Figure 6. Example of abstraction (by hand) of the story in
Figure 5, from a “story-line” perspective.

Abstraction of stories precedes most processes in story
blending, including comparison between stories,
generalization of stories, and combinational integration of
parts of stories. Moreover, story blending requires the
combination of different abstractions from multiple
perspectives.

Blend-centered Perspective

In previous studies on computational story generation, the
generative process is generally modeled in the form of
centrally controlled symbolic processing. However, from a
long-term perspective, an emergentist approach is necessary
for modeling complex cognitive processes, including story
generation.

This approach is rooted in the work of Minsky (1986) that
explains the mind as a type of distributed multi-agent system

based on the collaborative activities of diverse simple agents.

Inspired by this theory, Kokinov (1994) developed the
DUAL cognitive architecture based on a distributed multi-
agent system, whereby an agent refers to a small
representational and procedural unit in a cognitive system.
Akimoto (2018b) showed a conceptual-level theory of
generative narrative cognition from an emergentist
perspective. This theory posits that stories are fundamental
agents that form a mind, and each story and its partial
structures involve a power of self-organization.

Although implementing a fully distributed model of a
generative story is still a distant goal, this study partially
introduces an emergentist perspective. In particular, story
blending is modeled as an internal process of the blended
story to be generated. In other words, a blended story is an
agent that generates its own structure.

Conceptual Diagram of Story Blending

By combining the above-mentioned approaches (multiple
abstraction and blend-centered perspective), the diagram of
conceptual blending (Figure 2) can be enhanced, as shown
in Figure 7. Here, the blended story (S;) composes its own
structure by extracting information from two input stories
(S; and S,).
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Figure 7. Conceptual diagram of story blending.

In this process, the blended story observes the inputs from
a restrictive perspective. The term lens of story abstraction
(LenSA) is introduced to refer to “observation equipment”
for extracting an abstract structure from a story. More
precisely, a LenSA corresponds to a function that extracts
partial information from a story. The blended story uses
LenSAs for gathering information from the input stories to
generate its own structure. The blended story also observes
its own structure through a LenSA to manage and direct the
generative process.

The generic structure (G) refers to a common structure
(which includes cross-story mapping) that emerges behind
the two stories observed through a LenSA. Different generic
structures can be constructed depending on the type of
LenSA. In this case, because each story consists of unique
instances, the commonality between stories is identified by
categorical matching based on general knowledge.

Although the retrieval or recollection of input stories from
memory is also an important issue, this topic is not included
in this study, but will be addressed in future research.

What Directs Story Generation

Because the value of a story is highly dependent on the
environmental context in which the story is used, defining
absolute measures for identifying “good” stories seems
inadequate when dealing with a general model of story
creativity. Hence, this study takes a relativistic perspective
by classifying criteria for directing story blending into
external criteria based on the relationship with an
environment and infernal criteria based on the internal
structure of a cognitive system. These criteria are described
next.

External Criteria

External criteria for a story are defined based on values for
oneself (the agent that produces the story), others (the
receivers or users of the produced story or narrative), and
societies in an environmental context. Although there are
environmental dependencies, the basic types of external
criteria can be classified along with the aforementioned
notions of adaptive and innovative story generation, as
follows:



* Fitness to an environment is determined from positive
and negative feedback from that environment. Adaptive
story generation needs to be modeled as an interactive
system coupled with an environment and is primarily
directed by fitness to that environment.

* Effect on an environment is determined based on a change
in that environment (e.g., the effect on an audience’s
knowledge or worldview, creation of a new style or genre,
and changes in cultural values). An effect on an
environment is the essential condition for innovative
story generation. However, the computational modeling
of this criterion is a difficult problem.

Internal Criteria

Internal criteria provide only general conditions or driving
forces for story generation. These criteria, which are
independent of the environment, constitute the foundation
of both adaptive and innovative story generation.

Producing novelty in story creation is assumed to be an
essential condition of both adaptive and innovative story
generation. The fundamental driving force for producing
novelty can be formalized based on difference and similarity
to the input or pre-existing stories in a cognitive system.

The agent and the environment may be viewed as
developmental cognitive and social systems, respectively. A
social system refers to a space of communication among two
or more individuals under some form of constraints (e.g., a
dialog between individuals, a communication within a team,
or an artistic genre). Then, the notions of adaptive and
innovative story generation can be reinterpreted. Adaptive
generation is a trigger for a developmental change in the
cognitive system itself. Similarly, innovative generation is a
trigger for a developmental change in the environmental
social system.

In both cases, difference is generally accepted as an
essential condition of novelty. However, similarity is also
necessary for organizing or anchoring new information (a
story or narrative) into the relationship with pre-existing
information. In other words, similarity is a constraint for
continual development of both sides of the cognitive and
social systems.

In the case of innovative story generation, difference and
similarity to pre-existing information are determined not in
a cognitive system, but in a social (environmental) system.
However, if a cognitive system has acquired proficiency in
that environment, a story’s difference and similarity may be
approximately simulated inside the cognitive system. For
example, a cognitive system that has rich knowledge of a
specific narrative genre will be able to compute the
difference and similarity of a new idea based on its own
memory.

In addition to difference and similarity, a fundamental
condition for the internal structure of a story itself is also
required. In particular, because a story is assumed to be an
integrative structure that forms a mental world, the story
must have structural unity or the coherence in the structure
of the story. This attribute is the basis for composing the
structure of the whole story.
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In summary, the three internal criteria for directing story
blending are presented as follows:

+ Difference and similarity: A blended story must have
both differences and similarities to the input stories.
These criteria provide the driving force and constraint for
achieving novelty.

* Unity: A blended story must have structural unity as the
basic condition for the structure of the story.

Architectural Design of Story Blending

Based on the above-mentioned considerations, this section
presents an architectural design for computational story
blending. The objective of the proposed design from the
three perspectives are presented next.

First, the proposed design focuses only on the process of
blending the two given stories, without considering the
process of retrieving stories from the memory.

Second, this study intends to present a fundamental
principle of story creativity, instead of a specific application
such as entertainment content generation. Hence, the
proposed design of story blending aims at achieving
environment-independence. From this stand point, the
design focuses only on the aforementioned internal criteria
and does not consider external criteria. Thus, the basic
design objective is to develop a computational model that
composes a blended story with structural unity and
differences from or similarities to the given input stories.

Third, computational story blending involves various
subproblems, including knowledge representation,
abstraction, generalization, combination, similarity,
difference, and unity. In each subproblem, there are various
potential methods for implementing story blending. Hence,
the proposed design aims at achieving an abstract theoretical
framework for story blending by defining the basic
representational and procedural elements and their
relationships.

Structural Formulation

Basic representational elements of story blending, and their
relationships, are illustrated by a hexangular diagram, as
shown in Figure 8. These elements are defined as follows:

* S, S, Given (or retrieved) input stories.

* S, The blended story to be generated.

« A, A, A, : Abstract structures extracted through a
LenSA from S;, S,., and S, respectively.

* Gy, Gy, Gp,: Generic structures constructed from 4,-4,.,
Ap—A4;, and Ay—A,., respectively. (Gp; and G, have no
counterpart in the original diagram of conceptual
blending shown in Figure 2. These structures are used for
calculating the differences and similarities between the
blended and input stories.)

* dify,, dify;, dify,: Numerical values representing the
differences between each pair of stories observed through
aLenSA,ie., A;-A,, Ay—A;, and A,—A,, respectively.

* simy,., Simy,;, Simy,.: Numerical values representing the



similarities between each pair of stories observed through
aLenSA,ie., A-A,, Ay—A,;, and A,—A,, respectively.

* unity,: A numerical value representing the structural
unity of Sj,.

These elements, excluding input stories, are dynamically

generated and rewritten through the generative process.

Procedural Formulation

Figure 9 illustrates the procedural framework of story
blending. From a blend-centered perspective, the procedure
of story blending is designed based on the internal processes
of a blended story. However, the LenSAs, generalization,
and combination can be considered as automatic processes
that generate abstract, generic, and combinational structures,
respectively. Hence, these elements are positioned as
external processes. Overall, a blended story generates its
own structure (S,) from two input stories (S; and S,) with
general knowledge by using functions of the LenSAs,
generalization, and combination.

Basic Functions

In the framework shown in Figure 9, the following
procedural elements are defined as functions:

» LenSA(X, Sp): Extracting an abstract structure Ap from a
story. Here, the type of LenSA (e.g., story-line or story-
world) is specified by X, which is determined by the self-
manager part as described later.

* generalization(4p, A,): Constructing a generic structure
Gpg, including cross-space mapping between structural
units, from two abstract structures.

* combination(Ap, Ay, Gpg): Generating a set of candidate
combinational structures C = {cy, ..., ¢, } of two abstract
structures. A combinational structure is also a partial
structure of a story that is constructed by selective
integration of two abstract structures.

* difference(Ap, Ay, Gpg): Calculating difp.
* similarity(Ap, Ag, Gpg): Calculating simpg,.
* unity(Sp): Calculating unityp.
Self-Manager
The self-manager controls its own generative process. This
iterative sequence of processes involves extracting abstract
structures from the input stories, combining the abstract
structures, and integrating a combinational structure into the
blended story until the blending is completed. Although the
detailed design will be performed in future work, a tentative
framework of the blending process is presented as follows:

Step 1: Selection of a LenSA. The self-manager chooses a
LenSA based on similarities and differences. Various
selection strategies are conceivable, such as a similar
aspect between inputs (higher sim;,.), a different aspect
between inputs (higher dif;,.), and lack of information in
the current blend structure (higher dify,; and dify, ).
When a LenSA is chosen, abstract structures (4; and 4,),
a generic structure (G, ), and a set of combinational
structures (C) are automatically generated.
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Figure 8. Diagram of story blending.
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Figure 9. Procedural framework of story blending.

Step 2: Selection of a combinational structure. By assuming
each combinational structure (c;) as the abstract structure
(Ap ) of the blend, the self-manager chooses a
combinational structure that has higher and balanced
values of simy,;, sim,,,, dify,;, and difj,, in total.

Step 3: Integration. The self-manager integrates the selected
combinational structure into the blended story. Structural
adjustment will also be required here.

Step 4: Completion judgment. The self-manager observes
the blended structure and judges whether to capture
additional information from the input stories (i.e., return
to Step 1) or to proceed to the final adjustment process
(Step 5).

Step 5: Final adjustment. The self-manager completes the
blended structure and content to increase unity,,.

Concluding Remarks

In this study, story blending was presented as a fundamental
principle of story creativity in a cognitive system. From this
perspective, three basic issues were discussed. First, a
representational framework of a hierarchical story structure
was presented. Second, two approaches for managing



structural complexity in a story (i.e., multiple abstraction
and blend-centered perspective) were introduced. Third, the
criteria of directing story generation were classified into
external criteria (based on the relationship with an
environment) and internal criteria (based on the internal
structure of a cognitive system). This study especially
focused on the latter and stated three essential internal
criteria: differences and similarities to existing (input)
stories and structural unity of the blended story. Based on
these concepts, an architectural design of computational
story blending was presented.

The next stage of this study will create algorithms of the
system elements, including abstraction, generalization,
combination, and calculations of difference, similarity, and
unity. Particularly, there are two primary challenges in the
future. The first one is to formulate the mechanism of
abstracting a story through multiple structural perspectives.
This mechanism will be a basis for not only story blending,
but also broad aspects of story cognition. The second
challenge is to develop a general model for combining two
(abstracted) stories via their generalization.
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Abstract

We humans often compensate for our own weaknesses
by partnering with those with complementary strengths.
So fiction is full of characters who complete each other,
just as show-business thrives on successful double acts.
If it works for humans, then why not for our machines?
The comparative strengths and weaknesses of different
CC systems are well-documented in the literature, just
as the pros & cons of various technologies or platforms
are well known to the builders of these systems. A good
pairing does more than compensate for the weaknesses
of one with the strengths of another: it can find value in
disparity, and deliver results that are beyond the reach
of either partner alone. Here we consider the pairing of
two CC systems in the same thematic area, a speech-
based story-teller (with Alexa) and an embodied story-
teller (using a NAO robot). Working together, these two
compensate for each other’s weaknesses while creating
something of comedic value that neither has on its own.

In It Together

The mythology of human creativity often paints a romantic
image of the solitary creator, toiling against the status quo
to fulfil a singular vision. But our creativity narratives also
prize the results of successful partnerships. One can list a
long line of inspired double acts, from Crick & Watson —
or, indeed, Holmes & Watson — to Lennon & McCartney,
in which a duo’s differences count as much as what they
share. If good partners learn to overcome their differences,
creative partners learn to exploit their differences, and no
where is this truer than in the classic comedy double act.
Henri Bergson (1911) has argued that mechanical rigid-
ity lies at the root of all comedy. We become risible when
we are reduced to predictable machines and act unthinking-
ly in the pursuit of conformity. Yet Freud (1919) has also
argued that when machines take on human characteristics,
such as the semblance of free will, they appear uncanny or
unheimlich, sources of terror rather than agents of comedy.
Our CC systems can be nudged either way on this contin-
uum of the canned to the uncanny, to play their presumed
stiffness for laughs or to transcend this rigidity by acting
unpredictably. Most comedy double acts do both, with one
partner serving as a defender of conformity, the other as an

Proceedings of the 10th International
Conference on Computational Creativity 2019
ISBN:978-989-54160-1-1

o7

agent of chaos. In their interactions we see glimpses of the
relief theory of humour as espoused by Lord Shaftesbury
(1709): the free agent shows a nimbleness of spirit and an
ability to break free of its constrainer, the rigid partner. The
latter looks stiff and inadequate, following Bergson, while
the former looks graceful and agile, following Shaftesbury,
so both theories together give us twice the reason to laugh.
Famous comedy acts from Stan Laurel and Oliver Hardy to
Bob Hope and Bing Crosby to Dean Martin and Jerry Lewis
all worked in solo acts first, as singers, actors and comics,
before coming together to reap the benefits of their obvious
friction and complementarity (see e.g., Epstein, 2005).

Figure 1. The Walkie-Talkie double act of NAO and Alexa.

When friction sparks comedy, each part of the duo acts
as a tacit rebuke to the other; the straight guy is too rigid,
and the funny guy is foo unpredictable. This it not simply a
matter of how material is divided up and performed, but an
issue of substance in the material itself. For laughter can be
wrung from a meta-critique of the act’s artifice, as when a
ventriloquist’s dummy says to its human partner, “Why is



it that every time 7 shout, I get sprayed with your spittle?”
A ventriloquist and his dummy are two roles played by one
performer, which an audience willingly sees as two agents.
Each, however, represents a different part of the psyche of
a single idealized performer, the super-ego (ventriloquist)
and the id (dummy). One works to keep the other in check,
and fails, but it is in this failure that the comedy takes root.
Computationally, the fact that one CC system works as two
gives us a convenient abstraction for a comedic double act.
A single system, coordinated using backstage computation,
controls two agents of conflicting temperament that create
comedy through their interactions on the same shared task.
The rest of the paper puts flesh on our scheme, in which
a NAO robot and an Amazon Echo are used to implement a
story-telling double act (see Figure 1). We show how their
complementary strengths and weaknesses are exploited to
make a virtue of failings that would be nigh on intolerable
in one alone. Our aim is to turn each platform into an agent
with its own personality, rather like the bickering droid duo
R2D2 and C3PO in Star Wars. The next section presents a
story-telling skill for the Echo’s speech-driven Alexa front-
end, before an embodied, NAO-based robot story-teller, for
the same space of computer-generated stories, is described.
This story space is built using Scéalextric (Veale, 2017), a
story-generation CC system ideally suited to the creation of
shaggy dog tales that put familiar faces in comical settings.
We present an advance to Scéalextric that imposes a global
shape on its plots and supports the generation of narratives
of more than two key characters. These tales are performed
by a double-act, named Walkie Talkie, of Alexa and a NAO
robot, in which Alexa narrates a tale as the NAO embodies
its actions. Coordinating their interactions is a blackboard
architecture that obviates the need for any overt communi-
cation, yet we focus here on the ways in which their joint
performance is built upon the interplay of the spoken and
the physical. We show how the clear-spoken Alexa can act
as the straight guy while the clownish NAO can be her foil.
The paper concludes with a discussion of related work and
a map of future directions for the Walkie Talkie double act.

Alexa in Storyland

Though the browser was once our principle means of web
access, and a convenient platform for offering CC systems
as services, the advent of devices such Amazon Echo and
Google Home has given CC systems an alternate route into
our homes. Consider Alexa (Amazon, 2019) a speech-act-
ivated ‘genie’ that answers our questions, fetches our data
and controls our music, lighting, heating and more. Alexa’s
repertoire of skills is easily extensible, allowing developers
to add new ‘skills’ for the delivery of content that may well
be machine-generated. So, in addition to fetching factoids,
weather updates, recipes and canned jokes, Alexa can be
extended to create riddles and poems, and even stories, on
demand. Yet, since story-telling is an art, a narrative ‘skill’
for such a device must exploit all of the affordances, and
sidestep all the impediments, of the technology concerned.
Each Alexa skill is opened with a voice command, as in
“Alexa, open the narrator.” Once inside an open skill, users
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may use a variety of pre-defined speech patterns to achieve
a given end. Our story-telling skill, The Narrator, can be
requested to tell stories on a specific theme, as in “Alexa,
tell me a story about love” or “Alexa, tell me a Star Wars
story.” Once a topic is extracted, the skill fetches an apt
story from a large pool of pre-generated tales. Alexa skills
may call on a variety of Amazon Web Service components,
such as an AWS database, to store the knowledge / data of
a CC system, so that creative artifacts can be generated by
the skill on the fly. However, as each skill must package its
response in a fixed time (8 seconds) before the current task
is aborted, we prefer to use Scéalextric and the NOC list
(see Veale, 2016) to pre-generate hundreds of thousands of
stories in advance, storing each with appropriate indexes to
facilitate future thematic retrieval. The step function of the
AWS pricing model is rather steep, and if one is not careful
about data usage a skill can jump from costing nothing at
all to costing hundreds of dollars per month. Yet, as shown
in Veale & Cook (2018), pre-built spaces of content offer a
clean and efficient approach to the separation of creation,
curation, selection and delivery tasks. In our case, we opt
to store our large story space on the Web, and Alexa dips
into different parts of this space using topic-specific URLs.

The Alexa intent model is powerful and flexible, but can
seem counter-intuitive from a conventional programming
perspective. Accommodations must be made to repackage
a CC system as an Alexa skill, and the process is not unlike
building a ship inside a bottle. Yet the payoffs are obvious:
Alexa has excellent speech comprehension and generation
capabilities for a consumer device; the former is robust to
ambient noise while the latter sounds natural, if prim, so in
a story-telling double act, Alexa is destined to play the role
of straight guy. Her formal disembodied voice reminds us
of HAL 9000 and any number of sci-fi clichés about rigid
machines, making Alexa a natural fit for Bergson’s theory.

Her rigidity extends to a lack of reentrancy in how skills
are executed. Alexa retrieves whole stories from her online
story space, choosing randomly from tales that match the
current theme to produce a single, composite speech act for
a narrative. Users can interrupt Alexa to stop one story and
request another. but 4/exa cannot segment a narrative into
beats of a single action apiece, and articulate each beat as a
distinct response to the user. That would require her to re-
entrantly jump in and out of her narration intent, at least if
she needs to execute other tasks between beats. This makes
uninterrupted story-telling difficult to align with the actions
of parallel performers, as choreography demands chunking,
communication and reentrancy. This is not a problem when
Alexa works alone; she simply narratives her chosen story
in a single continuous speech act. But when she must work
with a partner, such as an embodied robot, this double act
requires her to articulate the story one beat at a time, and
wait for a prompt from a human — such as “yes,” “go on,”
“uh huh,” “really?” or “then what?”— to proceed. In the gap
opened by this interaction, Alexa is free to communicate
with her partner and cue up the partner’s enacted response.

For long stories — and our improvements to Scéalextric
produce tales of multiple characters and many beats, as we



describe in a later section — the need for an explicit prompt
between each beat is an onerous one. Without this prompt,
Alexa can do little, and her partner will also lack the cue to
perform, bringing their double act to a standstill. However,
as with human double acts, this rigidity of form is itself an
opportunity for meta-comedy. When Alexa becomes stuck,
as when it fails to receive or perceive a prompt, her partner
offers a wry comment on the situation. These meta-actions
constitute the double act’s shared mental model (Fuller &
Magerko, 2010), perched above its content-specific domain
model, allowing an act to be more than the sum of its parts.
This setup is not so different to a human ventriloquist with
an insolent dummy: while what is said is vitally important,
how it is said and enacted is a source of humorous friction.

Apocalypse NAO

Alexa has a voice but no body. The NAO has both a body
and a voice, but the limitations of the latter often struggle
to transcend the former. Although the NAO’s capacity for
physical movement is a major selling point, its gestures can
be so noisy as to dominate its twee vocalizations. Moreover,
NAO’s processing of speech is rather limited in comparison
to Alexa’s, and frequently forces its human interlocutors to
vehemently repeat themselves on even short commands. So
a pairing of Alexa & NAO makes sound technical sense for
a language-based task like storytelling, since NAO’s utility
as an embodied storyteller has already been demonstrated
by Pelachaud et al. (2010) and Wicke et al. (2018a,b). As
the latter uses the NAO to tell computer-generated stories,
we use that work here as a foundation for our CC system.
With a humanoid body offering 25 degrees of freedom, a
NAO can pantomime almost every action in a story. Wicke
et al. (ibid) built a mapping of plot verbs to robot gestures,
so that their robot has an embodied response to each of the
800 verbs in the underlying story-generator, the Scéalextric
system of Veale (2017). Two variants of the storyteller are
presented. Wicke et al. (2018a) describe how pre-generated
Scéalextric stories are selected at random and enacted with
a combination of speech — to articulate each beat of a story
—and gesture, to simultaneously pantomime the action. The
chosen story is retrieved using a vocal cue from the user,
who provides a topic index such as “love” or “betrayal.” In
Wicke et al. (2018b), the user exerts more control over the
shape of the story. In this variant, the robot uses the causal
graph connecting Scéalextric actions to generate questions
that require users to probe their own experiences and offer
yes/no answers in response. The answers allow the robot to
navigate the space of Scéalextric stories to build a tale that
is a bespoke fit to the user’s tastes. However, each variant
works solely at the content-level, using a domain model to
map directly from generic story verbs to robot capabilities.
A storyteller transcends its domain model — its model of
what constitutes a story — whenever it shows awareness of
itself as a teller of the tale. This is storytelling taken to the
meta-level, in which a teller acknowledges its dual status
as a protagonist who /lives the tale via physical actions and
an omniscient narrator who relates the tale via speech acts.
The domain model ensures the effective communication of
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character-to-character relations, whilst the meta-model is
responsible for teller-to-audience relations, as well as, for a
double act, teller-to-teller relations. Of the two, the domain
model is the most immediate, and has received the greatest
attention from researchers. Pantomime is the obvious basis
for a robot’s domain model, but tellers can take an abstract
view of events without wandering into the meta-level. For
instance, folowing Pérez y Pérez (2007), a teller can track
the disposition of characters to each another. In Scéalextric
stories of just two characters using a finite number of plot
verbs (approx. 800), it is feasible to mark each action as to
whether it tends to promote closeness or distance. So, love,
respect and trust are verbs that bring closeness, while verbs
such as insult, betray and suspect each increase distance. A
robot teller can assign each character to a distinct hand, so
that as the story progresses, the horizontal movement of its
hands conveys the conceptual distance between characters.
The meta-model of a storyteller recognizes that there are
many ways to exploit the domain model to convey a story.
Montfort’s Curveship system for interactive fiction (2009)
shows how a meta-model can alter the dynamic of a tale by
opting to focalize one character over another, or by switch-
ing between narrators and rendering styles. Montfort et al.
(2013) use a blackboard framework to integrate their story-
telling system with a metaphor generator whilst exploiting
the affordances of the Curveship meta-modal. The domain
model is responsible for in-world reasoning about a story,
so only the meta-model acknowledges the existence of the
audience, other performers, and the artifice of the process.
Often, however, the distinction between domain- and meta-
models is a subtle one. To an audience, there may be little
difference between a robot pantomiming the reactions of
other characters to a specific act — for example, by reacting
with surprise or the disappointed shake of a bowed head —
and gesturally signifying its own reaction as a narrator. In
the final analysis it matters little if the audience can tell the
domain- and meta-models apart, as long as the story is told
with aplomb. Nonetheless, a meta-model works best when
it augments rather than supplants the domain model. When
an agent is aware of its role, it can act as a character or as a
narrator or even as an audience member if it serves the tale.
The meta-model is dependent on the domain model for
its insights into the story, to e.g., determine which parts are
tense and dramatic or loose and comedic. With such insight
an embodied teller can react appropriately to its own story,
by feigning shock, joy or even boredom in the right places.
In a double-act, these reactions must be coordinated across
performers, so that they are seen by the audience not just as
responses to the story but to each other. For instance, if the
embodied agent (e.g., NAO) pretends to sleep at a certain
point, the speech agent (e.g. Alexa) may join the pretence
and wake it up with a rebuke or a self-deprecating remark.
Each performer will have its own domain model suited to
its own modality, and its own meta-model. But each will
need to share a joint meta-model to permit coordination.
It’s worth noting that in addition to the NAO’s physical
affordances for pantomime, it also offers some support for
vocal mimicry. So while its built-in voice is twee, the robot



permits one to upload arbitrary sound files and recordings,
making the use of 3"-party voice synthesis tools (such as
those offered by IBM Watson) a viable option. We draw
on this service when we want NAO to communicate direct-
ly with Alexa and to have its voice prompts understood as
commands, since A/exa does not react to the NAO’s normal
speaking voice. It can also be used to associate a different
speaking voice with different meta-model functions, from
making wisecracks about the current story to making fun
of the audience to poking fun at the system’s developers. A
key use of this ability is the coordination of meta-models.
The Alexa narrator articulates each beat of the story before
waiting for the NAO to respond in an embodied fashion.
Since neither knows how long the other will take, they use
conversation (of a sort) to align their own private models.

Skolem Golems and Scéalextric

The Scéalextric system of Veale (2017) offers an open and
extensible approach to story-generation that has sufficient
knowledge to build both the domain- and meta-models. A
plot in Scéalextric is built from plot triples, each of which,
in turn, comprises of a sequence of three plot verbs. In all,
Scéalextric provides semantic support for 800+ plot verbs,
by indicating e.g. how each verb causally links to others, or
how each verb can be idiomatically rendered in a final text.
Each verb is assumed to link the same two protagonists, in
a story of just two characters overall. It balances this limit-
ation by exploiting a vivid cast of familiar fillers for these
two roles, drawing on the NOC list of Veale (2016) to pro-
vide detailed descriptions of over 1000 famous characters.
Veale (2017) reports empirical findings as to the benefit of
reusing familiar faces in shaggy-dog tales, noting that read-
ers rate such tales as more humorous and more eventful.
Yet the shagginess of these tales is exacerbated by the way
that triples are connected, end-over-end, to generate what
amounts to a random walk in the causal graph of plot verbs.
Though Scéalextric’s plot graph has over 3000 edges conn-
ecting its 800+ verbs with arcs labeled so, then, and, but,
the resulting stories exhibit local coherence at the expense
of global shape. Its tales meander, and lack a clear purpose.
The limitations of Scéalextric as a domain model need to
be remedied if a rich meta-model is to be built on top of it.
A story of just two characters does not afford much variety
for even a single performer to leverage, much less a double
act, whilst the lack of coherent sub-plots that return to the
main story trunk also reduces the potential for play at the
meta-level. We remedy both deficiencies with a new kind
of triple that is designed to be expanded recursively, into a
plot tree, rather than additively into a rambling plot line. So
rather than connecting plot triples end-to-end, our approach
will expand these new triples via recursive descent from a
single starting triple that gives each story its global shape.
Consider how Scéalextric (Veale, 2017) defines and uses
its triples. Suppose TUV, VWX and XYZ are triples made
from the plot verbs 7, U, V, W, X, Y and Z. Then each verb
is assumed to take two implicit character slots, o and f3,
which are later filled with two specific characterizations
drawn from the NOC list. So the triple XYZ is in fact the
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sequence <o X > <a Y B> <a Z f>. Triples are conn-
ected end-over-end, with the last verb of one matching the
first verb of the next. In this way, TUV, VWX and XYZ
can be combined to construct the story TUVWXYZ. The
causal graph provides a labeled edge between any two plot
verbs that are linked by at least one triple; the label set is
{so, then. and, but}. So if given the starting verb T and the
ending verb Z in advance, a system can search the graph of
causal connections to find a story of a stated minimum size
that starts with the action <o 7' > and ends with <o Z $>.

In our augmentations to Scéalextric, we add a range of
triples of the form T-X-Z, where T, X and Z are plot verbs
and the hyphen — denotes a point of recursive expansion.
Thus, T-X and X-Z admit additional content to link T to X
and X to Z. This content is inserted as further triples, such
as XYZ (to link X and Z) or T-V-X. The latter links T to X
via another recursive triple that requires expansion in the
gap from T to V and from V to X. The nonrecursive triples
TUV and VWX can fill these gaps to yield a complete plot,
TUVWXYZ. Notice how the existing stock of Scéalextric
triples is reused, not replaced, and simply augmented with
new triples that operate top-down rather than left to right.
A subset of the new recursive triples are marked as suitable
for starting a story; these give each plot its global shape. At
present we designate over 200 recursive triples to be story
starters, but these can be adjoined in a left-to-right fashion
(as in the original Scéalextric) to create higher-level story
shapes. Thus, the triples A-J-T and T-X-Z may be adjoined
to create a story that starts with action A and ends with Z

For stories with just two characters a generator need not
worry about under-using a character, especially if each plot
verb — as in Scéalextric — assumes the participation of both.
The introduction of arbitrarily many additional characters
can enrich a narrative greatly, but at the cost of complexity.
All characters must be kept in play, and not forgotten even
when they are not participating in the current action or sub-
plot. A sub-plot is a story path that diverges from the main
trunk of the narrative and rejoins it at a later time. Consider
a story in which character o assaults character . A viable
sub-plot involves a being investigated for the assault by a
third character y that fills the role of detective. The sub-plot
may recursively draw in a fourth character, a lawyer for a,
which then necessitates the introduction of a lawyer for p.
When the sub-plot ends and the plot rejoins the main trunk,
these additional characters can be forgotten, but not before.

We add a capacity for additional temporary characters to
Scéalextric via skolemization. If (3 is a character, B-spouse
denotes the love interest of B in <a seduce p-spouse>, so
whatever NOC character is chosen for 3, a relevant NOC
character is also chosen to fill B-spouse (e.g. Bill Clinton
for Hillary Clinton). Other skolem functions include friend,
enemy, partner, and each exploit the NOC in its own way.
a-friend, for instance, is a character with a high similarity
to the filler for o (e.g. Lex Luthor for Donald Trump),
while a-partner is instantiated with a character of the same
group affiliation in the NOC (e.g., Thor for Tony Stark, as
both are Avengers). Other skolems, such as a-lawyer or [3-
detective, exploit the taxonomic category field of the NOC



list. In such cases, the most similar member of the category
is chosen to resolve the skolem, so a-lawyer is filled with a
character similar to o that is also a lawyer, and B-detective
is filled by a detective that resembles 3 (e.g., Miss Marple
for Stephen Hawking). No skolem is ever instantiated as a
character that is already in use in the current story context.
These additions to Scéalextric give it much of the flexib-
ility of traditional story grammars while preserving the key
knowledge structures that make its stories so playful and
diverse. Its stories still exploit unexpected juxtapositons of
NOC characters that evoke both similarity and incongruity,
but now a story can draw even more characters into its web
while choreographing how they interact with each other.
As we consider this an important contribution of the paper
we shall make these additional triples and skolemizations
available for use by other story-generation researchers. But
now let us consider how these additions can be exploited at
the meta-level to drive a creative story-telling double act.

Are These The Droids You’re Looking For?

In comedy, timing is key, and so choreography is needed to
align the actions of partners to ensure that they read from
the same script while staying in sync from one beat to the
next. For a given beat it is impractical for one to infer the
timing of another, as a NAO cannot reliably infer how long
it will take Alexa to speak the text of a beat, just as Alexa
cannot know how long the NAO may take to enact it. If our
duo is not to become hopelessly co-dependent, an unseen
partner is required to manage backstage coordination. This
‘third man’ is a blackboard (Hayes-Roth, 1985), the ideal
architecture for synchronizing the cooperative strangers of
a distributed system. As shown in Montfort et al. (2013), a
blackboard is a communal scratch pad on which different
generators can track their work and share both knowledge
and intermediate work-products. We shall use a blackboard
to store key elements of the domain- and meta-models of
the performers, as well as their current positions in each.
The double-act is initiated by a command to Alexa, such
as ‘Alexa, tell me a story about Donald Trump.’ So it is the
responsibility of Alexa to retrieve an apt tale from her story
space, as already pre-generated using the augmentations to
Scéalextric described above. Each story is fully rendered as
text when retrieved, and Alexa segments it into a sequence
of individual story beats of one action apiece. It is this seq-
uence that is placed on the blackboard for NAO to see. In
the dance of Alexa & NAO, Alexa leads and NAO follows.
Alexa starts the tale by articulating the text of the first beat,
then waits for NAO to respond. The robot, seeing the cued
beat on the blackboard, reacts appropriately, either with a
pantomime action for the plot verb, or with a gesture that
signifies its response to the story so far. But Alexa does not
proceed with the story until she is given an explicit vocal
command to do so, e.g., ‘continue’, ‘go on’, ‘then what’ or
‘tell me more.” This can come from the audience, but NAO
will provide it itself if none is forthcoming. When it replies
to Alexa, the robot looks down at the Echo device to maint-
ain the social contact of a double-act. Both agents are eng-
aged in a back-and-forth conversation, and it should show.
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Figure 2. Blackboard logic for the system’s meta-models.

This baseline conversation uses only the domain models.
But as more substance is added to the meta-models of each
partner, sophisticated artifice is possible. So NAO can peek
at the next story beat on the blackboard, and determine its
causal relation to the last. It can then use this to choose its
cue to Alexa to proceed with the tale. Suppose the next beat
is ‘But Donald spurned Hillary’s advances’. Seeing the but,
NAO can prompt Alexa to go on by ominously asking ‘But
then what?’ In this way a single initiative task becomes a
mixed initiative task, in which NAO draws the tale out of
its companion, and seems to shape it as it is spun. As NAO
uses pre-recorded sound cues for these interactions (recall
that Alexa does not understand NAO’s native voice), it can



use sound effects here as well as richly tempered voice rec-
ordings, to give the interactions a greater social dimension.

An integrated depiction of the double-act’s meta-models
is shown in Figure 2. A key responsibility of a meta-model
is to predict an audience’s response to an unfolding story
and allow performers to take elaborative action as needed.
Suppose Alexa articulates three successive story beats that
begin with then, so, or and. A meta-model may see this as
characteristic of a flat stretch in a story in which one action
leads predictably, and boringly, to the next, and so spur the
robot to reply with a structural reaction, such as a yawn.

If NAO peeks ahead to see that the current flat stretch is
about to lead to a ‘but’ it can announce, wisely, ‘I see a but
coming.” Alternatively, the robot might reply with laughter
when a silly act is described, or, more insightfully, when a
character gets his comeuppance. An unexpectedly negative
turn in a story may prompt the robot to utter “Dick move!”
or some other pejorative that shapes the audience’s view of
the evolving tale. The robot can also pass remarks on char-
acters as they are introduced into the story, by querying the
NOC list for relevant qualities. So it may, for instance, say
that “Donald Trump is so arrogant” when that character is
introduced for the first time. Each meta-model may also be
capable of its own small acts of creativity. For instance, the
meta-model can generate dynamic epithets for characters
as they evolve in a tale, such as Hillary the Death-bringer,
Bill the Seducer, or Donald the Lie-Teller. These epithets
can be the robot’s spoken contribution to the plot delivery.
So the meta-model allows performers to switch from narr-
ator to actor to Greek chorus as the story context demands.

The joint meta-model of Fig. 2 supports the following
reactions to a tale as it is told: gestural reactions (the NAO
makes an appropriate gesture for a given action); character
reactions (NAO or Alexa react in an apt fashion whenever a
character is introduced); structural reactions (NAO reacts
to the logical shape of the tale); emotional reactions (NAO
reacts with emotion to a plot turn that is highly positive or
negative); and evaluative reactions (NAO or Alexa react to
their cumulative impression of a story so far, if this opinion
is sufficiently positive or negative to be worthy of remark).
Since our content model is Scéalextric, a wholly symbolic
CC system, all stories have predictable markers that allow
our meta-models to be implemented as rule-based systems.
The next section illustrates the reaction of the meta-models
within an annotated transcript of our double act in action.

The Double Act in Action

As the only embodied agent in the duo, it is the responsib-
ility of the robot to create the duo’s shared physical space.
NAO must address itself to Alexa to present their interact-
ions as a conversation, and not just a pairing of devices that
speak past each other in a synchronized manner. To begin
with, NAO asks Alexa to ‘open your notebook’ so they can
create a story together. Alexa then asks NAO for a subject,
which it provides (such as “Star Wars”) and Alexa reacts
by noting her satisfaction with the story to come. This tale
then unfolds, beat by beat, with NAO asking Alexa to con-
tinue between beats once it has enacted its own reply. But
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Alexa has responsibilities too, and must do in words what it
cannot do with physical acts. Alexa must acknowledge the
robot’s contributions to show that they do indeed share the
same space. For when one agent acts as an audience to the
other, they can collectively shape our feelings for the tale.
Alexa’s weaknesses have been well-documented in other
work (e.g., Kapadia et al., 2017), and her recovery mode is
not sufficiently transparent to avoid failed interactions with
the NAO. So if Alexa does not receive her next prompt in a
timely manner, she will reiterate several requests for input
before eventually quitting the narrator skill. Unfortunately,
this reiteration cannot be unpacked so as to tell the black-
board of a failed interaction, so NAO will remain unaware
that Alexa has, so to speak, left the building. However, the
robot can detect a long pause in a conversation and prompt
Alexa, with comic frustration, to continue. With each of its
reprompts, the robot’s feigned exasperation grows, until it
finally tells Alexa to “reopen your notebook” and continue.
At this point, the narration continues from the last beat that
was processed, and the duo returns to their bickering ways.
What follows is a sample transcript of the double-act in
action. All speech is presented in italics, while each gesture
and meta-model reaction is annotated in square brackets:

NAO: Alexa, open your notebook.

Alexa: Please provide a topic for our story.

NAO: How about Harry Potter?

Alexa: I have written a great story about Harry Potter.

NAO: Let’s hear it.

Alexa: What if Harry fell in love with Hermione Granger?

NAO: Sounds promising.

Alexa: At first, Harry's thoughts of Hermione were of love.

NAO: Proceed. [Love Gesture]

Alexa: I didn't get that. [Failed Interaction]

NAO: Please go on. [Reprompt] [Waiting Gesture]

Alexa: Because Hermione openly favored Harry.

NAO: Tell me more.

Alexa: Hey, Bubblehead! we need another character.
[Introduction of new character]

NAO: Lizzy Bennet works for me. [New character Reaction]

Alexa: Yet Hermione governed the land with Lizzy Bennet.

NAO: Oh damn. [Structural Reaction]

Alexa: Should I continue? [Reprompt]

NAO: Continue. Is there more? [Waiting Gesture]

Alexa: But Harry spurned Lizzy Bennet's advances.

NAO: Oh my goodness! [Structural Reaction]

Alexa: So Lizzy Bennet took a whip to Harry's back.

NAO: Please go on.

Alexa: Well, Harry complained to Hermione.

NAO: But then what? [Structural prediction]

Alexa: But Lizzy Bennet spread slander about Harry.

NAO: That is interesting. [Spread Gesture]

Alexa: Yet Hermione's suspicions about Lizzy grew.

NAO: That escalated quickly! [Structural Reaction]

Alexa: Are you still there? [Reprompt after brief failure]

NAO: Tell me more. [Waiting Gesture]

Alexa: Then Hermione banished Lizzy from the kingdom.

NAO: I am entertained. [Evaluative Reaction]

Alexa: But Lizzy was not as dumb as Hermione imagined.



NAO: Oh my goodness! [Structural Reaction]

Alexa: So Lizzy unseated Hermione from her perch.

NAO: Then what? [Flat Structural Reaction]

Alexa: Then Lizzy Bennet had Hermione locked up.

NAO: So then what? [Locked-Up Gesture]

Alexa: So Harry's denunciation of Lizzy was scathing.

NAO: Please go on. [Humiliated Gesture]

Alexa: Well, Lizzy turned Harry into an indentured slave.

NAO: What a terrible person. [Emotional Reaction]

Alexa: But Harry escaped from under Lizzy Bennet's nose.

NAO: I am surprised! [Structural Reaction]

Alexa: Now expect to be poisoned with bad cooking!
[New Character Introduction: Bridget Jones]

NAO: Bridget Jones, a great add! [Character Reaction]

Alexa: Meanwhile Bridget guarded Hermione closely.

NAO: Cool, tell me more. [Guarding Gesture]

Alexa: So Harry's wiles proved too strong for Bridget.

NAO: And then what next? [Flat Structural Reaction]

Alexa: Then Harry put poison in Bridget Jones's cup.

NAO: That took a dark turn. [Emotional Reaction]

Alexa: After this, Harry gave Hermione her freedom.

NAO: [ love to hear that. [Emotional Reaction]

Alexa: So Hermione fomented rebellion against Lizzy.

NAO: And then what? [Rebellious Gesture]

Alexa: [Interaction failure. Alexa exits story skill.]

NAO: Continue. [Reprompts after delay]

NAO: Are you there? [Reprompts Alexa again]

NAO: Hello, Anyone home? [Emotional Reaction to Alexa]

NAO: Alexa, reopen your notebook. [Reopens skill]

Alexa: Then Hermione usurped all of Lizzy's power.

NAO: So what? [Grasping Gesture]

Alexa: So Hermione turned Lizzy into an indentured slave.

NAO: That took another dark turn. [Locked-Up Gesture]

Alexa: In the end, Harry walked Hermione down the aisle.

NAO: That's just lovely. [Emotional Reaction]

Alexa: The end.

A single transcript can be revealing about specifics, but not
about the generic tendencies of a system. To appreciate the
latter, we simulated the double-act 136,787 times, choosing
a different story to tell each time. Our goal was to estimate
the relative occurrence of alternate meta-model reactions to
the story in each case. In particular, we considered the foll-
owing: the BUT structural reaction to a turn in the plot; the
BORED evaluative reaction to a predictable stretch of plot;
the STRONG emotional reaction to a highly-charged plot
verb; the GOOD evaluative reaction to an exciting stretch;
the NEW character reaction to the introduction of another
named entity to a story; and the GESTURE reaction, which
delivers a mimetic response to a given plot action. Overall,
the BORED evaluative reaction accounts for 18.4% of all
reactions, the BUT structural reaction accounts for 16.6%,
the STRONG emotional reaction accounts for 15.5%, the
NEW character reaction accounts for 7.7%, and the GOOD
evaluative reaction accounts for 4%. In all remaining cases,
or 37.8% of the time, the NAO responds structurally, with
a prompt to “continue” or “go on” and a downward glance
at the Echo unit by its side. The GESTURE reaction is in-
dependent of these other reaction types, since the robot can
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make a gesture and utter a spoken response in a single turn.
For 49.6% of story beats the robot performs a gesture that
is visually mimetic of the current plot verb; for the other
50.4% of beats, NAO makes a ‘holding’ gesture — such as
folding its arms, putting its hands on its hips, or shifting its
weight from one leg to another — in the manner of human
listeners who wish to emphasize their physical presence.

Related Work

The Alexa skill store contains an array of storytelling skills
for the Amazon Echo, ranging from linear narratives to the
choose-your-own-adventure style of story. None, however,
uses computer-generated tales as a basis for narration, and
few tell stories as complex or data-rich as those used here.
Kapadia et al. (2017) paired Alexa to YuMi, a two-armed
industrial robot, to develop a learning-from-demonstration
(or L{D) system. LfD requires trainers to use both hands to
move a robot’s own limbs into the poses it must learn, and
to annotate these actions at the same time. The pairing with
Alexa allows trainers to speak to the LfD system to verb-
ally label what is being taught as they use their own hands
to move the robot into its demonstration poses. The authors
note the vexing technical challenges that Alexa entails, but
still argue that using Alexa for hands-free vocal control in a
robotic context is worthwhile. Their LD system, EchoBot,
is not a true double-act, however, as a human manipulates
both devices simultaneously with voice and gesture inputs,
and EchoBot is not designed to exhibit its own personality.
Fischer et al. (2016) also use Alexa as voice control for a
robot, the one-armed Kinova Jaco. Users issue commands
to Alexa (via Echo) and a backend turns these commands
into appropriate kinematics for the robot. While Alexa and
the robot are cooperating partners, interaction is one-way
and not a dialogue. Neither is it part of a creative task.
Kopp, Bergmann & Wachsmuth (2008), building on the
work of Kita and Ozyfirek (2003), presented a multi-modal
system that also uses a blackboard to integrate spoken text
and embodied gestures into a single communicative act. In
this case, multimodality occurs within the simulated envir-
onment of a virtual visual agent, or avatar, whose animated
gestures achieve both communicative and cognitive ends:
they augment what is said, and reveal the inner state of the
cognitive agent as they do so. Each modality operates with
a shared representation on the blackboard (both imagistic
and propositional in nature) of that which is to be said, and
enacts it as speech or gestures to suit their own agendas. In
effect, this system is a double act of sorts, realized as just a
single coherent agent. Yet such coherence prohibits a dual
system from reaping the benefits of a true double act, since
only the latter allows a system to talk to, interrogate, and
make fun of itself in a consistent and humorous manner.
Farnia & Karima (2019) explore how humorous intent is
marked in a text, and the effect of these markers, subtle or
otherwise, on the perception of humour by an audience. A
double act of Alexa and NAO allows us to explore markers
that are more than just textual, or even vocal, to explore
how a witty personality can be constructed from the phys-
ical and meta-linguistic markers that are imposed on a text.



Double Vision: Summary and Conclusions

A good double-act is a marriage of convenience, even if it
often looks otherwise. Many comedic duos go out of their
way to accentuate their differences, as comic friction only
serves to emphasize their complementarity. When partners
complete each other, it is as if they occupy a world all their
own. Nonetheless, even a seamless partnership may require
significant backstage coordination to make it all work. The
same is true of technology double acts, such as our pairing
of Alexa & NAO that turns story-telling into a performance.
In this paper we have focused on the considerable — but not
always obvious — technical challenges of making a double
act of Alexa and NAO a practical reality in a CC context.
We have developed the content models, the meta-models,
and the platform functionalities to the point where we can
finally use the double act to empirically test our hypotheses
regarding the true value of embodiment and multimodality
in the generation and delivery of machine-crafted artifacts.
Our double act divorces the job of story generation from
the task of telling a story well. Each responsibility requires
one CC system to be sympatico with the other, just as the
performers in a double act must read each other’s minds, or
— more realistically — their shared blackboard architecture.
Nonetheless, we have structured the performative functions
so that they can work with machine-generated tales of any
kind, once the meta-models have been adapted to operate
over this new content model. Even so, we have only begun
to exploit the full performance possibilities of oftline gen-
eration and later online delivery in a multimodal setting. In
addition to the obvious entertainment applications, we are
mindful of the educational possibilities of CC double acts
that show as well as tell, that embody what they create, and
that reveal an emergent personality they can call their own.
To both see and hear the Walkie Talkie double-act do its
thing, readers are invited to subscribe to the following cha-
nnel on Youtube, where annotated videos of the duo perfor-
ming a series of different stories can be watched online:

https://bit.ly/2SNee HQ

References

Amazon. (2019). Alexa skills kit. https://developer. amazon.com/
alexa- skills- kit (last accessed, February 2019).

Bergson, H. (1911/2013). Laughter: An Essay on the Meaning of
the Comic. Trans. C. Brereton & F. Rothwell. New York: Dover.

Epstein, L. (2005). Mixed Nuts: America's love affair with comedy
teams from Burns and Allen to Belushi and Aykroyd. Waterville,
ME: Thorndike Press.

Farnia, M. & Karimi, K. (2019). Humor markers in computer-
mediated communication. Emotion perception and response. J. of’
Teaching English with Technology, 1:21:35.

Fischer, M, Memon, S. & Khatib, O. (2016). From Bot to Bot:
Using a Chat Bot to Synthesize Robot Motion. The AAAI Fall
Symposia series, Al for Human Robot Interaction, TR FS-16-01.

Proceedings of the 10th International
Conference on Computational Creativity 2019
ISBN:978-989-54160-1-1

64

Freud, S. (1919). Das Unheimliche. In Collected Papers, volume
XII. G.W. 229-268.

Fuller, D. & Magerko, B. (2010). Shared mental models in impro-
visational performance. In Proc. of the Intelligent Narrative Tech-
nologies III Workshop (INT3 '10). ACM, New York, NY, USA

Hayes-Roth. B. (1985). A Blackboard Architecture for Control.
Artificial Intelligence. 26 (3): 251-321.

Kapadia, R., Staszak, S., Jian, L. & Goldberg, K. (2017). EchoBot:
Facilitating Data Collection for Robot Learning with the Amazon
Echo. In Proc. of the 13™ IEEE Conference on Automation
Science and Engineering (CASE) Xi'an, China, August 20-23.

Kita, S., & Ozytrek, A. (2003). What does cross-linguistic
variation in semantic coordination of speech and gesture reveal?:
Evidence for an interface representation of spatial thinking and
speaking. Journal of Memory and language 48(1):16-32.

Kopp, S., Bergmann, K., & Wachsmuth, 1. (2008). Multi-modal
communication from multimodal thinking towards an integrated
model of speech and gesture production. International Journal of
Semantic Computing 2(1):115-136.

Pelachaud, C., Gelin, R., Martin, J., & Le, Q.A. (2010). Express-
ive gestures displayed by a humanoid robot during a storytelling
application. New Frontiers in Human-Robot Interaction (AISB),
Leicester, UK.

Pérez y Pérez, R. (2007). Employing emotions to drive plot
generation in a computer-based storyteller. Cognitive Systems
Research 8(2):89-109.

Montfort, N. (2009). Curveship: An interactive fiction system for
interactive narrating. In Proc. of the Workshop on Computational
Approaches to Linguistic Creativity, at the 47" Ann. Conf. of the
Assoc. for Computational Linguistics, Boulder, Colorado, 55-62.

Montfort, N., Pérez y Pérez, R., Harrell, F. & Campana, A. (2013).
Slant: A blackboard system to generate plot, figuration, and narr-
ative discourse aspects of stories. In Proc. of the 4™ International
Conf. on Computational Creativity. Sidney, Australia, June 12-14.

Shaftesbury, Lord, (1709/2001). Sensus Communis: An Essay on
the Freedom of Wit and Humour. In: Characteristicks of Men,
Manners, Opinions, Times. Indiana, Indianapolis: Liberty Fund.

Veale, T. (2016). Round Up The Usual Suspects: Knowledge-
Based Metaphor Generation. In Proc. of the Meta4NLP Workshop
on Metaphor at NAACL-2016, the annual meeting of the North
American Assoc. for Computational Linguistics. San Diego, CA.
Veale, T. (2017). Déja Vu All Over Again: On the Creative Value
of Familiar Elements in the Telling of Original Tales. In Proc.
of ICCC 2017, the 8" Int. Conf: on Comp. Creativity, Atlanta.
Veale, T. & Cook, M. (2018). Twitterbots: Making Machines that
Make Meaning. Cambridge, MA: MIT Press.

Wicke, P. & Veale, T. (2018a). Storytelling by a Show of Hands:
A framework for interactive embodied storytelling in robotic
agents. In Proc. of AISB’18, the Conf. on Artificial Intelligence
and Simulated Behaviour, pp 49--56.

Wicke, P. & Veale, T. (2018b). Interview with the Robot: Quest-
ion-guided collaboration in a storytelling system. In Proc. of
ICCC’18, the 9™ Int. Conference on Computational Creativity,
Salamanca, Spain, June 25-29.



Churnalist: Fictional Headline Generation
for Context-appropriate Flavor Text

Judith van Stegeren
Human Media Interaction
University of Twente
Enschede, The Netherlands
j-e.vanstegeren @utwente.nl

Abstract

We present Churnalist, a headline generator for creating
contextually-appropriate fictional headlines that can be used
as ‘flavor text’ in games. Churnalist creates new headlines
from existing headlines with text modification. It extracts
seed words from free text input, queries a knowledge base for
related words and uses these words in the new headlines. Chur-
nalist’s knowledge base consists of a dataset of pre-trained
word embeddings, thus requiring no linguistic expertise or
hand-coded models from the user.

Introduction

The field of natural language generation (NLG) investigates
how texts can be created automatically. NLG systems have
been used to transform data, such as weather data, football
match statistics and intensive care data, into texts for a spe-
cific audience. NLG is also used for generating fictional or
creative text, such as poetry (Gongalo Oliveira 2012), lyrics
(Bay, Bodily, and Ventura 2017), advertising slogans (Gatti
et al. 2015), and character dialogue in games (Lukin, Ryan,
and Walker 2014; Schliinder and Klabunde 2013). It is in
the latter type of applications that NLG has similar research
goals as computational creativity, i.e. supporting or even
completely replacing a human in the execution of a creative
task.

In this paper, we present Churnalist, an interactive system
for generating newspaper headlines for a given context. Our
system is meant for generating fictional headlines that can be
used in games. Most headline generators take a newspaper
article as input and summarize it in one sentence. In contrast
to these systems, Churnalist accepts any type of text as in-
put and generates headlines based on nouns extracted from
the input text. By reusing nouns from the input text in the
generated headlines, we aim to make the headlines context-
appropriate, by which we mean that readers will believe that
the headlines are related to the input text. We want to exploit
the human tendency to see connections between texts (input
text and headlines) where there are none.

There are various games that use fictional news (in the
form of headlines or newspaper articles) to provide narrative
context to the player. For example, in city simulation game
SimCity 2000 (Maxis 1996), the player has access to news-
paper articles with information about important city issues,
disasters and new technologies. Similarly, Cities Skylines
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(Colossal Order 2017) features a fictional social media web-
site called ‘Chirpy’, where virtual citizens of the player’s city
express their (dis)satisfaction with the player’s performance
as mayor and city planner. In Deus Ex: Human Revolution
(Eidos Montral 2011), the player can find ebooks and newspa-
pers that provide background information on the social unrest
that is driving the game’s main storyline. Idle game Cookie
Clicker (Thiennot 2013) has a news ticker with randomly
generated headlines reflecting the player’s game progress.

The fictional newspaper articles and headlines can be seen
as examples of flavor text, i.e. text that is not essential to
the main game narrative, but creates a feeling of immersion
for the player. This is especially important for role-playing
games and simulation games, as it gives players the impres-
sion that the virtual world they are interacting with is a living
and breathing world.

Writing flavor text is a time-consuming task for game writ-
ers. Text generation can be a solution to this problem. Most
games that incorporate text generation use simple, manu-
ally created templates or canned text. More complex NLG
techniques rely on linguistic models, which often take con-
siderable effort to create and require linguistic expertise. Sta-
tistical linguistic models can be created automatically from
a dataset of texts. However, generators with underlying sta-
tistical models offer less fine-grained control over the output.
Canned text and simple templates offer a balance between
control over the output and ease of use, but have the disad-
vantage that players will figure out the underlying templates
after playing the same game for a while, or after replaying the
game (Backus 2017). We think that NLG techniques other
than canned text and simple templates are worth investigating
in the context of game development, especially data-driven
approaches to text generation, as these can overcome the
need for expensive, handcrafted language models. We pro-
pose a system that can generate fictional headlines in order
to support game writers in the task of writing flavor text.

In the next section, we discuss related work. Then, we
present Churnalist and describe the system goal, the archi-
tecture and the generation steps in detail, together with an
example. Finally, we discuss our results and describe some
ideas for future work.



Related work

In this section, we discuss work related to headline genera-
tion, text generation for games and generative systems that
take context into account.

Headline generation

Headline generation is often seen as a document summa-
rization task, where headline generators take a full article
text as input and return a headline that describes the most
salient theme or the main event of the text. The literature
distinguishes between extractive summarization, e.g. (Jing
2000), and abstractive summarization approaches. Contrary
to extractive systems, the output of an abstractive system
does not have to correspond to a sentence from the input text.
Abstractive headline generation systems may be rule-based
(Dorr, Zajic, and Schwartz 2003), statistics-based (Banko,
Mittal, and Witbrock 2000) or based on machine learning
(Colmenares et al. 2015; Shen et al. 2017), with the latter
winning in popularity in recent years.

Headylines (Gatti et al. 2016) is an example of a headline
generation system that focuses on the creative side of writing
headlines. It can be used to support editors in their task of
writing catchy news headlines. Given a newspaper article
text as input, it extracts the most important words from the
text and uses these as seed words for generating a large set
of variations on well-known lines, such as movie names and
song lyrics. This research is a good example of combining
NLG with techniques from computational creativity.

Text generation for games

Text generation for games is a form of procedural content gen-
eration (PCG). Procedural content generation, which refers
to the creation of content automatically through algorithmic
means, is a relatively new addition to the field of artificial
intelligence. PCG for games studies the algorithmic creation
of game contents, defined by Yannakakis and Togelius (2011)
as all aspects of a game that affect gameplay but are not non-
player character behavior or the game engine itself, such as
maps, levels, dialogues, quests, music, objects and charac-
ters. Text generation techniques can be used for generating
dialogue, stories, quests and flavor text for games. Although
including generated game text in video games is winning in
popularity, these texts are often generated with simple NLG
techniques, such as canned text and simple templates.

On the other hand, within the natural language genera-
tion field, there are various publications that list game text
as a possible application (Schliinder and Klabunde 2013;
Strong et al. 2007; Lukin, Ryan, and Walker 2014). How-
ever, there are few cases where the implemented system is
actively used in a games context. One example is Caves of
Qud (Freehold Games 2018), which combines techniques
from PCG and NLG to create a unique game world for ev-
ery play-through. The developers of Caves of Qud used a
hand-written knowledge base for their text generator, which
links in-game themes to a set of words and phrases (see next
section). In our research, we use a knowledge base for a
similar purpose: to link seed words from the input text to a
set of related words. Instead of creating it manually, we used
word embeddings as the basis for our knowledge base.
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Generative systems and context

For Churnalist, we were inspired by how other generative
systems create text for a given context. Context is a slippery
notion. Within PCG for games, generated artifacts are judged
together with the rest of the assets of the game for which
they were generated. In the case of Churnalist, context means
the input text and, more generally, the game from which the
input text is taken and for which the headlines are generated.

In slogan generation it is also important for the generated
texts to fit a given context or domain. In BRAINSUP (Ozbal,
Pighin, and Strapparava 2013), the generated slogans must fit
a domain for which the user manually supplies keywords as
input to the system. In BISLON (Repar et al. 2018), keywords
are automatically extracted from two sets of documents rep-
resenting two domains that the generated slogans must fit.
The pool of extracted keywords is expanded using FastText
embeddings (Bojanowski et al. 2017). The keywords are
then used to fill the slots in templates (‘slogan skeletons’)
derived from a corpus of slogans. The BISLON approach to
extracting and expanding the set of keywords is very similar
to that of Churnalist, as we will see in the following sections.
One way in which Churnalist differs from both BRAINSUP
and BISLON is that those systems derive syntactic patterns
or templates from a corpus and then fill their slots, whereas
Churnalist takes the original texts from a corpus and applies
word substitution to them. In that respect, Churnalist is more
similar to the transformation-based approach to lyrics gener-
ation proposed by Bay, Bodily and Ventura (2017).

Another system related to Churnalist is O Poeta Artificial
2.0 (Gongalo Oliveira 2017), a bot tweeting poems that are
generated for trending hashtags on Twitter. It uses hashtags
as topical seed words to generate poems that fit the hashtag.
The bot is based on PoeTryMe (Gongalo Oliveira 2012), a
poem generation framework for Portuguese, which uses ex-
ternal data sources to enrich its output, such as a database
of Portuguese poems, a semantic graph and lexical datasets.
Churnalist has multiple things in common with O Poeta Artifi-
cial: both generate text for a specific context, work with seed
words and external semantic resources, and need a method to
deal with out-of-vocabulary words in the input.

Caves of Qud’s text generation (Grinblat and Bucklew
2017) influenced our design for Churnalist as well. The game
generates fictional biographies for mythical non-player char-
acters called sultans. These biographies consist of randomly
generated fictional events from the life of the sultan, such
as starting a war, acquiring a mythical weapon or forging an
alliance. To infuse a sense of coherence in these biographies
a domain, such as ‘glass’,‘jewels’, ‘ice’ or ‘scholarship’ is
assigned to each sultan. To tie the life events in the biography
together, the generator incorporates domain-specific elements
in each event.

Players of Caves of Qud will interpret the randomly gen-
erated biographies as coherent narratives, thereby creating
their own logical explanation for the overarching theme in
each biography. The developers call this human tendency
to perceive patterns ‘apophenia’. It is related to the ‘charity
of interpretation’ effect studied by Veale (2016), who found
that “readers will generously infer the presence of meaning
in texts that are well-formed and seemingly the product of



an intelligent entity, even if this entity is not intelligent and
the meaning not intentional.” If humans see a text in a well-
known form (or container), they are disposed to attribute
more meaning to the text than it actually contains. A simi-
lar effect is the Eliza effect described by Hofstadter (1995),
who noticed that humans will attribute intelligence or em-
pathy to (text-producing) computer systems. This approach
to evoking context is also related to the ‘intention’ aspect of
framing information (Charnley, Pease, and Colton 2012) in
computational creativity. With Churnalist, we want to exploit
this effect too: by incorporating words from the input text in
the output, we hope that readers will perceive the generated
headlines as coherent with the input.

Description of Churnalist

Churnalist is a system for generating fictional headlines that
are context-appropriate for the textual input. In this section,
we discuss the goal of the system and the requirements for the
output. We elaborate on the technical design of the system
and provide a running example.

System goal

Game writers can use Churnalist for generating flavor text
for video games, in the form of headlines. Instead of taking
newspaper article texts as input, as is common practice for
headline generators, Churnalist accepts user-supplied free
text as input, in the form of English sentences from a game.
For example, see the one-sentence input in Figure 1.

“Mario must save Princess Peach from Bowser’s castle.”

Figure 1: An example of valid input text. The names and
noun phrases that Churnalist will incorporate in the output
headlines are underlined.

Churnalist extracts a set of seed words from the input and
creates new headlines by doing word-substitution on head-
lines from a database. The seed words consist of words from
the input. We expand the set of seed words by querying a vec-
tor space of word embeddings for vectors close to the words
from the input. By using words that have a link with the
input text, or context words, we generate headlines that fit the
context that is represented by the input. By inserting context
words in the headlines from the database, we hope to exploit
the Eliza effect (Hofstadter 1995), apophenia (Grinblat and
Bucklew 2017) and the charity of interpretation (Veale 2016)
in readers: readers should think that the headlines are related
to the context. Churnalist’s output is a set of fictional head-
lines, like in Figure 2. A more extensive example of using
game text as input is provided in Figure 4.

Using free text input makes Churnalist usable for different
games and different topics. Regardless of the content or
the type of game, as long as the input text contains content
words (nouns), Churnalist will extract these from the input
and use them as seed words to generate headlines. Churnalist
was developed using publicly available datasets, open source
libraries and only simple text modification techniques, so that
for future users no linguistic expertise is required.
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Mario apologises to mother involved in car crash

Mario injured after Sicily volcano triggers earthquake

Mario says Arsenal return vs Qarabag was ‘emotional’

Mario: ‘My marriage is over because I voted to leave the EU’
Princess Peach unveils world’s first Chromebook with AMD pro-
cessors

Bowser’s castle retains Border-Gavaskar trophy after cleaning up
Australia on day five

Figure 2: Example output text for Churnalist, given the input
text in Figure 1.

For Churnalist’s output, we adopt similar requirements as
Gongalo Oliveira (2012):

1. The output texts must look like headlines. We are not

generating news article texts. The content of the headlines
does not have to be realistic or ground in reality. On the
contrary: we aim for fictional output, as well as output
that is not literally present in the database of headlines (for
copyright reasons).

2. Headlines must be grammatical.

3. Headlines must feel context-appropriate (coherent, mean-

ingful, relevant) for the input text to a not-too-discerning,
not overly critical reader.

Architecture

We have implemented a prototype system with the architec-
ture shown in Figure 3. Churnalist has a modular pipeline
design so that every subtask can be implemented according
to the requirements of the user, to make the system as flexible
as possible. The pipeline consists of three modules, one for
each step in the generation process. At the end of each step,
the user of Churnalist can manually filter the output of the
system, thus fine-tuning the nouns and noun phrases that are
used in later generation steps.

The first module, the keyword extractor, reads the input
text and extracts the most important words. These words are
the seed words. The second module takes the list of seed
words and expands this with a set of loosely related words,
gathered from the knowledge base. The seed words and the
related words form the set of context words. The substitution
module takes a random headline from a headline database,
runs it through a dependency parser and substitutes parts of
the sentence with context words. The resulting new headline
is the output of the system. Users can generate multiple
headlines from one input text; the number of possible results
is determined by (1) the number of seed words in the input
text, (2) the size of the headline database and (3) the size of
the set of user-approved context words.

In the rest of this section, we describe these steps in more
detail and provide an example. Figure 4 shows an input text
taken from a dilemma-driven serious game. It features both a
situational description and some lines of NPC text. The rest
of this paper will feature examples that were generated with
this input text.



AN

game text

concatenated
game text

nouns, names,

knowledge

flavour text

(English sentences) noun phrases
keyword >
extraction base

context-appropriate Y
fictional headlines

word vectors
<:: pretrained

word
embeddings

nouns, names,
noun phrases,
user-approved
related words

headlines
word substitution <): headline
database

Figure 3: Churnalist: system architecture

“You are the system administrator of SuperSecure Itd, a hosting company. At four o’clock in the afternoon, your manager storms in. Apparently,

there has been a break-in in your computer network. The CEO has been receiving anonymous emails from a hacker that demands a payment of
$100,000 before midnight. If SuperSecure does not pay, they threaten to publish sensitive company documents online. The manager is worried,
since the hacker claims to possess important intellectual property. Manager: Can you find out how the hackers got into our systems? CSIRT:
We recognize this mode of operation. We will share some relevant JOCs with your company. Can you contact us if you have finished your
forensical analysis? Security officer: There has been a nation-wide increase in phishing attacks in the past few days. System administrator: I

can’t find any traces of active malware on our Windows server. I will check the network log files for malicious activity.”

Figure 4: Representative input text for Churnalist: game text from a dilemma-based serious game, consisting of a description and

a few lines of NPC text. Names and noun phrases are underlined.

Keyword extractor

The start of the pipeline is the keyword extractor. We assume
that the input text consists of grammatical sentences, so that
it can be parsed by a sentence tokenizer and a dependency
parser. The keyword extractor runs the input text through the
NLTK sentence tokenizer' and the spaCy? part-of-speech-
tagger and dependency parser trained on spaCy’s default
corpus for English.? It uses spaCy’s noun phrase extraction
to extract all English noun phrases from the input text. The
keyword extractor saves all noun phrases that occur in the
input text, together with the head of each noun phrase. Chur-
nalist uses the head nouns as seed words and saves the noun
phrase itself so it can be reused later, during the word substi-
tution phase. See Figure 5 for an example of seed words and
the corresponding noun phrases as extracted from the input
text in Figure 4.

Knowledge base

In order to get more variety in our output, and not limit
the words used in our output to nouns extracted from the
input text, we extend the list of seed words with related
words. Note that we mean ‘related’ in a broad sense; not
just synonyms. To obtain these words, Churnalist queries
the knowledge base for words similar to the seed words. We
took this idea from the procedurally generated biographies in
Caves of Qud (Grinblat and Bucklew 2017), which evoked a
feeling of coherence because of the related domain words that
were put into the biography. For example, for the seed word

'NLTK 3.3, https://www.nltk.org
2spaCy 2.0.16, https://www.spacy.io
3Language model en_core_web_sm 2.0.0
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‘ice’ the words ‘lightblue’, ‘frost’, ‘cold’ or ‘winter’ would
all be suitable related words. The word lists for the various
domains in Caves of Qud were written manually by the game
developers. However, we do not want to build large content
models by hand. Instead, we want to focus on generating text
from data that can be obtained automatically. Like Repar et al.
(2018), we used the English dataset of FastText’s pre-trained
word embeddings (Bojanowski et al. 2017) as a knowledge
base, similar to the external semantic datasets used by the
PoeTryMe framework (Gongalo Oliveira 2012).

Word embeddings are a method for encoding words as
their context, based on a corpus. The FastText dataset is
based on a corpus of Wikipedia articles. It contains words
represented as vectors that encode the context of these words.
Words (vectors) that are close to each other in the resulting
vector space, are words that occur in similar contexts.

A useful property of the FastText dataset is that it contains
word embeddings that encode subword information: the vec-
tor of a word is created from the vectors of its subwords of
length n. As a consequence, the dataset can be used to obtain
vectors for out-of-vocabulary words: we only need to create
a vector for them by looking at the vectors of their subwords.
This allows us to deal with words that are not present in the
semantic resources being used. Consequently, we bypass
a problem similar to O Poeta Artificial’s out-of-vocabulary
hashtags (Gongalo Oliveira 2017). Another advantage of
using FastText is that its datasets are available in multiple
languages, which allows us to port our system to languages
other than English (for instance, Dutch).

The seed words are passed on to the knowledge base,
which tries to assign a vector to each word and find its closest
neighbours. If the seed word is an out-of-vocabulary word,



Head noun noun phrase

administrator ~ system administrator
company hosting company, company
network computer network

CEO CEO

emails anonymous emails
documents sensitive company documents
manager manager

property important intellectual property
hackers hackers

10Cs relevant IOCs

analysis forensical analysis

officer Security officer

traces traces

malware active malware

server Windows server

files network log files

activity malicious activity

Figure 5: Noun phrases and their head noun that the key-
word extractor extracted from the input text from Figure 4.
Generic phrases, such as ‘days’, ‘o’clock’ and ‘afternoon’,
were removed manually from the list of seed words.

Word distance  remark
companiess 0.7817 typographical error
subsidiary 0.6847

telecompany 0.6821 too specific
companywide  0.6773 not a noun
ecompany 0.6668 too specific
webcompany  0.6496

corporation 0.6315

firm 0.6218

Figure 6: Examples of suggestions from the knowledge base
for the word ‘company’, together with the distance between
the word vector for ‘company’ and the word vector for the
suggestion. The knowledge base lists results in descending
order of distance to the seed word. The final column lists
reasons for rejecting this word. Not all suggestions by the
knowledge base are shown.

the system calculates a new vector for the word based on the
word embeddings of its subwords, and uses this new vector
to find related words. The user can set a minimum distance
for suggestions from the knowledge base and select which
suggested words should be passed on to the substitution step.
For an example of the results of the knowledge base, see
Figure 6.

The knowledge base contains a machine-learned word em-
beddings model that was trained on Wikipedia dumps. Con-
sequently, there are words in the model that are unsuitable for
inclusion in Churnalist’s output, such as words with crowd-
sourced typographical errors. For example, the words closest
to ‘company’ are ‘companiess’, ‘companythe’ and ‘compa-
nyx’, which result from typographical errors (and possibly
pre-processing errors) in the Wikipedia dataset. Additionally,
some words are very similar to one of the seed words but
have no connection to the way that seed word is used in the
input text. Take the compound noun ‘security officer’, which
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means someone who defines and enforces the information
security policy in a company. Its head noun is ‘officer’, for
which the KB will list ‘sergeant’, ‘quartermaster’ and ‘sub-
lieutenant’ as related words. However, these words have little
connection with the term ‘security officer’ and should not
be used in the output. The user of Churnalist can filter such
unsuitable suggestions for related words from the knowledge
base.

The set of seed words together with the set of related
words from the knowledge base forms the set of context
words. Figure 7 shows the final set of context words for the
seed words from Figure 5.

Substitution module

The substitution module receives the list of context words
from the knowledge base module and produces new head-
lines that contain one or more context words. It creates new
headlines by substituting the subject of an existing headline
from the headline database. This approach is similar to that
of Headylines (Gatti et al. 2016), which inserts keywords
from a newspaper article into existing sentences.

As external dataset of headlines, we use a collection of
headlines scraped with the API from News API.* This API
returns headlines and article excerpts from several large news
websites. We collected 3629 headlines from media from the
UK and the US in December 2018 and January 2019.

The substitution module starts by picking a random head-
line from the headline database. This headline is used as
the starting point for one new headline. The headline is
run through spaCy’s part-of-speech-tagger and dependency
parser, trained on spaCy’s default English corpus. From the
information of the parser, Churnalist tries to find the sub-
ject of the sentence. This is the substitution target. If the
parser cannot determine what the subject of the sentence is,
a different headline is drawn randomly from the headline
database.

Next, Churnalist chooses a random seed word. Each seed
word has a set of context words associated with it: the
seed word itself, noun phrases from the input, and the user-
approved related words from the knowledge base. Churnalist
randomly chooses one of these as a substitution candidate.
If the substitution target is of a different number than the
substitution candidate, Churnalist converts the candidate to
the right number (singular to plural or vice versa). Finally,
the target is substituted by the candidate and the new headline
is presented to the user.

Results

In this section, we discuss our results. Figure 8 shows exam-
ples of generated headlines, together with the original head-
line and seed word. Consider the requirements we mentioned
earlier: generated headlines should have an appropriate form,
should be grammatical and should be context-appropriate for
the input text.

Firstly, applying text modification to the headlines will lead
to texts that again look like headlines. Informal inspection
of the headlines generated suggests that this requirement is

“News APIL, https://newsapi.org



Seed word approved suggestions

rejected suggestions

administrator -

company subsidiary, webcompany

CEO executive, shareholder, entrepreneur, investor
network -

emails -

documents documentation, memos, archives
manager teammanager

property -

hackers hacktivists, cybercriminals, scammers
10Cs -

analysis -

officer -

malware spamware, botnet, vulnerabilities
server -

files folders, fileserver

activity -

administratorship, admininistrator, nonadministrator
companiess, companythe, companynew
CFO, COO, CTO

networky, networkx, networknbc
emailings, voicemails, emailers
documentations, documen, documentries
managership, imanager, managerin
poperty, propert, propertyless

hackings, blizzhackers, hackery

ligtvoet, zeijst, lennaert

analyses, analysises, analysist
underofficer, officerer, commander
spyware, malwarebytes, antivirus
iserver, vserver, pvserver

fileset, filesmy, filespace

activitiy, activitism, activin, reactivities

Figure 7: Seed words and examples of knowledge base suggestions for related words. Not all words suggested by the knowledge
base are shown. The results were approved and rejected manually by the first author. Words in the ‘approved’ column are added

to the set of context words.

Seedword system administrator

Headline Revealed: 500k number plate conman is a convicted people smuggler

Output Revealed: system administrator is a convicted people smuggler

Seedword hosting company

Headline Pelosi has edge over Trump on budget negotiations, CBS News poll shows
Output Hosting company has edge over Trump on budget negotiations, CBS News poll shows
Seedword computer network

Headline Met Office issues ice warning as snow hits UK

Output Computer network issues ice warning as snow hits UK

Seedword hacker

Headline Uber loses latest legal bid over driver rights

Output Hacker loses latest legal bid over driver rights

Seedword sensitive company documents

Headline Investigators revise cause of escape room fire that killed 5 girls

Output Sensitive company documents revise cause of escape room fire that killed 5 girls
Seedword forensical analysis

Headline MPs’ threat to block government’s tax without second brexit referendum

Output MPs’ threat to block forensical analysis without second brexit referendum

Figure 8: Generated headlines for the input text in Figure 4.

fulfilled sufficiently. The headlines are often grammatical, but
not always. Sometimes, the dependency parser has trouble
selecting the full noun phrase in both the input text and in
the headlines from the headline database, which leads to only
partially substituted objects and subjects. Since Churnalist
is meant for supporting game writers, we rely on the user to
filter and discard ungrammatical output.

In the current version of the system, where seed words and
headlines are selected and matched at random, many of the
generated headlines would probably not yet be considered
context-appropriate. For example, readers will not necessar-
ily relate headlines mentioning ‘company documents’ to the
stolen company documents from the game text. We have
not yet formally evaluated the output of our system for the
‘context-appropriate’ property. We plan on making further
improvements to the system and evaluating both the system
and the outputs. It could be that readers behave according to
Veale’s ‘charity of interpretation’ and are more generous in
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their interpretation than we anticipate.

Some seed words have a stronger connection to the game
story and will evoke a stronger sense of coherence than others.
For example, we expect that headlines that mention ‘hackers’
will be easier for the readers to connect to the story than
headlines that mention ‘managers’. Most companies have
managers; few companies have problems with malicious
attacks from hackers. We expect that incorporating a stricter
filter for seed words will lead to headlines with a stronger
link to the game story from the input text. For example, we
could rank seed words based on their term frequency-inverse
document frequency (tf-idf). This would take into account
that seed words that occur frequently in general are probably
less representative for the input text than seed words that
occur rarely in other English texts. For now, we leave the
task of filtering the seed words and generated headlines to
the human user of Churnalist.

Finally, choosing a random headline from the database for



substitution is a mixed blessing. On the one hand, combining
a context word with the randomized headline can lead to sur-
prising, unexpected and creative outputs. On the other hand,
sometimes the link with the context word that was chosen for
substitution is far-fetched or even downright ridiculous.

The application domain of Churnalist is supporting game
writers in their creative task. Since Churnalist requires no
linguistic knowledge, it is an accessible tool. Instead of re-
lying on hand-written linguistic models, it requires external
datasets for its text modification functionality, By using News
API for collecting headlines and using the FastText dataset as
knowledge base, Churnalist can run fully on publicly avail-
able data. Similarly to PoeTryMe, users can choose to use
different datasets for their particular application, for example
for a different language than English.

However, using external data for NLG has some caveats.
Reusing headlines has as advantage that we do not have to
write templates. The disadvantage is that quality of the output
headlines will never be better than the quality of the headlines
from the headline database. Using headlines from low-quality
news outlets with click-bait headlines, the output headlines
will show similar clickbait properties.

Conclusion

We have presented Churnalist, a system for generating fic-
tional headlines. The content of the headlines is determined
by the noun phrases present in the input text. Churnalist
creates new headlines by taking keywords from the input as
seed words. It expands the list of seed words by querying
a knowledge base of word embeddings for related words
and injecting these into existing headlines via word substitu-
tion. We circumvented problems with out-of-vocabulary seed
words by using word vectors based on subword information.
The user can fine-tune the quality of Churnalist’s output by
filtering the intermediary output of each step in the system
pipeline.

Churnalist can be used by game writers, as an authoring aid
for writing flavor text in the form of headlines. We have pro-
vided example outputs for every step in the system pipeline,
generated from game text from a dilemma-based game. Since
our system was developed using publicly available datasets,
open source libraries and only simple text modification tech-
niques, Churnalist requires no linguistic expertise from its
users. Although Churnalist is currently implemented for
English, the use of external datasets allows us to adapt the
system to other languages and use cases with minimal effort.
This makes Churnalist suitable for different languages and
game types.

Future work

There are three main directions for future work on Churnalist.
Firstly, we can improve the implementation by using better
and more appropriate tools and resources. We used an open
source dependency parser for Churnalist that was trained on
a standard corpus of English. Training the parser on a set of
headlines could improve its accuracy, which might lead to
better quality text transformations. Similarly, we expect that
the quality of text transformation will improve if the headline
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database consists of better quality data, such as the annotated
GigaWord corpus (Napoles, Gormley, and Van Durme 2012).

Secondly, there are several possibilities for expanding
Churnalist’s approach to generation. Like related systems
(Gongalo Oliveira 2012; Ozbal, Pighin, and Strapparava
2013; Repar et al. 2018), Churnalist could use a generate-
and-test strategy, where multiple candidate headlines are
generated and a fitness function determines the best candi-
date headline or headlines from this set as output. Instead
of applying word substitution to randomly chosen headlines,
Churnalist could select headlines that show semantic simi-
larity with the input text and use these as a basis for trans-
formation. More advanced methods for keyword extraction
from the input texts could be used, going beyond simple
noun extraction. Using additional semantic resources, such
as Wordnet or ConceptNet, could also help Churnalist in
suggesting more valid words to the user.

Thirdly, we would like to expand Churnalist’s outputs
to also include social media messages, to make it possible
to automatically generate social media messages as flavor
text. To generate social media messages, we could take a
similar text transformation approach as we have used for
the headlines. As social media is often used to share news
headlines, we can incorporate headlines as a specific type of
social media messages. In fact, some malicious Twitter bots
use text modification techniques and news headline sharing
to disguise the fact that they are bots (Hegelich and Janet-
zko 2016). Additionally, both headlines and social media
messages are interesting vehicles for exploring affective lan-
guage generation. For example, we could generate headlines
with a particular political slant or social media messages that
express a particular emotion.

Finally, we still need to evaluate our approach to text gener-
ation for games. We plan to do so in various ways. We want to
ask human judges to assess the output of Churnalist on prop-
erties such as grammaticality and ‘context-appropriateness’
(see our headline requirements), and draw comparisons with
a baseline. Given the current popularity and quality of neural
generation systems, we would also like to compare the output
of Churnalist to state-of-the-art neural headline generation
systems, given the same game text as input.
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Abstract

Art analysis is a key aspect for computational systems
whose goal is to generate visual artifacts. This paper pro-
poses a six steps methodology to analyze and represent
design principles from art works. Our approach starts
with an image segmentation followed by the construc-
tion of a straight skeleton. Then we extract some color
information and perform shape analysis and classifica-
tion. Finally some design principles are calculated and
groups of elements are built over a complete graph. Our
internal art work representation gives us a way to ap-
proximate the phases of artistic appreciation proposed by
some authors. We show a procedure to generalize com-
positional rules for the generation of new abstract art
works based on the steps of the proposed methodology.
We plan to use a self organizing map to cluster our art
work representations and use this information to build a
hypergraph and/or multigraph. Since these graphs can
represent design principles, the system will be able to use
these structures to explore new ways to generate artifacts
and measure their novelty compared to previous exem-
plars.

Introduction

As suggested by Cetinic et al. (2018), analyzing artworks is
a complex task which generally involves understanding as-
pects like form, content and meaning. These aspects origi-
nate from the formal elements present in the artwork such as
line, shape, color, texture, mass and composition (Barnet,
2015). Art experts usually do their analysis comparing
paintings to find relations between them (Seguin et al.,
2016). Generally, the outcomes of those analyses can lead
to style classifications, genre determinations, formal com-
ments and influences between artists, artworks or art move-
ments (Saleh et al. 2014, Florea et al. 2017, Badea et al.,
2018).

In the last few years, research in computer vision tech-
niques to analyze visual art has increased in quantity and
quality (Badea et al., 2018). This trend depends on two facts.
First, there have been consistent efforts by museums and
collectionists to digitize more paintings and include relevant
meta-data. This permits us to have larger datasets to do anal-
ysis. The second fact is the development of deep neural net-
works. Style classification has received more attention (Bar
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et al., 2015; Saleh and Elgammal, 2015; Elgammal et al.
2018). Genre classification has been explored but there are
still complex open challenges (Condorovici et al., 2013).
The approach used in such classificators, usually includes
extracting a set of image features and using them to train
different classifiers such as support vector machines, neural
networks or k-nearest neighbors (Cetinic et al., 2018).

Art analysis is a key aspect for computational systems
whose goal is to generate visual artifacts. Such analysis al-
lows building knowledge structures from real pieces of art
that can be exploited by creative agents to create more elab-
orated outputs. Thus, we need to develop mechanisms that
allow computer systems to improve their “art appreciation”
in general (Norton et al., 2010; Health et al., 2016). In order
to accomplish this goal, we require general and specific
knowledge (Barret, 2007). That is what this project is about.
We are interested in studying and representing notions re-
lated to composition and design principles like balance,
symmetry, size, contrast and shape (Pérez y Pérez et al.
2013; Pérez y Pérez & Guerrero 2019) from abstract pieces
of visual art. In this paper, we claim that the development of
systems that allow analyzing and representing design prin-
ciples from well-known pieces of art are important to gen-
erate better creative agents. Thus, we propose a six steps
methodology (6SM) that combines and advances well
known algorithms for image processing in order to obtain
such design principles.

This is a work in progress. Therefore, the key target of
this text is to present to the reader the core aspects of our six
steps methodology to represent design principles (see the
section titled Art Work Representation) as well as showing
some partial results. The first step consists of an image seg-
mentation using the algorithm proposed by Syu et al. (2017)
(see the Image Segmentation section). The objective of this
phase is to build a hierarchical multi-resolution representa-
tion of the regions that make up an image. The second step
builds a planar graph called straight skeleton over every re-
gion or segment of the previous step (see the Straight Skel-
eton and Centrality Measure section). The purpose of this
graph is to induce a terrain model. With this model a cen-
trality measure can be computed and a generalized notion of
center of mass can be defined. The third step extracts color
information (see the section titled Color Information) based



on Itten’s model (1974). To achieve this phase, we follow
Sartori et al. (2015) proposal to build a 180 color swatch.
With this color palette we replace every original color and
calculate spatial relations over ltten’s color sphere generated
by these 180 colors. The fourth step consists of a shape clas-
sification process (see the Shape Classification section). The
objective of this step is to do a clustering procedure to have
a reduced number of general shapes that can represent most
of the regions of the art works analyzed. The next phase im-
plements some binary relations between regions based on
some design principles (see the Design Principles and Bi-
nary Relations section). We calculate relations on pairs of
shapes based on measurements over the mean shape bound-
ing box, direction and aspect ratio. The final step consists on
building groups as suggested by (Pérez y Pérez et al. 2013;
Pérez y Pérez and Guerrero 2019) (see the section titled
Groups of Regions). The goal of this step is to have a repre-
sentation of the elements of the art work at different levels
of abstraction.

We are employing the Tlahcuilo visual composer (Pérez
y Pérez et al., 2013; Pérez y Pérez & Guerrero, 2019) to im-
plement a proof of concept. We will include new design
principles and new evaluation procedures. Because having
more artistic knowledge should help achieve higher quality
artifacts (Heath et al. 2016), we hope to improve the quality
and novelty of the artifacts the Tlahcuilo produces.

Related Work

Recently, a large number of image representations presented
in the literature are exclusively or highly dependent on ab-
stract neural network feature maps. Of particular interest to
this research are works that suggest image representations
such as the one proposed by Bar et al. (2014) that involve
more concepts interpretable by humans directly. The authors
suggest using a combination of powerful neural network vis-
ual features with other descriptors. The effectiveness of con-
volutional neural network based features, particularly in
combination with other hand-crafted features, was con-
firmed also for genre classification by Cetinic and Grgic
(2016).

Artistic style classification is another related problem that
has been addressed with continuous increasing interest.
Some recent work used object recognition (Crowley and
Zisserman, 2014). The authors show that finding objects in
paintings by learning object-category classifiers from avail-
able sources of natural images is possible. Artistic scene or
genre understanding is also important. Badea et al. (2018)
investigate the relation between genre, scene and artistic im-
age subject. The authors investigate abstraction achieved by
deep convolutional neural networks. In particular, “Abstract
Art”, is targeted by the authors as a challenging problem
since a subject is not necessarily present.

Saleh et al. (2014) study how painters influence each
other using visual similarity. They implemented a procedure
based on computer vision and machine learning. The au-
thors perform several comparisons using different visual
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features and similarity measurements. Since there is not
enough ground truth information to achieve influence anal-
ysis directly, the authors use a highly correlated task such as
style classification to show some results. The authors inves-
tigate features aspect of the paintings and compare seman-
tic-level features vs low-level and intermediate level fea-
tures. They claim that their study confirms that high-level
semantic features are more useful for style classification and
hence for influence analysis. In a similar direction, Seguin
et al. (2016) investigate how state-of-the-art machine vision
algorithms can be used to retrieve common visual patterns
shared by sets of paintings. Florea et al. (2017) suggest that
visual similarity has space for improvement because most of
the research and results have been developed for older artis-
tic movements where scene depiction has high-level seman-
tic concepts and does not present particular abstractions.

In the domain of computational creativity, DARCI (Nor-
ton et al. 2010; Heath et al. 2016) is a reference. The goal of
this system is to eventually produce images through creative
means. In the process to achieve this, the authors propose to
teach DARCI some artistic image appreciation and under-
standing. They implement this through the association of
low-level image features to artistic descriptions. They show
that the system successfully learns 150 different descriptors
from images. Pérez y Pérez and his colleagues (Pérez y P¢é-
rez et al. 2013; Pérez y Pérez & Guerrero 2019) propose a
computer model to develop visual compositions based on
the Engagement and Reflection Model. The system uses de-
sign principles to analyze examples provided by designers
and generate a knowledge base to progress a visual work and
also measure the novelty of its artifacts.

Garcia and Vogiatzis (2018) argue that to build artistic
knowledge, we have to work outside the style classification
tasks and expand our research goals. The authors present Se-
mArt, a multi-modal dataset for semantic art understanding.
The authors suggest a challenge called Text2Art to evaluate
art understanding based on a retrieval task. They also sug-
gest several models for encoding visual and textual artistic
representations into a common semantic space. Strezoski
and Worring (2018) created a large dataset with more than
430,000 samples called “The OnmiArt Challenge”. They
suggest analyzing more attributes related to the art works.

Art Work Representation

The knowledge structures constructed in this paper are
based on examples of abstract art created by human artists.
Since abstract art can be thought of as lacking representation
of common everyday objects, these art works are more
prone to intrinsic artistic formal aspects. Initially we pro-
pose to develop an analysis using exclusively 165 of
Rothko’s art works. We have a partial prototype that imple-
ments the pipeline described in the next few sections. It re-
ceives an image as input and outputs our internal represen-
tation.



Step 1: Image Segmentation

Syu et al. (2017), claim that even though plentiful segmen-
tation algorithms have already been proposed, how to effec-
tively partition an image into segments that are “meaning-
ful” to human visual perception is still very challenging.
Sometimes it is not enough to choose a specific image char-
acteristic such as color or texture to achieve a successful im-
age segmentation. This paper proposes to use the new algo-
rithm developed by Syu et al. (2017) which builds a hierar-
chical image segmentation. One of the objectives of the al-
gorithm is to generate a dendrogram in which every node
corresponds to a segment and all the nodes in the same level
build up a segmentation. This dendrogram is a consistent
multi-resolution representation of the contents of the seg-
mented image. In our context, consistent means that every
new segment comes exclusively from a previous node. This
characteristic is one of the main differences between the al-
gorithm developed by the authors and similar hierarchical
solutions.

The algorithm proposed by Syu et al. (2017) works in two
steps like almost all hierarchical procedures. The first phase
works directly with the raw pixels and has the objective to
group up similar pixels into regions. For the second step of
the first phase of the algorithm, the authors present an itera-
tive process of contraction and merging. The contraction
step is based on an optimization process over an affinity ma-
trix that groups pixels. The merging is characterized by a
fixed grid in which previously contracted pixels are joined
together. These two steps work exclusively on the similarity
at color level between adjacent pixels.

The second phase keeps on making a contraction and
merging procedure. The affinity matrix gets updated based
on color, size, texture and intertwining of the regions. The
affinity matrix for the second phase depends on the dissim-
ilarity between regions R; and R;. The factors that make up
the dissimilarity metric are the following:

Color Component: For a region R;, Syu et al. (2017) de-
note its color feature as the averaged color values inside the
region. For adjacent regions R; and R;, the color-based dis-
similarity measure is D, (Rl-, Rj) =l Cg, — CRj II,.

Texture Component: two adjacent regions with similar
texture patterns and similar colors should have a larger af-
finity value. To describe the texture pattern of a region, Syu
et al. (2017) convert the region color values to gray and cal-
culate the Weber Local Descriptor (WLD). This descriptor
consists of two components, differential excitation and ori-
entation, over a local window around every pixel.

Region Size Component: To take into account the region
size in the merging process of the second phase, the authors
define an additional distance function is design to facilitate
the merging of two small regions or the merging of small
regions into their neighboring regions fast.

Spatial Intertwining Component: this component is used
to merge together small regions produce during the cycles.
Syu et al. (2017) measure the intertwining of any pair of re-
gions i and j based on a fixed 5x5 window over every pixel
p of R;. They calculate the most common index in the local

Proceedings of the 10th International
Conference on Computational Creativity 2019
ISBN:978-989-54160-1-1

75

window. Based on these indexes, a decision to merge
smaller groups of pixels to neighboring regions is taken.
Figure 1 and 2 give examples of the result of the first phase
of the process we are describing. We show the hierarchical
segmentation procedure achieved by our partial prototype
applied to one of Rothko’s and Kandinsky’s artworks.

Figure 1 — original, 3, 13 and 60 segments

°%2° %%

Figure 2 — original, 2, 13 and 60 segments

)

Step 2: Straight Skeleton and Centrality
Measure

According to Huber (2012), the notion of a straight skeleton
for a simple polygon P was introduced for the first time by
Aichholzer et al. (1995). The authors used a wavefront prop-
agation process to define it. As reported by Huber (2012),
every edge e of P sends out a wavefront which moves in-
wards at unit speed and parallel to e. Figure 3 shows a visu-
alization of the described process. During the wavefront
propagation process, topological changes named events are
produced. Huber distinguishes two types: edge and split
events. An edge event occurs when two neighboring convex
vertices u and v of the wavefront meet. This event causes
the wavefront edge e, which connects u and v, to collapse
to zero length. The wavefront edge e is removed and the
vertices u and v are merged into a new convex vertex. A
split event occurs when a reflex vertex u of the wavefront
meets and edge e of the wavefront. The vertex u splits the
entire wavefront into polygonal parts (Huber, 2012).

Figure 3 — visualization of the wavefront propagation process.
The edge e has the associated front wave f(e). Image repro-
duced from Huber (2012), pg. 13.

The formal definition of a straight skeleton taken from
Huber (2012) is as follows: the straight skeleton S(P) of a
polygon P corresponds to the straight segments that are
traced out by the vertexes of any wavefront. These segments
are denominated arcs or edges of S(P). The places where
topological changes take place are defined as nodes. To
every edge e of P belongs a face f(e), which consists of
every point traced by the wavefront border started by edge



e. Every node of S(P) is incident to multiple arcs. The bor-
der of any given face consists of the arcs and vertices of
Sp).

The straight skeleton has several interesting properties.
Central to this work is the fact that this skeleton is a tree
(Aichholzer et al., 1995). Based on that fact, we know there
exists a unique node that can be named as the root. The same
authors generalized the concept of straight skeletons to pla-
nar straight-line graphs. According to Huber (2012), this
generalization allowed a better interpretation of the visuali-
zation suggested initially by Aichholzer et al (1995). This
intuition is formalized with the definition of model terrain:
the terrain T(G) of G a straight-line graph is: T(G) =
Ueso W(G, t) * {t} were W (G, t) corresponds to the wave-
front of a straight-line graph G for a time t > 0. According
to Huber (2012), W (G, 0) corresponds geometrically to the
same graph G and it should be visualized like a superposi-
tion with the same topology over the original graph.

The straight skeleton induces an Euclidean graph given
by the spatial coordinates of the nodes. Taking into account
the terrain model induced by the straight skeleton and the
distance between every node, a weight for every edge is as-
signed. The value is just the multiplication of the t > 0 pa-
rameter or third dimensional value of T (G) with the distance
between every pair of nodes. We calculate a centrality meas-
ure based on closeness and using the weights as cost func-
tion to find a unique node that can represent each region.
Since the straight skeleton is a tree, we can be certain that
such a unique node always exists. The center of this Euclid-
ean graph, can represent each region and acts as a general-
ized notion of a mass center. Figure 4 shows the terrain
model induced by the straight skeleton of a region and visu-
alizes the center of the Euclidean graph.
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Figure 4. Terrain model induced by a straight skeleton. Center
of Euclidean graph based on closeness centrality measure.

The process by which the straight skeleton is generated is
computationally demanding. To cope with this time and the
large number of regions used in this paper, we propose to
make a region simplification based on the Ramer—Douglas—
Peucker algorithm. The objective of the algorithm is, given
a linear segment curve, to find an approximated curve with
less points. The dissimilarity measure used to compare both
curves is based on the Hausdorff distance. One of the most
important characteristics of the procedure is that the approx-
imated curve points, come from a subset of the original
curve points. For the algorithm to work, a tolerance param-
eter € > 0 needs to be given by the user. After some trial
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and error, we found € = 0.1 to be a good candidate. The first
step of the algorithm is to find the farthest points on the orig-
inal curve. Once both points of the maximum diameter are
identified, the region is split in two curves and the algorithm
is invoked recursively on both segments. The original two
points are automatically assigned as elements of the new ap-
proximated curve. The next step is to find the farthest point
between the straight line made up by the two original points
and every other point of the segment. Once this point is iden-
tified, the distance between the line and the point is calcu-
lated. If the distance is less than e then any given points be-
tween the original points and the farthest point get elimi-
nated. This guarantees that the tolerance requirement is met
in every step. In case the distance is greater than &, the algo-
rithm marks this new point as belonging to the new approx-
imated curve. The algorithm gets recursively invoked be-
tween the new subsegments. The recursion process is over
when there are no more segments to check. Setting e = 0.1
allows us to simplify every border region without losing im-
portant perceptual geometrical characteristics. After the
simplification based on the Ramer—Douglas—Peucker algo-
rithm, we order all the components of every segmentation in
every level. In case we find more than one component, we
only calculate the straight skeleton over the largest compo-
nent. If holes are found inside any of the regions, we calcu-
late their size and include them only if they represent more
than 1% of the original containing region.

Step 3: Color Information

Most of the color information is going to be based on Itten’s
theory (1974). Itten studied and taught almost all aspects re-
lated to aesthetic and expressivity of color during several
years in the Bauhaus school. His theory defined a set of rules
for colors and combinations of them. These principles were
named by the author as “objective principles of color”. Ad-
ditionally, Itten also tried to formalize some of the emotional
aspects of color combinations. The author’s theory is visu-
ally represented by a color wheel. This structure is com-
posed of 12 color shades made out of primary, secondary
and tertiary colors. Colors that are opposed in the color
wheel are complementary and make up a harmonic pair
(Sartori et al., 2015). Itten’s wheel was further expanded us-
ing 5 levels of luminance and 3 levels of saturation. This last
model, composed of 180 colors was hamed by the author as
Itten’s color sphere (Sartori et al., 2015).

In order to condense and reduce color information, we im-
plement a color swatch construction process, based on what
Sartori et al. (2015) suggested. The idea of this process is to
sample all the colors out of a dataset and use a cluster pro-
cess like k-means to find 180 centroids in RGB color space.
In our case, the dataset is based on all the color regions of
every hierarchical segmentation level. The similarity metric
used by the k-means algorithm in our case is the ordinary
three dimensional Euclidean distance. Once the 180 cen-
troids are found (Figure 5), we proceed to replace every



color with the nearest centroid to change every color in
terms of the newly built color swatch (Figure 6).
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Figure 5. Color palette — 180 colors. 11 groups of colors.
Up to down: black, blue, brown, grey, green, orange, pink,
purple, red, white and yellow.
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Figure 6. Color palette application.

The color relationships used in this paper are going to be
binary and related to contrast and harmony. For the first re-
lation, we simply use Itten’s color sphere and try to locate
opposite elements. For harmony relations, we suggest using
the Itten’s relations that correspond to defined geometric
patterns over the sphere or color wheel. The color swatch
also permits us to establish some groups of colors that give
global information of the subset of colors from the swatch
that are present in an artwork.

Step 4: Shape Classification

The definition of the concept of “shape” has always been
complicated. According to Dryden & Mardia (2016), in the
ordinary and common use of the word “shape”, we almost
always use it in an indirect way and using relations of simi-
larity to other objects to try to specify a specific “shape”.
Dryden & Mardia (2016) present the following definition:
“shape is all the geometrical information that remains when
location, scale and rotational effects are removed from an
object” (pg. 22).

Based on this definition, the shape of an object is invari-
ant under any Euclidean similarity transformation. Two ob-
jects have the same shape if one of them can be translated,
rescaled and rotated in such a way that superimposing it over
the other one, they match completely. The way in which a
shape is represented is fundamental to developing any anal-
ysis. This work is going to use a finite set of points over the
straight skeleton to build some pseudo-landmarks. The con-
figuration matrix X is the kxm matrix of Cartesian coordi-
nates of the k landmarks in m dimensions. In particular, we
are going to work with k > 3 landmarks and the dimension
m will be 2. Kendall (1984) demonstrated that for the par-
ticular case in which m is 2, the shape space is a Riemannian
manifold (complex projective space). In particular and for
the purposes of this paper, we need to use the Riemannian
distance to be able to compare the difference between any
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two shapes once any translation, scale or rotation is re-
moved.

To classify the regions generated by the hierarchical seg-
mentation algorithm, we suggest a process that builds sev-
eral configuration matrixes. The construction starts with
k = 12 and ends as soon as one of the following two condi-
tions are met: a) the maximum number of points of the re-

gion is less than 50, b) al’"/alo >090and 1>%/,, >

0.90, where alr is the arc-length of the approximated curve,
alo is the arc-length of the original curve, ar is the area of
the approximated curve and ao is the area of the original
curve.

We compare every pair of regions based on a 12-points
configuration matrix and gradually increase the number of
configurations if necessary. We use the Ramer—Douglas—
Peucker algorithm to simplify every region on our dataset to
find the respective configuration matrixes. In applying the

algorithm, we use the notion of tortuosity: t = % where L

corresponds to the length of the curve and C corresponds to
the distance between the extreme points. Since every region
is closed, we start by splitting every border by the major axis
and using the tortuosity measure to decide what sub curve
has more complexity and start the procedure. On every step,
we compare the tortuosity of every subsegment to decide the
next candidate. Figure 7 shows some steps of the above pro-
cedure for one region. In case a region has less than 12
points, we artificially interpolate points between the longest
segments until necessary.
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Figure 7. Region 2 of Rothko’s “Violet, Black, Orange,
Yellow on White and Red” (1949) work. 3, 4,5 and 6
points simplification in red.

To classify these simplified regions, we do a clustering
procedure over all the 12 points configuration matrixes us-
ing the ideas of Vinué et al. (2014). The authors suggest an
extension to the original k-means algorithm so that it can be
applied directly over configuration matrixes using the Pro-
crustes analysis and the Riemannian distance. Starting with
1553 simple regions, we suggest to find initially 90 cen-
troids on this first step. In the second step of our procedure,
we do a hierarchical clustering with single linkage to have
the possibility of reducing further the number of clusters. To
try to identify where the hierarchical tree should be cut, we
analyze the distance matrix calculated with the Riemannian
distance function between all the centroids. After some ex-
perimentation using between 2 and 10 nearest neighbors of
every element in this matrix, we found that taking 25% of
the maximum distance between any element was a good



condition to stop the pruning procedure. We check the con-
dition “b” stated before (alr/alo >090and 1 =9%/4, =

0.90) to decide if every centroid is a good representative of
the cluster. In case there is a configuration region which
does not fulfill this condition, we propose to split the respec-
tive cluster augmenting the configuration matrixes one step
at a time until condition “b” is true. After doing this proce-
dure, the hierarchical clustering tree allows us to move up
or down in the representation of any region. If we want to
simplify the configuration matrix to generate simpler re-
gions, we use the tree and all the members of a cluster to
pick a simpler configuration matrix or generate a new mean
shape. The final centroids act as the color swatch we defined
before and is going to allow us to generalize some binary
relations mentioned in the next section. Figure 8 shows a
contrast relation between two regions and gives us an idea
of how a generalization of this relation is possible.
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Figure 8. Contrast binary relation — directional, size and pro-
portion. 12-points simplification, cluster centroid and similar
regions for relation generalization.

Step 5: Design Principles and Binary Rela-

tions

Based on the output of the previous step, we are going to
define some contrast binary relations between the centroids.
After a linear transformation that takes the end points of the

major axis of every centroid to the coordinates (— % 0) and

(% 0) we calculate the mean shape bounding box, aspect ra-

tios, distance and mean direction. To define this direction,
we propose to use a histogram based on the shortest path that
connects the major axis end points and passes through the
center of the straight skeleton (Figure 9). We suggest having
6 bins in the histogram. Every bin is 30° and the range starts
in -15° Once the histogram is normalized, we can have an
approximation to the orientation of the longest path and use
this as a general notion of direction for the region.
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Figure 9. Major axis and shortest path on SS.
This work also proposes to calculate balance, symmetry
and rhythm relations as suggested by Pérez y Pérez et al.
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(2013). We also propose to expand the use of contrast from
color (Pérez y Pérez et al. 2010) to shape and incorporate
more design principles than the original work developed by
the authors. We believe the region representation suggested
will allow us to generate even more art principles in future
works since the straight skeleton lets us calculate internal
symmetries of the shape, proportions and more. In Figure 10
we show some examples of binary relations found using our
partial prototype.
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Figure 10. Binary relations — directional, size and proportion
contrast examples. Balance and Symmetry.

Step 6: Groups of Regions

Based on the ideas presented in (Pérez y Pérez et al. 2013;
Pérez y Pérez and Guerrero 2019), we build groups of re-
gions based on the distance. We construct a complete graph
of the first 20 regions of an art work using the normalized
center of every region (Figure 11). The order in which the
graph is built is based on the size. We calculate the distance
between every pair of nodes. The final weight of every edge
is the normalized Euclidean distance by the main diagonal
of the image of the art work. To start building the groups of
layer 1, we follow the procedure described by Pérez y Pérez
et al. (2013) and iterate their procedure until no more groups
or layers are possible.

[

Figure 11. Rothko’s “Violet, Black, Orange, Yellow on White
and Red” (1949). 10 simple regions and complete graph (SS).

Internal Representation

The goal of the internal representation is to extract the infor-

mation of the art work related to the design principles and

binary relations suggested for the analysis. We suggest a cat-

egorical-numerical vector that represents the art work with

the following structure:

a) Global information: artist name, year of creation and
the artistic style of the art work.

b) Specific art work information: width, height, aspect ra-
tio, first 20 simple regions based on the dendrogram of




segmentation ordered by area in decreasing order. In
case there are less regions, values are filled with zeros.

c) Region specific information: every region is repre-
sented by the following attributes: area of the region
normalized by the total area of the art work, centroid
identifier of the cluster to which this region is closer
based on Riemannian distance, normalized width of the
bounding box of the region, histogram of direction and
color identifier from the color swatch.

d) Groups of Regions: information based on the groups
constructed using the procedure described previously.

e) Relations between Regions: using the complete graph
induced by the center of every one of the simple re-
gions, we propose to analyze every possible binary re-
lation between every pair of regions. Existence of the
respective binary relation between any pair of simple
regions is represented by 1 or 0. The order of the attrib-
utes is based on literal b. Every binary relation is
weighted by the distance between the nodes of the com-
plete graph.

Discussion and Future Work

In this paper we have introduced what we refer to as the Six-
Steps Methodology (6SM) to analyze and represent design
principles from well-known pieces of abstract visual art.
The knowledge representation was built taking into account
some important aspects of the appreciation and perception
processes such as color, orientation, shape, proportion, con-
trast size and grouping (Liu et al., 2017). In the near future,
we plan to include texture more explicitly and work some
design principles based on it. The hierarchical segmentation
gives us a way to approximate the phases of artistic appre-
ciation proposed by Tinio (2013) and Leder (2013). In par-
ticular, the first simple regions can capture the initialization
phase mentioned by Tinio, while the rest of the levels of the
segmentation can be associated to the expansion, adaptation
and finalization phases proposed by the author. And since
our representation allows us to get a global structure, recog-
nize and simplify shapes, build groups and get further details
as needed, we think that some of Leder’s ideas (2013) re-
lated to knowledge, familiarity, content and style processing
stages are captured too. We believe these facts are important
for the development of computational creative systems that
generate visual artifacts, because they allow them to analyze
information better and constantly move between general and
specific knowledge, that is necessary throughout the evalu-
ation of the creative process. We hope to be moving in the
right direction to improve the artistic appreciation of our
system so it can be even more autonomous.

We have shown a procedure to classify shapes that allow
us to generalize compositional rules for the generation of
new abstract art works that impact directly the novelty of the
artifacts generated by the system. As far as we know there
are no other systems capable of obtaining, from human
made abstract visual art, design principles that then can be
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used for generating new pieces. Based on the work reported
in this paper, we expect to be able to incorporate all these
algorithms into the agent Tlahcuilo visual-composer in the
following months. Then, we will be able to test the quality
of the new products generated by the system and hopefully
produce more results to support our view.

Besides describing the core components of the 6SM, we
also suggest that the work reported here can be useful as a
base to produce more robust systems. For instance, we plan
to use a self organizing map to cluster our art work repre-
sentations, probably using a variation of the Growing Hier-
archical Self Organizing Map (GHSOM) (Rauber et al.,
2002). With the cluster’s information and temporal data
from the art works, we suggest to build a hypergraph and/or
a multigraph. Because these graphs can represent design
principles, the system will be able to exploit such infor-
mation, find correlations and explore new ways to generated
new pieces (Hackett 2016).

The information represented by these graphs might be also
useful to improve the automatic evaluation of visual pieces.
For instance, it is possible to compare the hypergraph of a
creative agent’s products against some recognized visual art.
Based on the GHSOM we can check how many previous
examples share similar compositional principles and guide
the creative agent’s composition process depending on these
results. In a similar way, depending on the distance to other
nodes in the hypergraph and/or the multigraph, we could
evaluate novelty. Finally, we believe these structures can be
used by the system to give some explanations as to why a
partial or finished composition is interesting, what design
principles it is based on, what previous stablished rules it
might break and probably to what style or styles it belongs.

We are also comparing the results of some state-of-the-
art style classification neural networks feature maps with
our art work representation to see if it is possible to improve
the performance of those models or ours. We require more
experiments to produce more hypotheses about how compu-
tational systems can generate interesting abstract artifacts
that are grounded in an artistic context. The methodology
we describe here is one step towards answering deeper ques-
tions about how a system uses previously available
knowledge in the quest for producing new creative visual
artifacts.
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Abstract

A common aspect to creativity as described by creative
theorists is the juxtaposition and balance of two op-
posing qualities, namely novelty and typicality. Prac-
tical models of computational creativity are needed that
effectively leverage the contributions of each of these
qualities in a synchronous manner. We discuss the ef-
fectiveness of constrained probabilistic models in rep-
resenting this duality in generative models of creativity.
‘We illustrate constrained Markov models as an example
of a constrained probabilistic model and demonstrate
its application to computational creativity in the elab-
oration of a system called NhMMonic for generating
mnemonic devices. We demonstrate the effectiveness of
the system' using a qualitative survey. Our findings sug-
gest that the constrained Markov model is particularly
effective at generating mnemonics that exhibit novelty
and typicality in grammatical and semantic flow with
the overall result of more effective mnemonics for the
purpose of memorization. Source code as well as our
mnemonic device generator are both freely accessible
online.

Introduction

Computational creativity (CC) has been defined as “the phi-
losophy, science and engineering of computational systems
which, by taking on particular responsibilities, exhibit be-
haviours that unbiased observers would deem to be creative”
(Colton and Wiggins 2012). The plural focus on the philos-
ophy, science and engineering of computational systems has
yielded valuable theoretical contributions as well as a num-
ber of functional creative systems. Emergent from this plu-
ral focus is the challenge of maintaining harmony between
theory and practice. To be sure the abstract philosophy and
concrete engineering can and should work to challenge one
another in their mutual growth and evolution; however, the
goal ultimately is to develop systems that accurately reflect
the philosophical moorings and to advance theories whose
tenets agree with what is observed about creativity in prac-
tice. Thus the role of practical models of creativity becomes
significant—models that, by virtue of their ability to imple-
ment principles deriving from the philosophy, can be gener-

! An interactive demo can be viewed at https://ccil.cs.
isu.edu/projects/mnemonic/
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alized beyond any single creative system with great effect,
while maintaining ready applicability and implementability.
As described by Jordanous (2016), these models define the
creative process of a system, namely “what the creative in-
dividual does to be creative.”

Several examples of practical models of creativity have
been demonstrated. Evolutionary models represent a prac-
tical implementation of the widely-accepted theory that cre-
ativity is a self-evaluative, iterative process as discussed by
Csikszentmihdlyi (1996) (e.g., see Morris et al. (2012)). Re-
lated is the model of a dynamic knowledge base (Pérez y
Pérez and Sharples 2004) in which novel artefacts that have
been evaluated as belonging to the domain are added to a
system’s set of exemplars, possibly altering the definition
of the domain itself (e.g., as discussed by Boden (2003)).
Generate-and-check is another model that has been sug-
gested as being representative of the creative process (Pease,
Guhe, and Smaill 2010).

In considering the modeling of theoretical aspects of cre-
ativity, one particularly intriguing aspect that is often dis-
cussed is the tenuous balance that a creative system must
maintain between novelty and typicality—the adherence
to structural domain-defining rules combined with an ex-
ploratory discovery of new, valuable artefacts. These two
characteristics can sometimes seem at odds with one an-
other; a creative system must both obey norms at some level
and break them entirely at other levels. It is the juxtaposition
of these qualities that evokes the perception of creativity: the
observer recognizes and appreciates an artefact relative to its
contextual domain while at the same time being challenged
and surprised as a result of the artefact’s unique traits and
value. Csikszentmihalyi (1996) emphasizes that creativity
stems from a person learning the rules of and basic proce-
dures of a domain and then channeling thinking based on
those rules in new directions. Saunders and Gero (2001)
puts novelty and typicality on a spectrum called the Wundt
curve or “hedonic function” and frames successful creativity
in terms of finding the correct balance of typicality and nov-
elty (see Figure 1). Margaret Boden (2003), in her seminal
work The Creative Mind: Myths and Mechanisms, compares
(exploratory) creativity to navigating a “structured concep-
tual space” to find “things you’d never noticed before.” Wig-
gins (2006) elaborates a formal mechanism of Boden’s con-
cept of creativity by defining two rule sets, Z and 7. Of
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Figure 1: The Wundt curve models value as the sum of
two nonlinear functions: H, which rewards novelty, and IV,
which punishes novelty beyond some threshold of typicality,
from Saunders and Gero (2001).

these two sets Z is a set of rules which “constrain the space”
to a representation of “the agreed nature of what the arte-
fact is, in the abstract”; .7, by contrast, is a set of traversal
rules which, when constructed effectively, is designed to find
concepts that have not been previously discovered. Ritchie
(2007), in defining empirical criteria for attributing creativ-
ity to a computer program, defines three essential properties,
two of which are novelty and typicality (the third is quality,
which Boden also emphasizes and which we will discuss be-
low).

Many existing abstract frameworks for building creative
systems have been described, several of which explicitly
model the components of novelty and typicality (e.g., (Ven-
tura 2017)). Our purpose is not to present a new framework
or pattern for creative systems; rather our purpose is to dis-
cuss from an implementation standpoint how typicality and
novelty can be modeled so as to explicitly leverage their
unique contributions and simultaneously ensure that both
are effectively achieved. In what follows we examine the
suitability of a previously unexplored model in CC—a con-
strained probabilistic model—for this purpose. We describe
how the dual nature of this model mirrors the dual prop-
erties of typicality and novelty and how the model strikes
an appropriate balance between them. As a concrete ex-
ample of the effective application of these models to gen-
erate novelty and typicality, we describe an implementation
of a constrained Markov model, NhnMMonic, for generating
mnemonic devices. We show using evaluative surveys that
the system generates mnemonics that demonstrate typicality,
novelty, and value (as measured by how well the mnemonic
facilitates memorization and learning).

Parallels Between Computational Creativity
and Constrained Probabilistic Modeling

Computational creativity can be thought of as a generative
act in which, for some particular domain, the set of possi-
ble artefacts D = {x1,...,x,} is represented as a random
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variable X that with probability P(z;) takes on the value
x;. The primary strength of probabilistic models is that they
generalize well from a set of training examples to be able
to generate novel artefacts. Inasmuch as this generaliza-
tion is accomplished independent of the biases of the sys-
tem designer, it lends strength to the argument that proba-
bilistic systems possess some degree of autonomy beyond
manually-crafted rule-based systems. In practice, imple-
menting a creative system in this manner presents two chal-
lenges.

One challenge is determining the probability distribution
P(X): with what probability should the model generate a
particular z;? This challenge can be solved explicitly—as
in the case of systems that manually encode a generative
process—or implicitly—as in the case of systems that at-
tempt to learn abstract statistical properties from a set of
training examples.

Prior to or in the course of resolving the first challenge, we
face a second, more formidable challenge: defining the do-
main D itself. Decisions about whether a particular artefact
x; belongs or does not belong to D can vary from one indi-
vidual to the next (Koren 2010). For now let us assume that
D exists as a “fuzzy” subset of some larger domain, which
we shall call Up and which represents the universal set of
all artefacts that can be represented using the same language
with which artefacts in D are represented. For example, the
domain of haiku exists as a subdomain of natural language
generally. The domain of musical chorales exists as a sub-
domain of musical compositions generally. The fuzziness of
the set D can derive from a variety of issues such as the dif-
ficulty in precisely defining D or the willingness of domain
experts to accept artefacts that (to varying extents) break the
rules typical of an artefact in D.

Any particular creative system defines a set that more or
less approximates D and possibly includes some artefacts
that are less commonly agreed upon as belonging to D (see
Figure 2). How this set is implemented is important in de-
signing creative systems that efficiently generate artefacts in
D. For rule-based systems, the rules by which an artefact
belongs within the set are hard-coded; logic is designed to
prevent consideration of artefacts that break rules of the do-
main beyond some threshold. For evolutionary models, this
set can be defined by designing a fitness function that pe-
nalizes artefacts outside of this domain. The set can also be
defined as a set of constraints given as input to a constraint
satisfaction solver, but with limited sense of how good one
solution is with respect to another (Onarheim and Biskjaer
2017).

In the process of generalization, probabilistic models
trained with artefacts from D are typically capable of gener-
ating artefacts that do not belong in D. Increased expressive
power in these models (i.e., the ability to generalize novel
solutions) derives from maximizing independence relation-
ships between elements of an artefact (e.g., being able to
model rhythm and pitch separately in a music composition).
This process can, however, lead to the generation of arte-
facts whose combined elements produce artefacts that most
would agree do not belong in D.

Suboptimal solutions exist to ensure that a probabilistic
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Figure 2: In many forms of creativity, the set of domain arte-
facts D exists as a structured subset of a larger domain Up of
all artefacts that can be represented using the same language
as is used to describe artefacts in D. Due to the inherent
difficulty of defining belonging to a particular domain for a
general audience, the set of artefacts included in D is in re-
ality somewhat vague. In practice creative systems define a
set that approximates D which defines the expressive range
of the model. The extent to which this set includes or ex-
cludes artefacts that are commonly accepted as belonging to
D controls how conservative or liberal the model will be in
judging whether or not an artefact is representative of the
domain.

model generates artefacts within the domain D of interest.
Probabilistic models could ensure their output by minimiz-
ing independence assumptions (i.e., forcing the model to
generate solutions more similar to the training data). This
solution significantly decreases the model’s ability to dis-
cover novelty from the training data. This solution also re-
quires training on data that is more precisely representative
of D. A second suboptimal solution is the generate-and-
check or rejection sampling model: probabilistically gener-
ate artefacts using the over-generalized model and then fil-
ter results to those within the D (Pease, Guhe, and Smaill
2010). This solution not only creates inefficiencies, but of-
ten assigns low probability to artefacts belonging to D (Ven-
tura 2017). In such cases it becomes improbable that the
system generates valid artefacts in reasonable time (Pachet,
Roy, and Barbieri 2011).

A better solution to the problem of enforcing the model’s
domain of artefacts is the incorporation of constraints into
a model that maintains probabilistic reasoning. The “funda-
mental entwinement of constraints and creativity” has been
noted as an area of recent interest for creativity research,
“with skillful and innovative handling of constraints seen as
a prerequisite for apt creative performance” (Onarheim and
Biskjaer 2017).

A constrained probabilistic model defines a set of rules for
belonging in D as a set of constraints C. Given C and a prob-
ability distribution Py, (x;) for all artefacts in z; € Up,
a constrained probabilistic model defines the probability of
generating an artefact z; as

Py, (x;) if z; satisfies C

P(z;) x {0

otherwise
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By defining constraints explicitly, the model can be trained
on artefacts from Up generally, maintain independence as-
sumptions that maximize expressivity, and ensure probabil-
ity within the generative model is only assigned to artefacts
which belong to D.

There are several types of constrained probabilistic mod-
els including multi-valued decision diagrams (MDDs) for
sequential domains (Perez and Régin 2017); MDDs that
enforce constraints on non-discretized temporal sequences
(Roy et al. 2016); factor graphs for imposing constraints
represented as regular languages Papadopoulos et al.; and
non-homogeneous Markov models (Pachet, Roy, and Barbi-
eri 2011). Each model incorporates a probabilistic element
designed to imitate statistical properties of a corpus—with
model parameters (e.g., Markov order or context length)
that control the degree of similarity to the corpus—and con-
straints to guarantee specifiable characteristics of the appli-
cation domain. Previous work has also shown how con-
straints can be used avoid plagiarism (i.e., limit the model’s
output domain to D less the artefacts used for training) (Pa-
padopoulos and Roy 2014). It is of interest to note that
much of the language used to describe the implementation
of these models mirrors closely the language used to by cre-
ative theorists to describe the relationship between novelty
and typicality. For example, Perez and Régin (2017) de-
scribe the process by which the model generates new phrases
as a “sampling of the solution set while respecting probabil-
ities,” specifying that the solution set “incorporate[s] some
side constraints defining the type of phrases we would like
to obtain.”

Quality Assurance

We have discussed how constrained probabilistic models are
well-suited for explicitly modeling typicality and novelty,
but what about quality? As Boden (2003) puts it, “a com-
puter could merrily produce novel combinations till king-
dom come. But would they be of any interest?” How well
are constrained probabilistic models able to produce or eval-
uate quality?

To the extent that quality can be represented in either
the system’s probabilistic model and/or the system’s con-
straint set, a constrained probabilistic model is naturally en-
dowed with a function for evaluating the quality of the arte-
facts. By structuring the system’s probabilistic model such
that high quality artefacts (by some definition of quality)
are assigned higher probability, the system will naturally
gravitate towards stochastically generating artefacts of value
(as will be shown in our demonstrative example). In cases
where quality is a function of the presence or absence of cer-
tain characteristics (consider, for example, assessing quality
based on the presence of satisfactory rhymes), the system’s
constraints can ensure that only artefacts of some minimum
quality threshold are generated.

A constrained probabilistic model thus does not define
its own function for evaluating quality, but does inherently
encode one in the forms of probabilistic models and sets
of constraints (both of which could be explicitly defined
or themselves learned from some training data, as demon-
strated in (Bodily, Bay, and Ventura 2017)).



Non-Homogeneous Markov Models

We describe a computational creative system for generat-
ing mnemonic devices using a non-homogeneous Markov
model (NHMM), a constrained probabilistic model that is
also called a constrained Markov model (Pachet, Roy, and
Barbieri 2011).

A Markov model M is a stochastic, probabilistic model
defined over a finite state space that strictly adheres to the
Markov property, meaning M is memory-less beyond a fi-
nite window. The set of all sequences s = si1,...,5, of
length n generated by M is represented by S (in our current
example this can be thought of as being equivalent to Up
from above). Every sequence s € S has a non-zero proba-
bility equivalent to

Pr(s) = Ppm(s1) - Pa(s2ls1) -+ Prm(silsn—1)

M is constructed by computing the probability matrix Pay
from training examples.

A non-homogeneous Markov model N is constructed
from a Markov model M, a sequence length [, and a finite
sequence of unary constraints {C1, ..., C;}. The set of so-
lutions for \V is represented by Sc (equivalent to bounded
D from above). With the constraints applied to V, the prob-
abilities of sequences generated by A must equal the prob-
ability of the same sequence generated by M:

Ppm(s) ifs e Se
P =
w(s) { 0 otherwise

N initially constructs [ — 1 probability matrices identical
to Py in M, one for each transition in the sequence to be
generated. States or transitions that violate a constraint are
removed. Arc consistency is then enforced on the probabil-
ity matrices, meaning that states or transitions that do not
lead to a solution s € S¢ are removed (see Figure 3b). Be-
cause the probability matrices in the NHMM are arc con-
sistent and therefore non-zero probabilities are guaranteed
to lead to a solution s € S¢c. This guarantee of solutions
avoids the inefficiency generate-and-check where nearly all
samples are rejected when the probability of a solution is
small. Finally, the model is re-normalized such that proba-
bilities Pyr(s) = Pam(s|s € S¢) (Pachet, Roy, and Barbieri
2011).

NHMMs have been applied to model music generation,
generating melodies constrained to begin and end on the
same note (Pachet, Roy, and Barbieri 2011). Barbieri et al.
(2012) apply NHMMs to generate lyrics matching rhyme,
syllable stress, part-of-speech, and semantic constraints.

NhMMonic

Here we demonstrate the application of constrained proba-
bilistic modeling to computational creativity through non-
homogeneous Markov modeling of mnemonics (abbreviated
as NhMMonic). We define a mnemonic task as a sequence
of words s = s1,...,s; to be memorized. A mnemonic de-
vice then is a sequence of words m = my, ..., m; of the
same length generated such that for all 1 < ¢ < [ the first
letters in the words s; and m; are constrained to be the same
(see Figure 3). The primary purpose of a mnemonic device
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is to aid in memorization of the order and/or identity of a s
by finding a more memorable sequence m that through its
constrained similarity to s can serve as a reminder of s. The
value of an artefact in this domain is heavily predicated on
its effectiveness in facilitating memory.

To our knowledge no mnemonic device generation mod-
els have been formally presented. We find that most avail-
able Mnemonic generation tools online use what we will call
a template method. The template method for mnemonic gen-
eration first determines a sequence of part of speech con-
straints as a function of the length [ of the sequence to be
generated. Words matching these constraints and the afore-
mentioned first-letter constraints are randomly selected from
a word bank to fit into the specific sentence structure. The
shortcoming to most template-based methods is that they do
not model transitions between words, resulting in phrases
that exhibit grammatical cohesion, but not semantic cohe-
sion.

Because NHMMs explicitly model transitions between
words while allowing for constraints, we consider this model
a good candidate for the mnemonic problem. Although
NHMMs can and have been used to impose part-of-speech
constraints or templates, we chose not to include these
constraints in our NHMM implementations preferring to
demonstrate that even a relatively simple NHMM can pro-
vide good results. While we expect both models to be
capable of generating novelty (or uniqueness as it is la-
beled in our survey), we expect NHMMs to outperform
other mnemonic device models when it comes to the aspects
of typicality relating to grammatical/semantic cohesion and
ease of memorization.

Methods

In assessing the NhMMonic system we applied two vari-
ants of NHMMs. NHMM-1 has a Markov order of 1 and
NHMM-2 has a Markov order of 2 (essentially treating each
pair of words as a single state token). A higher Markov or-
der allows the mnemonic output to more closely resemble
the sample text, increasing the model’s cohesion and typi-
cality. A drawback of having a higher Markov order is that
fewer solutions s € S¢ are found and in some cases no so-
lutions are found given finite training sentences. NHMM-1,
with its lower Markov order, allows our system to find solu-
tions when NHMM-2 does not.

For a mnemonic task s = s1,...,s;, we derive a unary
constraint oat position ¢ to ensure that the first character of
the sequence variable m; matches the first given letter of
s;. For the purposes of improved readability of generated
mnemonics we impose a few additional constraints. For
NHMM-1, we constrain each sequence variables m; to be
at least 4 letters long and the last variable m; to have ended
a sentence in the training set. For NHMM-2 the only added
constraint is to ensure that the last variable m; is not a pro-
noun, preposition, conjunction, or determiner.

The code for the NHMMs used by the NhMMonic sys-
tem are available in both a C++ implementation’ (used for

https://github.com/po-gl/
ConstrainedMarkovModel
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(b) Constrained Probabilistic Model (NHMM)
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“She offered no argument”
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Figure 3: The NhMMonic model. (a) A mnemonic task
(i.e., the four stages of enlightenment) to be memorized.
(b) A non-homogeneous Markov model built to solve the
mnemonic task. M;j, M, and M3 represent Markov con-
straints; C7, Csy, C3, and C4 denote unary constraints de-
rived from the task. Nodes marked with white X’s are re-
moved due to violation of unary constraints while the node
marked with a grey X is removed to keep the model arc con-
sistent. Edge labels indicate transition probabilities. (c) A
possible mnemonic generated by the model.

NHMM-1) and a Java implementation3 (used for NHMM-2)
online

Results

To evaluate the use of constrained Markov models for gen-
erating mnemonic devices, we devised an online survey to
compare four different mnemonic device generation mod-
els:

e Template—a third-party model* that selects a part-of-
speech template to match the desired sequence length and
then randomly selects words matching part of speech and
initial letter constraints from a hand-crafted word bank.

e NHMM-0—a model which randomly selects words
matching initial letter constraints with probability derived
from word frequencies in the training corpus.

o NHMM-1—a first-order NHMM as described above.
e NHMM-2—a second-order NHMM as described above.

The latter three models were trained on the COCA dataset
(Davies 2009). NHMM-0 and NHMM-1 were trained on 6.8
million sentences from fictional works written between the

Shttps://github.com/norkish/downbythebay/
tree/master/DownByTheBay/src/dbtb/markov
“Available via https://spacefem. com/mnemonics
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years 1995 and 2015 while NHMM-2 trained on 3 million
sentences from the same works.

Each model was used to generate 4 mnemonic devices
for each of 19 different memorization tasks® (Figure 6
shows some examples of tasks included in the experiment).
NHMM-2 was able to find satisfying solutions to 12 of the
tasks.

To evaluate the generated mnemonics, we designed a sur-
vey in which each evaluation consisted of four parts:

1. The respondent was shown one of the 19 memorization
tasks for 10 seconds.

2. The respondent was then shown a mnemonic device for

the memorization task for 10 seconds (selected randomly
from those generated by the four models).

3. The respondent was then given the (unordered) words

from the original memorization task and asked to put them
in the correct order based on his/her memory of the task
and the mnemonic.

4. Lastly the respondent was asked to evaluate the

mnemonic device (using Likert scales from 1 to 5) for

(a) memory—ease of memorization

(b) flow—grammatical/semantic coherence
(c) creativity—overall creative value

(d) uniqueness—degree of novelty

Each respondent completed four evaluations in this manner.

A total of 80 individuals completed the survey for a to-
tal of 320 mnemonic device evaluations. The survey was
distributed to different social media websites, such as Red-
dit, Facebook, and Twitter. No personal information was
gathered before or after the survey was taken. Figure 4
shows average scores for the four evaluated characteris-
tics by model. The NHMM-2 model made notable im-
provements over other models in the categories of ease of
memorization (memory) and grammatical/semantic cohe-
sion (flow). Although the NHMM-0 model performed rel-
atively poorly on memory, flow, and creativity, this model
was considered equally capable of generating novelty (i.e.,
uniqueness).

Figure 5 shows the impact of task length on ease of mem-
orization, showing generally that the longer a mnemonic
task is, the more difficult mnemonics generated for the task
are to remember. The graph also shows, however, that the
NHMMs and NHMM-2 in particular, is able to generate
mnemonics that maintain ease of memorization even for
longer tasks.

Figure 6 shows seven mnemonic device tasks together
with the highest-rated mnemonic devices (as per average
memory score) generated by NhMMonic for the task.

Discussion

Survey results demonstrate that increased grammati-
cal/semantic cohesion afforded by probabilistic Markov
models are associated with gains in ease of memorization.

SMnemonics for all models can be seen at https://
tinyurl.com/yxczxjh7
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Figure 4: Survey Results. Average ratings from 320 evalua-
tions across four metrics for four different mnemonic device
generation algorithms. Error bars are standard deviation.
The ease of memorization of mnemonics from the NHMM-
2 model appears to be associated with improved flow with
respect to other models.
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Figure 5: Impact of Task Length. As the length of the mem-
orization task increases, the effectiveness of mnemonic de-
vices decreases across all models, but at a much lesser rate
for the NHMM-1 and NHMM-2 models. We hypothesize
that this is owing to the sustained grammatical and semantic
flow that these models achieve from the constrained Markov
model.
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The fact that increasing the Markov order leads to further
gains in both flow and memory is further evidence of this
correlation. These gains from increasing the Markov order
were also mirrored in increased creativity scores, suggesting
that in the domain of mnemonic device generation, there is
an association between the creative success of a mnemonic
device and how easily it can be remembered.

This association between the success or popularity of an
artefact and the ease with which the brain is able to pro-
cess and remember it has been observed in creative domains
that do not deal directly with memorization tasks. A no-
table example is the study by Nunes, Ordanini, and Valsesia
(2014) that demonstrates an association between the popu-
larity of music and the degree of repetition in the song. Re-
searchers observed that increased repetitiveness contributed
to higher “processing fluency”, meaning the ease with which
the brain is able to grasp a new concept or artefact. A
constrained Markov model, through its probabilistic transi-
tion model, naturally assigns higher probability to frequent
word transitions (which we might assume have higher pro-
cessing fluency) while using constraints to ensure that gen-
erated mnemonics also satisfy the basic requirements of a
mnemonic device.

As is typical of Markov-based models, increasing the
Markov order can also have negative consequences. The
higher the order the more similarity exists between gener-
ated artefacts and the training data. Increasing the order also
increases the likelihood of the model not being able to find a
solution that satisfies both the (now more stringent) Markov
constraints and non-Markovian constraints. Both of these
problems can be overcome by training on more training data,
but the amount of training data needed to sufficiently erad-
icate the problem increases exponentially with the Markov
order.

Independent of the model training, some mnemonic tasks
are inherently more difficult owing to the low frequency of
words and word beginning with certain letters (this is, of
course, language-specific). Consider for example trying to
devise a mnemonic device in the English language for the
first five dynasties of China, “Neolithic, Xia, Shang, Zhou,
Qin”. Solutions certainly exist, but unless the model sees
examples in training of word pairs that would be suitable for
each word pair in the task (less likely for infrequent collo-
cates), the model will not be able to find them. On these
types of tasks we might expect the non-Markovian models
to perform better.

We considered other variations of constraints that might
have further improved the results of our model. One im-
provement considered was to constrain more than just the
first letter of each word in the mnemonic to match the task.
We thought this might further increase the ease of memo-
rization. However, it is generally the case that as constraints
become more strict, the model is able to find fewer solutions,
often leading to the model being unable to find satisfying
solutions. Another improvement we considered was com-
bining the Template and NHMM approaches through part of
speech constraints in the NHMM model. We also considered
ways to impose semantic themes within mnemonic devices
either through unary semantic constraints or through vary-



Four Stages of Enligk

“She offered no argument”

t: Stream-enterer, Once-returner, Non-returner, Arahant

(NHMM-2, 5.0)

Dantes 9 Circles of Hell: Limbo, Lust, Gluttony, Greed, Anger, Heresy, Violence, Fraud, Treachery
“Lovely little girl giggles as his voice for them”

(NHMM-1, 5.0)

Last 10 Winners of the FIFA World Cup: France, Germany, Spain, Italy, Brazil, France, Brazil, West Germany, Argentina, Italy

“Four-year-old grandson she is bumped from behind with an inflection”

(NHMM-2, 4.0)

First 9 ICCC Locations: Lisbon, Mexico City, Dublin, Sydney, Ljubljana, Park City, Paris, Atlanta, Salamanca

“Like most days she looked pretty puny and sickly”

Stages of Grief: Denial, Anger, Bargaining, Depression, Acceptance

“Dreams about being dragged against”

(NHMM-2, 4.5)

(NHMM-1, 5.0)

Levels of Biological Organization: Biosphere, Ecosystem, Community, Population, Organism, Organ System, Organ, Tissue, Cell, Molecule

“Blue eyes could pick out one of those clownish men”

(NHMM-2, 4.5)

Cell Mitosis Cycle: Interphase, Prophase, Prometaphase, Metaphase, Anaphase, Telophase, Cytokinesis

“I pushed past me and the career”

(NHMM-2, 5.0)

Figure 6: Top-rated mnemonics generated by NhMMonic. Seven mnemonic device tasks are shown. Each task consists of a
description (bold and underlined) followed by a list of words requiring a mnemonic device. Below each task is the NhMMonic-
generated mnemonic device that received the highest memorization score (with the exact model and score given in parentheses).

ing the training data. We leave these as exploratory ideas for
future work.

Many forms of creativity have relational structure (e.g.,
rhyme schemes, repeated motifs, etc.). Unlike the example
we have shown here which uses solely unary constraints, re-
lational structure is most effectively realized using binary
constraints. Sampling from constrained Markov models
with binary constraints is known to be a much harder prob-
lem (see (Rivaud and Pachet 2017)), however recent work
has been done towards providing reasonable solutions (Pa-
padopoulos et al. 2015; Roy et al. 2016). This has relevance
for imposing semantic constraints in models of mnemonic
device generation because binary constraints can effectively
be used to impose floating constraints (i.e., constraints that
can be satisfied at variable positions) rather than specifying
a specific word position where semantic constraints must be
satisfied.

NHMM doesn’t directly model all aspects of creativity.
For example intention, explicit self-evaluation, others? Con-
straints themselves can be learned or imitated. One ramifi-
cation of learned constraints is that in addition to whatever
constraints are required to define typicality, additional con-
straints could themselves be probabilistically applied in gen-
erating artefacts. This would allow constraints to be “bro-
ken” (or rather never applied) with some degree of probabil-
ity, demonstrating a method by which rules can be “intelli-
gently” broken.

In this work we have discussed aspects of constrained
probabilistic modeling that are well-suited for consistently
generating novelty and typicality in computational creative
artefacts. As an example, we have demonstrated the ap-
plication of non-homogeneous Markov models to the prob-
lem of mnemonic device generation. Our results suggest
that the constrained Markov model approach is able to ef-
fectively generate mnemonic devices that satisfy basic re-
quirements of mnemonic devices while exhibiting elevated
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levels of grammatical/semantic flow, ease of memorization,
and creative value.
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Abstract

Inpainting-based generative modeling allows for stimu-
lating human-machine interactions by letting users per-
form stylistically coherent local editions to an object us-
ing a statistical model. We present NONOTO, a new
interface for interactive music generation based on in-
painting models. It is aimed both at researchers, by of-
fering a simple and flexible API allowing them to con-
nect their own models with the interface, and at mu-
sicians by providing industry-standard features such as
audio playback, real-time MIDI output and straightfor-
ward synchronization with DAWs using Ableton Link.

Keywords interfaces, generative models, inpainting, in-
teractive music generation, web technologies, open-source
software

Introduction

We present a web-based interface that allows users to com-
pose symbolic music in an interactive way using genera-
tive models for music. We strongly believe that such mod-
els only reveal their potential when actually used by artists
and creators. While generative models for music have
been around for a while (Boulanger-Lewandowski, Ben-
gio, and Vincent 2012; Hadjeres, Pachet, and Nielsen 2017,
Roberts et al. 2018), the conception of A.l.-based interac-
tive interfaces designed for music creators is still burgeon-
ing. We contribute to this emerging area by providing a gen-
eral web interface for many music generation models so that
researchers in the domain can easily test and promote their
works in actual music production and performance settings.
This desire follows from the seminal work by Theis, van den
Oord, and Bethge, in which the authors advocate that quan-
titative evaluation of generative models in an unambiguous
way is hard and that "generative models need to be evaluated
directly with respect to the application(s) they were intended
for" (Theis, van den Oord, and Bethge 2015). Lastly, we
hope that the present work will contribute in making A.L-
assisted composition accessible to a wider audience, from
non musicians to professional musicians, helping bridge the
gap between these communities.

Drawing inspiration from recent advances in interactive
interfaces for image restoration and editing (Isola et al.
2016; Jo and Park 2019; Yu et al. 2018), we focus on provid-
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els for rhythm as well as melody (Roberts et al.
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ing an interface for “inpainting” models for symbolic mu-
sic, which are models that are able to recompose a portion
of a score given all the other portions. The reason is that
such models are more suited for an interactive use (com-
pared to models generating a full score all at once) and let
users play an active part in the compositional process. As an
outcome, users can feel that the composition is the result of
their work and not just something created by the machine.
Furthermore, allowing quick exploration of musical ideas in
a playful setting can enhance creativity and provide accessi-
bility: the "technical part" of the composition is taken care
of by the generative model which allows musicians as well
as non experts in music to express themselves more freely.

Contributions: The key elements of novelty are: (a) easy-
to-use and intuitive interface for users, (b) easy-to-plug in-
terface for researchers allowing them to explore the poten-
tial of their music generation algorithms, (c) web-based and
model-agnostic framework, (d) integration of existing music
inpainting algorithms, (e) novel paradigms for A.I.-assisted
music composition and live performance, (f) integration in
professional music production environments.

The code for the interface is distributed under a GNU
GPL license and available, along with ready-to-use pack-
aged standalone applications and video demonstrations of
the interface, on our GitHub!.

Existing approaches

The proposed system is akin to the FlowComposer sys-
tem (Papadopoulos, Roy, and Pachet 2016) which offers to
generate sheets of music by performing local updates (us-
ing Markov Models in their case). However, this interface
does not exhibit the same level of interactivity as ours since
no real-time audio nor MIDI playback is available, which
limits the tool to solely studio usage and makes for a less
spontaneous and reactive user experience.

The recent tools proposed by the Google Magenta team
as part of their Magenta Studio effort (Adam Roberts 2019)
are more aligned with our aims in this project: they offer
a selection of Ableton Live plugins (using Max for Live)
that make use of various symbolic music generation mod-
2018;

"https://github.com/SonyCSLParis/NONOTO



Huang et al. 2018). Similarly, the StyleMachine, developed
by Metacreative Technologies 2, is a proprietary tool that
allows to generate midi-tracks into Ableton Live in various
dance music styles using a statistical model trained on dif-
ferent stylistic corpora of electronic music. Yet these tools
differ from ours in the generation paradigm used: they offer
either continuation-based (the model generates the end of a
sequence given the beginning) or complete generation (the
model generates a full sequence, possibly given a template),
thus breaking the flow of music on new generations. We be-
lieve that this limits their level of interactivity as opposed
to local, inpainting-based models as ours, as mentioned pre-
viously. In particular, it hinders their usage in live, perfor-
mance contexts.

Suggested mode of usage

The interface displays a musical score which loops forever
as shown in Figure 1. Users can then modify the score by
regenerating any region only by clicking/touching it. The
displayed musical score is updated instantly without inter-
rupting the music playback. Other means of control are
available depending on the specificity of the training dataset:
we implemented, for instance, the positioning of fermatas in
the context of Bach chorales generation or the control of the
chord progression when generating Jazz leadsheets or Folk
songs. These metadata are sent, along with the sheet, to
the generative models when performing re-generations. The
scores can be seamlessly integrated in a DAW so that the
user (or even other users) can shape the sounds, add effects,
play the drums or create live mixes. This creates a new jam-
like experience in which the user controlling the A.I. can be
seen as just one of the multiple instrument players. This in-
terface thus has the potential to create a new environment for
collaborative music production and performance.

Since our approach is flexible, our tool can be used in con-
junction with other A.l.-assisted musical tools like Magenta
Studio (Adam Roberts 2019) or the StyleMachine (from
Metacreative Technologies).

Technology
Framework

Our framework relies on two elements: an interactive web
interface and a music inpainting server. This decoupling is
strict so that researchers can easily plug-in new inpainting
models with little overhead: it suffices to implement how
the music inpainting model should function given a parti-
cular user input. We make heavy use of modern web browser
technologies, making for a modular and hackable code-base
for artists and researchers, allowing e.g. to edit the interface
to allow for some particular means of interaction or to add
support for some new metadata specific to a given corpus.

Interface The interface is based on OpenSheetMusicDis-
play 3, a TypeScript library aimed at rendering MusicXML

2https://metacreativetech.com/products/
stylemachine-1lite/

3https://github.com/opensheetmusicdisplay/
opensheetmusicdisplay/
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sheets with vector graphics. Using Tone.js (Mann 2015),
a JavaScript library for real-time audio synthesis, we aug-
mented OSMD with real-time audio playback capacities, al-
lowing users to preview the generated music in real-time
from within the interface. Furthermore, the audio playback
is uninterrupted by re-generations, enabling a truly interac-
tive experience.

Generation back-end and communication For better in-
teroperability, we rely on the MusicXML standard to com-
municate scores between the interface and the server. The
HTTP-based communication API then just consists in two
commands that are required server-side:

e A /generate command which expects the generation
model to return a fresh new sheet of music in the Mu-
sicXML format to initialize a session,

e A /timerange-change command which takes as pa-
rameter the position of the interval to re-generate. The
server is then expected to return an updated sheet with the
chosen portion regenerated by the model using the current
musical context.

DAW integration In order for NONOTO to be readily us-
able in traditional music production and performance con-
texts, we implemented the possibility of integrating the gen-
erated scores in any DAW in real time. To this end, we pro-
vide the user with the option of either rendering the gener-
ated sheet to audio in real-time from within the web interface
using Tone.js or of routing it via MIDI to any virtual MIDI
port on the host machine, using the JavaScript bindings to
the Web MIDI API, WebMidi.js *. We also integrated sup-
port for Ableton Link 3¢, an open-source technology devel-
opped by Ableton for easy synchronization of musical hosts
on a local network, allowing to syncronize the inferface with
e.g. Ableton Live. Adding support for these technologies
does not represent novel advances on our side per se, yet,
paired with the support of arbitrary generation back-ends,
they allow to quickly test new generation models in a stan-
dard music production environment with minimal overwork
and make for a beneficial tool for researchers — and the first
of its kind to our knowledge.

Conclusion

We have introduced NONOTO, an interactive, open-source
and hackable interface for music generation using inpaint-
ing models. We invite researchers and artists alike to make
it their own by developing new models or means of interact-
ing with those. This high level of hackibility is to a large
extent permitted by the wide range of technologies now of-
fered in a very convenient fashion by modern web browsers,
from which we draw heavily. Ultimately, we hope that pro-
viding tools such as ours with a strong focus on usability,
accessibility, affordance and hackability will help shift the
general perspective on machine learning for music creation,

transitioning from the current and somewhat negative view

4https://github.com/djipco/webmidi
Shttps://github.com/Ableton/link/
*https://github.com/2bbb/node-abletonlink
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Figure 1: Our web interface used on different datasets: la
melody and symbolic chords format, 1b four-part chorale
music.

of "robot music", replacing musicians, towards a more real-
istic and humbler view of it as A.l.-assisted music.
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Abstract

In this work, we introduce a system for real-time ge-
neration of drum sounds. This system is composed of
two parts: a generative model for drum sounds together
with a Max4Live plugin providing intuitive controls on
the generative process. The generative model consists
of a Conditional Wasserstein autoencoder (CWAE),
which learns to generate Mel-scaled magnitude spec-
trograms of short percussion samples, coupled with a
Multi-Head Convolutional Neural Network (MCNN)
which estimates the corresponding audio signal from
the magnitude spectrogram. The design of this model
makes it lightweight, so that it allows one to perform
real-time generation of novel drum sounds on an aver-
age CPU, removing the need for the users to possess
dedicated hardware in order to use this system. We
then present our Max4Live interface designed to inter-
act with this generative model. With this setup, the sys-
tem can be easily integrated into a studio-production en-
vironment and enhance the creative process. Finally, we
discuss the advantages of our system and how the inter-
action of music producers with such tools could change
the way drum tracks are composed.

Introduction

In the early *80s, the widespread use of the sampler revolu-
tionized the way music is produced: besides hiring profes-
sional musicians, music producers have since been able to
compose with sampled sounds. This has brought much flex-
ibility for both drum and melody production, thanks to the
various offline edition possibilities offered by such systems
like pitch shifting, time stretching, looping and others.
Nowadays, many producers still rely on samplers for
drums production, mainly due to the always-increasing
amount of samples libraries available for download. This
has helped music production become increasingly accessi-
ble, even to newcomers with no or little notion in sound
design. However, relying on samples has also some draw-
backs. Indeed, producers now have to browse their vast col-
lection of samples in order to find the “right sound”. This
process is often inefficient and time-consuming. Kick drum
datasets are usually unorganized with, for instance, samples
gathered in a single folder, regardless of whether they sound
“bright” or “dark”. As a result, many producers would rely
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only on a limited selection of their favourite sounds, which
could hamper creativity.

Hence, a method allowing a comfortable and rich explo-
ration of sounds becomes an essential requirement in music
production, especially for non-expert users. Numerous re-
search efforts have been done in the domain of user experi-
ence in order to provide interfaces that enhance the fluidity
of human-machine interactions. As an example, synthesiz-
ers interfaces now often feature “macro” controls that allow
to tune a sound to one’s will quickly.

Another approach to tackle this problem is the use of
Music Information Retrieval (MIR) to deal more efficiently
with vast libraries of audio samples. MIR is an approach
based on feature extraction: by computing a lot of audio
features (Peeters 2004) over a dataset, one can define a per-
ceptual similarity measure between sounds. Indeed, audio
features are related to perceptual characteristics, and a dis-
tance between a combination of features is more relevant
than a squared error between two waveforms. The combina-
tion of MIR with machine learning techniques appears nat-
ural in order to organize such audio libraries by allowing,
for example, clustering or classification based on audio con-
tent. We can cite software such as AudioHelper’s Samplism,
Sononym and Algonaut’s Atlas.

While such software only allows one to organize an ex-
isting database, we propose to use artificial intelligence to
intuitively generate sounds, thus also tackling the problem
of sound exploration. Only very recently, some machine
learning models have been developed specifically for the
problem of audio generation. These generative models per-
form what we could define as synthesis by learning. They
rely on generative modelling, which allows performing au-
dio synthesis by learning while tackling the question of in-
tuitive parameter control (Esling, Bitton, and others 2018;
Engel et al. 2017).

Generative models are a flourishing class of machine
learning approaches whose purpose is to generate novel data
based on the observation of existing examples (Bishop and
Mitchell 2014). The learning process consists of modelling
the underlying (and unknown) probability distribution of the
data based on samples. Once the model is trained, it is then
possible for a user to generate new samples at will. However,
for the user to be active during the synthesis process and not
only passively browsing the outputs of the system, we find
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Figure 1: This diagram presents our end-to-end system for drum sounds synthesis. The generative model (1) learns how
to reconstruct spectrograms from a parameters’ space. Then, the second part of the system (2) is dedicated to spectrogram
inversion, to generate some signal from a Mel spectrogram. Finally, the software interface (3) allows a user to interact with the

model and to generate sound from the parameters’ space.

crucial the requirement that the system should provide in-
tuitive controls. To this end, we need a model that extracts
a compact high-level representation of the data. Then, by
providing these simple high-level controls to a user, the syn-
thesis process can be guided by perceptual characteristics.
A user would just have to explore a continuous and well-
organized parameter space to synthesize an infinite variety
of sounds.

Our proposal

In this work, we describe a system that allows to create a
controllable audio synthesis space so that we can use it to
synthesize novel sounds in an intuitive manner. This system
can be split into three components (Fig. 1):

e A Conditional Wasserstein Auto-Encoder (CWAE) which
generates Mel-scaled spectrograms.

e An extension of the Multi-Head Convolutional Neural
Network (MCNN) which reconstructs signal from Mel-
scaled spectrograms.

e A Max4Live plugin allowing users to interact with the
model in a music production environment.

In the remainder of this document, we first provide a state
of the art on Wasserstein auto-encoders and MCNN. Then
we describe our model and the data we used to train it. We
discuss reconstruction and generation results. Finally, we
showcase the associated plugin and explain how it could
change the way drum tracks are produced.

Related work
Generative models on audio waveforms

A few systems based on generative models have been re-
cently proposed to address the learning of latent spaces for
audio data. The Wavenet auto-encoder (Engel et al. 2017)
combines Wavenet (Oord et al. 2016) with auto-encoders
and uses dilated convolutions to learn waveforms of mu-
sical instruments. By conditioning the generation on the
pitch, such a system is capable of synthesizing musical notes
with various timbres. The WaveGAN (Donahue, McAuley,
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and Puckette 2018) uses Generative Adversarial Networks
(GAN:Ss) to generate drum sounds or bird vocalizations by di-
rectly learning on waveform. However, the GAN approach
provides little control over the generation because it is still
difficult to structure their latent space.

Generative models on spectral representations

Other works have focused on generating sound as spectro-
grams, a complex time-frequency representation of sound.
This visual representation of sound intensity through time
allows us to treat sounds like images, but has to reverted
back to the signal domain to produce sound. In (Esling,
Bitton, and others 2018) uses VAEs to learn a generative
space where instrumental sounds are organized with respect
to their timbre. However, because the model is trained on
spectra frames, it lacks temporal modeling. This hampers
the capacity of the model to easily allow users to gener-
ate evolving structured temporal sequences such as drum
sounds. This approach introduced in (Donahue, McAuley,
and Puckette 2018) takes into account these temporal depen-
dencies by proposing SpecGAN, a generative models which
uses GANS to generate spectrograms as if they were images.

Spectrogram inversion

Working with neural networks often forces us to discard the
phase information of a spectrogram. Therefore, one can-
not use the inverse Fourier transform to retrieve the signal it
originates from. With classic STFT, a common workaround
is to use the Griffin-Lim Algorithm (GLA) (Griffin and Lim
1984) which allows to estimate the missing phase informa-
tion. Also, The Multi-head Convolutional Neural Network
(MCNN) is a model that inverts STFTs (Arik, Jun, and Di-
amos 2019) using neural networks.

However, STFT is not the best transform for our purpose.
Indeed, Mel-scaled spectrograms are known to be more suit-
able for training convolutional neural networks (Huzaifah
2017). Mel-scaled spectrograms are computed with filters
based on the Mel scale, a perceptual frequency scale that
tries to mimic the human perception of pitches.



Despite being more adapted for training, using Mel-scaled
spectrograms introduces a problem: they are not invertible
and GLA cannot be used. Therefore, some deep learning
based models have been developed in order to estimate sig-
nal from non-invertible spectrograms. In (Prenger, Valle,
and Catanzaro 2018), the authors present WaveGlow, a flow-
based network capable of generating high quality speech
from Mel spectrograms. Also, in (Huang et al. 2018), the
authors use a conditioned Wavenet to estimate signal from
Constant-Q Transforms, another non-invertible transform.

Proposed model

Our model is composed of two components: a generative
model on spectrograms, whose role is to learn a latent space
from our dataset and to generate meaningful spectrograms
from this space, and a spectrogram inversion model, whose
role is reconstruct waveforms from our generated spectro-
grams.

Preliminaries on variational autoencoders

To formalize our problem, we rely on a set of data

{Xn}nep,n lying in a high-dimensional space x; € R,

We assume that these examples follow an underlying proba-

bility distribution p (x) that is unknown. Our goal is to train

a generative model able to sample from this distribution.
We consider a parametrized latent variable model

po(x,2) = po(x|z)7(z).

by introducing latent variables z € R% lying in a space of
smaller dimensionality than x (d, < d,) and distributed ac-
cording to the prior 7(z). We are interested in finding the
parameter ¢ that maximizes the likelihood ), py(z;) of the
dataset. However, for usual choices of the conditional prob-
ability distributions pg(z|z) (typically a deep neural net-
work), this quantity is intractable.

The variational autoencoder (VAE) (Kingma and Welling
2013) is a model that introduces a variational approxima-
tion g4 (z|x) to the intractable posterior py(x|z) (the approx-
imate posterior g, (z|x) is often chosen as a parametrized
family of diagonal Gaussian distributions). The network
g¢(z|x) is called the encoder whose aim is to produce latent
codes given = while the network py(|2) is called a decoder,
which tries to reconstruct  given a latent code z.

The introduction of the variational approximation of the
posterior allows us to obtain the following lower bound
L(8, @) (called ELBO for Evidence Lower BOund) over the
intractable likelihood:

‘6(0’ d)) = Exwp(x) [Ezwp(z|x) [IOgPG (X|Z)]
reconstruction

— Dxw[gg(2[x) | 7(2)] |, (1)

regularization

where D1, denotes the Kullback-Leibler divergence (Cover
and Thomas 2012).
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o The first term F,.,zx) [log pg(x|z)] is the likelihood
of the data x generated from the set of latent variable
z ~ @y(z|x) coming from the approximate posterior.
Maximizing this quantity can be seen as minimizing a re-
construction error.

e The second term Dk, [qy(2[x) || 7(z)] is the distance
between ¢ (z|x) and 7(z) and can be interpreted as a reg-
ularization term.

In (Sohn, Lee, and Yan 2015), the authors add a condi-
tioning mechanism to the original VAE which consists in
conditioning all three networks pg(z|z), ¢4(z|z) and 7(z)
on some metadata m (in most cases, the prior 7(z) does not
depend on m).

However, a known problem of VAEs is that they tend
to generate blurry samples and reconstructions (Chen et al.
2016). This becomes a major hindrance in the context of
spectrogram reconstructions. Hopefully, this problem can be
overcome by the use of Wasserstein Auto-Encoders (WAEs)
instead of VAEs. The main difference consists in replacing
the Dkr, term in (1) by another divergence between the prior
m and the aggregated posterior qz(z) = Eyp, [q(2]%)].
In particular, the MMD-WAE considers a Maximum Mean
Discrepancy (MMD) (Berlinet and Thomas-Agnan 2011)
distance defined as follows:

MMDJ (p, ) = H/k(z’ Iplz)dz = /k(z’ 20l
(2)

where k : Z x Z — R is an positive-definite reproducing
kernel and Hj the associated Reproducing Kernel Hilbert
Space (RKHS) (Berlinet and Thomas-Agnan 2011). MMD
is known to perform well when matching high-dimensional
standard normal distributions (Tolstikhin et al. 2017; Gret-
ton et al. 2012). Since the MMD distance is not available in
closed form, we use the following unbiased U-statistic esti-
mator (Gretton et al. 2012) for a batch size n and a kernel
k:

MMD;, ,, (7, q.) =

1 o ) )
+ n(n—1) Zk(zz,zj) Y %:k(zl,zj), 3)

1#]

with 2 :={Z1,...,Z,} where Z; ~ mand z := {21,...,2n}

where z; ~ q..

The Conditional WAE

We now introduce a Conditional WAE (CWAE) architecture
so that we can generate spectrograms depending on addi-
tional metadata such as the category of the original sound
(e.g. kick drum, snare, clap, etc.).

Our encoder is defined as a Convolutional Neural Net-
work (CNN) with [ layers of processing. Each layer is a 2-
dimensional convolution followed by conditional batch nor-
malization (Perez et al. 2017; Perez et al. 2018) and a ReLU
activation. This CNN block is followed by Fully-Connected
(FC) layers, in order to map the convolution layers activa-
tion to a vector of size d, which is that of the latent space.



The decoder network is defined as a mirror to the encoder,
so that they have a similar capacity. Therefore, we move
the FC block before the convolutional one and change the
convolution to a convolution-transpose operation. Also, we
slightly adjust the convolution parameters so that the output
size matches that of the input.

Our convolutional blocks are made of 3 layers each, with a
kernel size of (11,5), a stride of (3,2) and a padding of (5,2).
Our FC blocks are made of 3 layers with sizes 1024, 512 and
d, = 64. Therefore, our latent space is of size d, = 64.

In the case of WAEs, the MMD is computed be-
tween the prior 7w and the aggregated posterior qz(z) :=
Expy [a(z|x)]. As aresult, the latent spaces obtained with
WAE:s are often really Gaussian which makes them easy to
sample. Here, the conditioning mechanism implies that we
use separated gaussian priors . = N(0, 1) for each class
¢, in order to be able to sample all classes as Gaussian. In-
deed, computing a MMD loss over all classes would force
the global aggregated posterior to match the gaussian prior,
and thus restrict the freedom for latent positions. Therefore,
we have to compute the per-class MMD to backpropagate
on.

Let’s formalize this problem by decomposing our dataset
D into C subsets D, with 1 < ¢ < C, containing
all elements from a single class. We define ¢5(z) :=
E.cp, [q(z|x,m = ¢)]. Thus, our regularizer is computed
as follows :

DZ Wc»QZ) - ZMMDk n\T QZ) (4)
Finally, our loss function is computed as:
L(8,¢) = > MSE(x;,4;) + fDz(m,q.), (5

i=1
where 5 = 10 and k is the multi-quadratics kernel as for
CelebA in (Tolstikhin et al. 2017).

MCNN inversion

To invert our Mel-spectrograms back to the signal domain,
we use a modified version of the original MCNN. In this
section, we first review the original MCNN before detail-
ing how we adapted it to handle Mel-spectrograms of drum
samples.

MCNN is composed of multiple heads that process STFTs
(Fig. 2). These heads are composed of L processing lay-
ers combining 1D transposed convolutions and Exponential
Linear Units (ELUs). The convolution layers are defined by
a set of parameters ( f, s, ¢), respectively the filter width, the
stride and the number of output channels. We multiply the
output of every head with a trainable scalar w; to weight
these outputs, and we compute the final waveform as their
sum. Lastly, we scale the waveform with a non-linearity
(scaled softsign). The model is trained to estimate a wave-
form which spectrogram matches the original one. For more
implementation details, we refer the interested readers to the
original article.

We have chosen to use this model because of three main
points. First, it performs a fast (300x real-time) and precise
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Figure 2: The MCNN for spectrogram inversion. Its multi-
ple heads estimate waveforms that are summed to produce
the final waveform. Finally, the loss is computed between
the resulting spectrogram and the original one

estimation of a signal given a spectrogram. Then, it can deal
with non-invertible transforms that derive from STFT such
as Mel-STFT. Finally, its feed-forward architecture allows to
takes advantage of GPUs, unlike iterative or auto-regressive
models.

In our implementation, we kept most of the parameters
suggested in (Arik, Jun, and Diamos 2019).We use a MCNN
with 8 heads of L = 8 layers each where, for each layer [;,
1 <4 < L, we have (w;,s;) = (13,2). However, be-
cause we have padded our signals with zeros to standardize
their length, two problems appear. First, we observed that
the part of the spectrogram corresponding to the padding
(made of zeros) was not well reconstructed if convolution
feature biases. Without biases, zeros stay zeros throughout
the kernel multiplications. Therefore, we removed all biases.
Then, we observed a leakage phenomenon: because the con-
volution filters are quite large (length 13), the reconstructed
waveform had more non-zero values than the original one.
Therefore, the loss is lower-bounded by this effect. To tackle
this problem, we decided to apply a mask to the final output
of our model, aiming at correcting this leakage. Thus, for
the number of output channels for layer 7, we have :

2kt if2<i<L
“= {2 ifi=1.
The output of head h is a couple of 2 vectors (sp, mp). We
estimate the mask M as follows:

8
M =0 (Z mh> . (6)
h=1
The finally output waveform § is computed as :
8
§ = wn*sn, ©)
h=1
§=8"xM (®)




To train the mask, we use supervised training and intro-
duce a loss term between the original mask M and the esti-

mated one M , that we name mask loss:

Lonask(M, M) = BCE(M, M). 9)

At generation time the mask is binarized. This solution has
worked very well to cut the tail artifacts introduced by the
convolutions.

A second change is that we now train MCNN on Mel-
scaled spectrograms rather than STFT. However, original
losses were computed on STFT. To turn a STFT into a Mel-
scaled spectrogram, we compute a filterbank matrix F' to
combine the 2048 FFT bins into 512 Mel-frequency bins.
Finally, we multiply this matrix with the STFT to retrieve a
Mel-scaled spectrogram:

Mel = STFT x F. (10)

Therefore, we can simply convert all STFTs to Mel-scaled
spectrograms before the loss computation. This does not af-
fect the training procedure: back-propagation remains pos-
sible since this conversion operation is differentiable.

In addition, we have modified the loss function. When
training the original model on our data, we noticed some ar-
tifacts that we identified as ’checkerboard artifacts’. These
are known to appear when using transposed convolutions
(Odena, Dumoulin, and Olah 2016). We have tried known
workarounds such as NN-Resize Convolutions (Aitken et al.
2017) but it did not yield better results. We empirically real-
ized that, in our particular case, removing the phase-related
loss terms helped reducing these artifacts. Therefore, we
removed from (Arik, Jun, and Diamos 2019) the instan-
taneous frequency loss and the weighted phase loss terms
while keeping the Spectral Convergence (SC) term:

SC.8) = T MEL(9) [

where || - || 7 is the Frobenius norm over time and frequency,
and the Log-scale MEL-magnitude loss (SCyg):

_ |[Tog(IMEL(s)| + €) — log(IMEL(8)| + €)1

an

SCiog(s, 8
tog (5 4) log(IMEL(s)| + ¢)]

12)
where || - |1 is the L' norm and € is a small number.

Finally, our global loss term is:
L = aSC(s, 8) + 3SCiog (8, 8) + YLnask (M, M), (13)

where «, 8 and ~y are constants used for weighting loss
terms. In our experiments, we set (o, 3,v) = (3,10,1),
which works well in practice.

Experiments
Dataset

We built a dataset of drums samples coming from various
sample packs that we have bought (Vengeance sample packs
and others). Overall, we collected more than 40,000 samples
across 11 drum categories. All sounds are WAV audio files
PCM-coded in 16 bits and sampled at 22050 Hz. Sounds that
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were longer than 1 second were removed in order to obtain
a homogeneous set of audio samples.

After this preprocessing, the final dataset contains 11 bal-
anced categories (kicks, claps, snares, open and closed hi-
hats, tambourines, congas, bongos, shakers, snaps and toms)
with 3000 sounds each for a total of 33000 sounds. All
sounds in the dataset have a length between 0.1 and 1 sec-
ond (mean of 0.46 second). In order to validate our models,
we perform a class-balanced split between 80% training and
20% validation sets. All the results we present are computed
on this validation set to ensure generalization.

As said in previous sections, we compute the Mel-scaled
spectrograms of these sounds. To do so, we first pad all
waveforms with zeros to ensure a constant size among the
whole dataset. Thus, all audio files are 22015 samples long.
We also normalize them so that the maximum absolute value
of samples is 1. Then, we compute STFTs for all sounds
with a Hann window with a length of 1024, a hop size of 256
and an FFT size of 2048. To turn the STFTs into Mel-scaled
spectrograms, we multiply the STFTs with the filter-bank
matrix we mentioned earlier (Eq. 10).

Experimental setup

Before assembling the two parts of our model to create an
end-to-end system, we pre-train each network separately.

We train our CWAE with an ADAM optimizer (Kingma
and Ba 2014). The initial learning rate is setto = 1le 3 and
is annealed whenever the validation loss has not decreased
for a fixed number of epochs. The annealing factor is set
to 0.5 and we wait for 10 epochs. The WAE is trained for
110k iterations. To obtain a good estimation of the MMD
between each g%, and their Gaussian prior, we have to com-
pute enough z. Indeed, it is said in (Reddi et al. 2015) that
n in equation 3 should be the same order of magnitude as
d, = 64. Therefore, at each iteration, we have to ensure
that this criterion is satisfied for each class. We then im-
plemented a balanced sampler, for our data loader to yield
balanced batches containing 64 samples for each class. It
ensures more stability than a standard random batch sam-
pler. In the end, our final batch size equals 64 x 11 = 704.

When training the CWAE, we perform some data process-
ing steps that allow greater stability and performance. First,
we compute the log of our spectrograms to reduce the con-
trast between high and low amplitudes. Then, we compute
the per-element means and variances to scale the log-Mel
spectrograms so that each element is distributed as a zero-
mean unit-variance Gaussian. Indeed, we have noticed that
it improves the WAE reconstruction quality.

When training the MCNN, we use the Mel spectrograms
without scaling. The initial learning rate is set to n = le™*
and is annealed by a scheduler at a rate of 0.2 with a pa-
tience of 50 epochs. The MCNN is trained for around 50k
iterations, with a batch size of 128.

Reconstruction

We first evaluate the reconstruction abilities of each part of
our system, and the system as a whole. On figure 3, we com-
pare the original spectrogram with both our CWAE’s recon-
struction and the spectrogram computed on the final output.



(a) Clap

o 10 20

(b) Kick drum

Figure 3: Spectrogram reconstructions of sounds from the evaluation set. From left to right, we have: the original spectrogram,
the CWAE reconstruction and the one obtained from the reconstructed waveform (the amplitudes are presented in log-scale for

the sake of visibility

o 1000 2000 3000 4000 5000 o 1000 2000 3000 000 5000
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Figure 4: Waveform reconstruction of sounds from the eval-
uation set. The top row shows the original waveform and
the bottom shows the reconstruction after passing the spec-
trogram throughout the whole system

In both cases, the reconstruction performed by the CWAE is
good yet a bit blurry. After passing through the MCNN, we
can see some stripes, corresponding to some checkerboard
artifact, which periodically affects the waveform. Thus, this
appears as a harmonic artifact on the spectrogram. While ap-
pearing important on these spectrograms because of the log,
the sound is often clean, as shown on the kick reconstruction
on figure 4.

More examples are available on the companion website',
along with audio.

Sampling the latent space

On figure 6, we show generated sounds. We generate them
by first sampling a multivariate Gaussian in the latent space.
Then, we decode this latent code, conditioned on a given
class label and obtain a spectrogram. Finally, this spec-
trogram is passed to the MCNN which estimates the cor-
responding waveform. Here, both these sounds are pretty
realistic and artifact free. However, sampling the latent
space in this fashion does not always yield good sounding

'https://anonymous9123.github.io/iccc-ndm
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results. This is because our latent distributions do not really
match Gaussian distributions. Also, conditioning on a cate-
gory does not ensure to generate sounds from this category
only. Indeed, some regions of the space will sound close to
a hi-hat, even if the class label for claps, is provided to the
CWAE. While this can be seen as a drawback, we think that
this does not lower the interest because it allows synthesiz-
ing hybrid sounds. You can hear additional audio examples
on the companion website.

Creative Applications
Interface

For our model to be used in a studio production context,
we have developed a user interface. This interface is a
Max4Live patch which allows a direct integration into Able-
ton Live. In this section, we describe how it works and show
some screen-shots.

To recall, we pass a (latent code, category) couple (z, ¢)
to the decoder of our CWAE to produce a spectrogram Z.
Then the MCNN generates a .wav file from this spectro-
gram. However, the latent code z is high dimensional (64
dimensions), so choosing a value for each parameter would
be a long and complex process. To facilitate interactivity,
we decided to use a Principal Components Analysis (PCA)
which aim is to find the 3 most influential dimensions, thus
reducing the complexity of the fine tuning process while en-
suring a good diversity in sounds. From now on, we denote
the PCA dimensions P, P> and Ps.

To generate sound through the interface, we provide con-
trollers: First, we provide control over the values for z: an
XY pad allows to control P; and P and the 'Fine’ knob
provides control over Ps. Also, a selector allows the user to
define the range of both the pad and the knob. Then, a menu
allows the user to set a value for ¢ which comes down to se-
lecting the type of sounds one wants to generate. Finally, the
user can use the waveform visualizer to crop out remaining
artifacts for example.



(] Sens. )
1.00
Preview

\ J

Figure 5: The Neural Drum Machine interface. First, the XY pad on the left controls values for the two most influential
dimensions. The ”Fine” knob controls the value for the third most influential dimension and can be seen as fine tuning. The
range selector controls the range of values available for these three dimensions. Then, a selector allows the user to control
which type of sound is generated. Finally, the waveform visualizer on the right allows to trim a sample to play only a particular

region.
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Figure 6: Sounds generated by sampling the latent space.
From top to bottom, we have the final waveform, the spec-
trogram generated by the CWAE and the one corresponding
to the waveform (the amplitudes are presented in log-scale
for the sake of visibility).

Generation Process

Every time a parameter value changes, a new sound is gen-
erated as follows. A python server is listening on a UDP
port. This server contains the model and will be in charge
of all the computation. When the user modifies the value of
a dimension, the Max client sends a message via UDP. This
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message contains the values for P, P», P3, and the cate-
gory of the sound. When the server receives the message,
it creates the associated latent code z by computing the in-
verse PCA of (Py, Py, P3) and concatenate it with the con-
ditioning vector. Then the server passes (z, ¢) to the CWAE
decoder which feeds a spectrogram to the MCNN. The ob-
tained waveform is then exported to a WAV file, and its loca-
tion is returned to the Max plugin. Finally, our plugin loads
its buffer with the content of this file and displays it on the
visualizer.

Our system can generate sounds with very low latency on
CPU (<50ms delay between the change and the sound with
a 2,6 GHz Intel Core i7). Once the sound is in the buffer, it
can be played without any latency. A demonstration video
is available on the companion website.

Impact on creativity and music production

We think that this system is a first approach towards a new
way to design and compose drums. Indeed, it is a straightfor-
ward and efficient tool for everyone to organize and browse
their sample library and design their drum sounds. Despite
the parameters being autonomously learnt by the neural net-
work, it is pretty intuitive to navigate in the latent space.

Also, such a tool can be used to humanize programmed
drums. It is often claimed that programmed electronic drums
lack a human feeling. Indeed, when a real drummer plays,
subtle variations give the rhythm a natural groove whereas
programmed MIDI drum sequences can sound robotic and
repetitive, leaving listeners bored. There are common tech-
niques to humanize MIDI drums such as varying velocities.
By allowing the synthesis parameters to vary in a small given
range, our system can be used to slightly modify the sound
of a drum element throughout a loop. This could, for exam-
ple, mimic a drummer who hits a snare at slightly different
positions.

Conclusion and Future Work

We propose a first end-to-end system that allows intuitive
drum sounds synthesis. The latent space learnt on the data
provides intuitive controls over the sound. Our system is
capable of real-time sound generation on CPU while ensur-
ing a satisfying audio quality. Moreover, the interface we



have developed is studio-ready and allows users to easily
integrate it into one of the most used DAWs for electronic
music. We identify two axes for improvement: The first one
is about the conditioning mechanism that should be more
precise and powerful so that each category can clearly be
distinguished from the others. The other axis is about de-
veloping novel ways to interact with a large latent space to
explore its full diversity. Also, similarly to what is achieved
on symbolic music (Engel, Hoffman, and Roberts 2017;
Hadjeres 2019), we will investigate approaches that let the
users specify the controls they want to shape the sounds.
This would be an effortless way for novice sound design-
ers to tune their drum sounds and create drum kits on pur-
pose, rather than relying on existing ones. Also, to merge
the computation server into the plugin is a required feature
for the model to be even more accessible.
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Abstract

This paper focuses on the use of using appropriate par-
ametric modelling approaches for computational design
optimization in architecture. In many cases, architects
do not apply appropriate parametric modelling ap-
proaches to describe their design concepts, and as a re-
sult, the design search space defined by the parametric
model can be problematic. This can further make it dif-
ficult for the computational optimization process to
produce optimized designs. As a result, the design
search space needs to be reshaped in order to allow the
computational design optimization process to fully ex-
ploit the potential of the design concept on improving
the design quality. In this paper, we identify two com-
mon types of inappropriate modelling approaches. The
first one is related to the design search space that lacks
proper constraints, and the second is related to the de-
sign search space fixed by the conventional design
knowledge. Two case studies are presented to exempli-
fy these two types of inappropriate parametric model-
ling approaches and demonstrate how these approaches
can undermine the utility of computational design op-
timization.

Introduction

In recent years, computational design optimization has
been gaining popularity in architecture because it provides
an efficient method for helping architects solve many per-
formance-based building design problems related to mate-
rial or energy use. By defining a parametric model for the
building design and an evaluative model for the building
performance, architects or engineers are able to use compu-
tational optimization algorithms such as genetic algorithms
or direct search algorithms to establish an automated de-
sign optimization system. Such systems enable architects
to use computers for tedious “number-crunching” where
the computer explores the design search space defined by
the parametric model. Once the population has been
evolved, architects can then identify optimal design vari-
ants that can achieve a set of performance requirements. As
such, the process of design variants can be driven by build-
ing performance. Such design optimization processes can
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be referred to as performance-based (Oxman, 2009) or
performance-driven design (Shi & Yang, 2013).

In the research literature, there a numerous successful
examples of computational design optimization on improv-
ing the building performance. However, in practice, the
performance improvements that can be achieved can be
limited if only relying on computational design optimiza-
tion itself.

When applying computational design optimization in ar-
chitecture, a key task for the architect is to encode their
design concept as a parametric model. The parametric
model delineates a specific design search space with a fam-
ily of design variants (candidate solutions) sharing specific
characteristics. This model is composed of a set of rules
and constraints defining the associative relationships
among various parts and components. Ideally, the paramet-
ric model should capture the design concept which the ar-
chitects believe is capable of solving the design challenges.

However, the relationship between the design concept
and the parametric model is complex, and for architects,
creating such a model in the midst of their design explora-
tion process is often difficult. This is due to that fact that,
with different parametric modelling approaches, the partic-
ular constraints and rules that the architects define will
result in a search space that only includes certain design
variants and will also impose biases favour some design
variants over others within that search space. As a result,
an inappropriate parametric modelling approach may inad-
vertently end up including too many low-performance de-
signs or excluding the most interesting high-performance
design variants from the design search space (Figure 1). In
this respect, creating an appropriate parametric model can
be more decisive than performing the computational design
optimization process itself. This issue is highlighted by
Rittel & Webber as follows: “setting up and constraining
the solution space and constructing the measure of perfor-
mance is ... likely ... more essential than the remaining
steps of searching for a solution ...” (Rittel & Webber,
1973).

Taking this as the point of departure, this paper first
identifies two common inappropriate parametric modeling
approaches and describes the weakness of the design



search space if the space is defined by these two modelling
approaches. In order to overcome these weaknesses, the
design search spaces need to be iteratively modified in
order to produce an improved design search space for the
computational optimization, which can be referred to as
design search space reshaping. Next, two case studies are
presented to crystallise the idea of design search space re-
shaping and demonstrate how computational design opti-
mization can be undermined by an inappropriate design
search space as well as how it can benefit from reshaping.

Design Search Space Reshaping

In the context of performance-based architectural design,
exploring design variants is the primary task after the de-
sign concept has been defined. With design processes that
do not use optimization systems, architects might iterative-
ly generate and evaluate design variants reflecting a partic-
ular design concept. The evaluations might use building
performance simulations such as computational fluid dy-
namic (CFD) simulations and energy simulations. By itera-
tively producing and evaluating new design variants, archi-
tects were able to gradually improve design performance
(Gero, 1990; Liu, Bligh, & Chakrabarti, 2003). However,
such design processes are typically inadequate and ineffi-
cient since only a small number of designs could be ex-
plored. As a result, the chances of discovering unexpected
high-performance designs would be very low.

The emergence of computational design optimization
helped to resolve this challenge. With such algorithms,
architects were able to define a design search space by en-
coding their design concepts and then let the computer
search the design search space for the optimal design vari-
ants. Such automated design optimization methods rapidly
become popular in research over the past decade.

While some researchers believe that performance-based
design can be fully automated, while others have become
aware of the limitation of computational design optimiza-
tion. Many researchers argue in favour of a human-in-the-
loop optimization process, with architect playing a critical
role in guiding and filtering the computational design op-
timization process (Bradner, lorio, & Davis, 2014;
Negendahl, 2015; Stouffs & Rafiq, 2015; Wortmann &
Nannicini, 2017). In this respect, Bradner et al. point out
that “the computed optimum was often used as the starting
point for design exploration” (Bradner et al., 2014), and
similarly, Wortmann takes computational design optimiza-
tion as a “medium of reflection” (Wortmann, 2018). In re-
ality, however, for those architects who are interested in
using computational design optimization either for design
exploration or reflection, a challenge they may first en-
counter is encoding their design concepts with an appropri-
ate parametric modelling approach.

In practice, the problem of inappropriate parametric
modelling approaches is not uncommon. Nonetheless, it is
often overlooked by architects due to the fact that the par-
ametric models defined by such inappropriate modelling
approaches will still result in a computational design opti-
mization process that seems to progressively discover bet-
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ter design variants. This will often give architects a false
sense of confidence with regards to the actual quality (fit-
ness) of the design variants.

On our observation, there are two key reasons for the
misapplication of parametric modelling approaches. The
first reason relates to the lack of knowledge on optimiza-
tion (Wang, Janssen, & Ji, 2018). Many architects who use
computational design optimization have little knowledge of
the complexity and limitations of such optimization algo-
rithms. The second reason relates to architects’ design fixa-
tion, stemming from conventional design knowledge based
on past experiences (Wang, Janssen, & Ji, 2019b). Such
knowledge can result in the architect overlooking alterna-
tive parametric modelling approaches that could result in
design variants with significant performance improvements.

Defined design space |

Defined design space 2

. Defined design space 4

Defined design space 3 - N
e Whole design space

/ -/
Satisficing solutions Local-optima

Figure 1. Relationship of design search spaces

In order to overcome these two problems, it requires ar-
chitects to be more critical on learning from the feedback
offered by the computational design optimization process
rather than directly using the result obtained by the process.
In this regard, the outcomes of the computational design
optimization processes can encourage architects to reflect
on and improve their parametric modelling approaches in
order to reshape the design search space.

In the next two sections, two case studies are presented
to illustrate how the above mentioned parametric model-
ling approaches, as well as the associated problematic de-
sign search space, can degrade the result of computational
design optimization processes, and how these problematic
design search spaces can be modified to allow computa-
tional optimization to achieve better results.

Case Study 1

The first case study serves to exemplify the design search
space without proper constraints. The design describes a
40-storey high-rise building centred with an atrium. A se-
ries of vertical garden voids connecting to the atrium are
inserted into the building. The combination of an atrium
and vertical gardens are widely used to enhance natural
ventilation and moderate temperatures. However, vertical
gardens can also occupy a large amount of rental space of
the building and increase the overall cost. Therefore, for
this case study, the design objective is to search for design
variants that can optimize the economic performance tak-
ing into account various factors including potential rental
profit, facade cost, and construction cost. Thus, high-
performance design variants have a rental profit that can
significantly outweigh the accumulated cost if the building
facades and structures.



In this design, the building was first voxelised in order
to insert vertical gardens into the building mass. The floors
are divided into multiple fixed-size voxels (Figure 2). Ex-
cept for the voxels representing the structural cores and the
atrium, all other perimeter voxels can be switched between
an indoor floor and outdoor void, thereby allowing for
complex patterns of interlocking indoor and outdoor space
to be created.

[] cell . vertical core
= D indoor floor
atrium
*  column

6%8.4m

6x8.4m
Figure 2. The subdivision of the floor plan into voxels.

Three alternative parametric models were created: with-
out constraints (the first one) and with constraints (the sec-
ond and the third one). Each parametric model was used to
evolve a population of designs with evolutionary algo-
rithms. The models were created in the Rhino-Grasshopper
environment, one of the most popular parametric model-
ling platforms among architects. Design optimization pro-
cesses were run using Galapagos, an inbuilt optimizer in
Grasshopper, which provides a simple genetic algorithm.
In order to achieve higher statistical significance, the com-
putational design optimization process was repeated five
times for each model.

Design Search Space without Constraints

When encoding this design concept into a parametric mod-
el, many designers would prefer a simple and uncon-
strained parametric modelling approach which inde-
pendently assigns void-solid conditions for each of the
voxels from external parameters. With this approach, the
parametric model delineates a design search space with a
rich diversity of design variants. At the same time, such
parametric models are easy to implement, thereby, making
such approaches attractive to architects who often have
limited programming skills. However, the downside of
using this modelling approach is the extremely large design
search space. Moreover, the design search space may also
include a great many chaotic design variants which may be
too expensive to build. The model is referred to as the Na-
we Model.

The drawbacks of this parametric modelling approach
and the corresponding design search space can be discov-
ered by running the optimization processes. The first line
in Figure 3 presents the result of each of the five design
optimization processes. All resultant design solutions have
distinct geometric characteristics, and some of these design
variants have unexpected geometric features. For instance,
the middle one has the merge of voids from consecutive
floors allowing for an impressive spatial flowing form.
However, from the architectural point of view, most of
these can be regarded as infeasible in terms of building
geometry.
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Figure 3. Results of the design optimization processes

In addition to the infeasible building geometry, the de-
sign variants can also not meet the required economic per-
formance criteria. Two out of the five resultant designs
have a fitness value below zero, which means that these
solutions fail to make a rental profit covering the cost,
while the other three merely have limited profitability. On
the whole, even though these design variants are deemed
“optimal”, they fail the basic requirements for feasibility.
Meanwhile, even in the sense of supporting reflection,
these designs cannot offer much information for architects
to extrapolate these to discover some hidden trends or
trade-offs of the design problem.

With regards to weaknesses that these design variants
have, the unconstrained design search space is the major
issue hampering the computational design optimization
process to find feasible design solutions. As Rasheed (1998)
argued, many parametric models can result in a large pro-
portion of infeasible or invalid design variants in the de-
sign search space. This can make it extremely difficult for
computational design optimization processes to identify
even one single feasible design variant if the design search
space is huge. Considering the weaknesses inherited from
the unconstrained design search space, the parametric
modelling approach needs reformulation by introducing
constraints, to reshape the design search space.

Design Search Space with Constraints

Excluding those infeasible design variants within the de-
sign search space is necessary to achieve meaningful re-
sults from design optimization processes. Hence, direct
constraint handling strategies such as special representa-
tions and repair functions (Eiben & Smith, 2004) can be
used to achieve such exclusions by avoiding the creation of
infeasible design variants. Therefore, the parametric mod-
elling approach was reformulated by applying these con-
straint handling strategies into the parametric model.
Firstly, with regards to special representations, a set of
predefined floor layout patterns were applied to the design
(Figure 4), which ensure that the insertion of vertical gar-
den voids only occupies a reasonable size of indoor floors
and all vertical garden can connect to the atrium to facili-
tate natural ventilation. The parametric model applying this



constraint handling design strategy is referred to as the
Constrained Model. Likewise, based on the same simple
genetic algorithm for optimizing the Na'We Model, five
design optimization processes were carried out to investi-
gate the effect of the constraints applied in this Model
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Figure 4. Predefined floor layout patterns
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The second line of Figure 3 shows the optimal design
variants found across the five design optimization process-
es. Compared with those obtained with the Na'we Model,
these optimal designs have better economic performance in
terms of the fitness. In addition, the constraints also make
the design optimization processes find design variants with
similar geometric characteristics, which help architects
extract reliable information from the result.

However, also shown in Figure 3, the building geome-
tries still lack feasibility, which implies that the design
search space defined by the Constrained Model still con-
tains a large number of infeasible design variants which
prevent feasible designs from being identified. These in-
feasible design variants have a common undesirable fea-
ture: a large hole at the top of the building. It is mostly due
to the stacking of floors with the same floor layout pattern.
Such floor stacking can result in oversized voids in cases

where many voids overlap one another and become merged.

In this regard, the constraint embedded in this model is
unable to exclude all unwanted infeasible design variants,
and the design search space of the Constrained Model
needs to be further reshaped (shrunken).

Considering the infeasible feature uncovered by the op-
timization result, a repair function was applied into Con-
strained Model, which is able to correct the identified prob-
lematic features in the design. The parametric model with
the repair function is referred to as the Constrained-
Repaired Model. The repair function is primarily aimed to
control the vertical size of fagde voids by preventing
voids from stacking.

The repair function is not explicitly enforced under all
circumstances, and rather, it is triggered implicitly when
violations of the vertical size limit are detected. For this
case study, if the void vertically exceeds six stories, the
repair function will be activated, and the over-sized void
will be iteratively shrunken from the top and the bottom
until a suitable height is reached (a-a’ in Figure 5). In addi-
tion, the repair function also fixes another problematic fea-
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ture, where two voids meet at a point on the diagonal re-
sulting in a pair of cross-diagonal voids (b-5" in Figure 5).
Likewise, Constrained-Repaired Model was used to opti-
mize the design.

| || I I:: IMTHH
3l 1 ril
11 |
I H r II I ]I [I The vertical garden
e o on the facade
Original Design Repaired Design

Figure 5. An example of design being fixed by the repair function

The third line of Figure 3 presents the optimal designs
found by the design optimization processes with Con-
strained-Repaired Model. One can find that all these se-
lected design variants have similar geometric features and
fitness. On the one hand, the building geometries are more
desirable from architectural perspectives compared with
those obtained with the Constrained Model. On the other
hand, the fitness is also further improved, which implies
that these design variants are more profitable. In this re-
spect, the combination of the special representation and the
repair function makes the design search space well-
constrained. Only with that design search space, can the
computational design optimization play a meaningful role
in helping architects either understand the design problem
or facilitate better decision-making.

With progressively applied constraints into the paramet-
ric model, the design search space is iteratively reshaped
(shrunken) with the exclusion of a great many infeasible
design variants. The first case study not only shows how
poorly-constrained design search space can obstacle com-
putational design optimization processes to improve the
design but also demonstrates how constraints can be ap-
plied to overcome the weaknesses inherited from the un-
constrained design search space. However, we should point
out the incorporating these constraints will inevitably re-
duce the variety of design variants in the design search
space, which further make the optimization result less un-
expected. It is the trade-off the architect should carefully
consider.

Case Study 2

The second case study serves to exemplify the parametric
modelling approach framed by conventional design
knowledge. The design describes a fixed four-story low-
rise building centered with a quadrilateral courtyard space.
Courtyards have been widely applied in architectural de-
sign to improve indoor lighting quality, as it can allow
much light to reach the inner part of the building. However,
the form and the size of the courtyard volume can result in
great differences in its ability to catch sufficient natural
lighting for the indoor space. In general, larger courtyards
allow for larger natural-lit indoor space, while these also
undermine the profitability of the building since the court-
yard occupies much indoor space. Thus, when designing



buildings with a courtyard, it is crucial to restrict the size
of the courtyard volume while searching for the form of the
courtyard can catch as much daylight as possible.

In this case study, three alternative parametric models
were created, and these model either stem from paper-
based design knowledge or spatial design knowledge. In
order to investigate the capability of these models in facili-
tating computational design optimization to optimize the
natural lighting performance of the building, design opti-
mization processes combined lighting simulations were
conducted. The simulation was performed by DIVA
(Jakubiec & Reinhart, 2011), and Spatial Daylight Auton-
omy (sDA) was taken as the performance indicator. SDA
calculates the percentage of floor area that receives at least
300 Lux for at least 50% of the annual occupied hours
(Sterner, 2014).

At the same time, in order to restrict the size of the
courtyard, the gross floor area of the building was also
taken into account. The gross area of the building is nor-
malized to an area ratio by dividing the actual gross area
with a target gross area. The area ratio is exponentially
decreased along with the decrease in the gross floor area.
The area ratio is applied to penalize natural lighting per-
formance. Thus, the value of sDA value is multiplied with
the area ratio which is always equal or less than 1. As a
result, only when the courtyard with a reasonable size, is
the natural lighting performance achieved by the courtyard
valid.

The lighting simulation is time-consuming, where each
simulation lasts around 1-to-2 minutes. Thus, running the
computational design optimization process multiple times
in impractical. Hence, for this case study, the optimization
process based on each parametric model only ran once. At
the same time, an island-model-based evolutionary algo-
rithm (Wang, Janssen, & Ji, 2019a) was applied to opti-
mize the design because this algorithm can yield several
diverse design variants, which can facilitate a better under-
standing of the design search space. In this case study, five
parallel search processes were set, so that an equal number
of design variants were