
Creative Invention Benchmark

Matthew Guzdial, Nicholas Liao, Vishwa Shah, and Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332 USA
mguzdial3@gatech.edu, nliao7@gatech.edu, vishwashah@gatech.edu, riedl@cc.gatech.edu

Abstract
In this paper we present the Creative Invention Bench-
mark (CrIB), a 2000-problem benchmark for evaluating
a particular facet of computational creativity. Specif-
ically, we address combinational p-creativity, the cre-
ativity at play when someone combines existing knowl-
edge to achieve a solution novel to that individual. We
present generation strategies for the five problem cate-
gories of the benchmark and a set of initial baselines.

Introduction
Benchmarks represent a common means for driving com-
munity effort on a specific task. For example, MNIST is a
dataset of handwritten digits paired with their numeric value,
which proved popular and produced breakthroughs in the
field of image recognition (LeCun 1998). At present it is
considered solved by modern methods, but has continued as
a standard for evaluating novel approaches, given that there
are known performances for comparable techniques. While
imperfect, we posit a benchmark for creativity could accom-
plish similar effects for the field of computational creativity.
Creativity itself is too ill-defined for any benchmark. But
just as recognizing handwritten digits does not translate to
mastery of computer vision, we can define a set of creative
tasks to address one particular facet of creativity.

Imagine you are an agent with a limited knowledge base.
You know about the color red (255,0,0) and blue (0,0,255),
and you know that there are integer variables x and y that
can range from 0 to 100. You have access to a single method
Paint, that given a value for x and y, and a color (represented
in RGB) paints a pixel of a canvas. In return for painting
a pixel the agent receives a floating point score [0-1] that
grades the agents current painting compared to an unseen
goal. The goal, in this case, is to paint a picture of a grape.

As a human reading the problem description above, the
answer to this problem appears obvious. From red and blue
make purple, or perhaps multiple shades of purple, in order
to paint the unseen picture of a grape. This instinct can be
understood as an instantiation of what Boden calls combina-
tional creativity (Boden 2004). But it does not reflect how
a naive AI agent might solve this problem, instead greedily
placing blue and red to maximize the score to some local
maximum without inventing the color purple. Alternatively
one might naively hand-author all possible colors for the AI

agent, but this would run against the spirit of the problem.
Solving this problem clearly requires creativity, but we do
not argue that this problem can evaluate the entirety of cre-
ativity. We instead focus on p-creative, combinational cre-
ativity (Boden 1998). P-creativity refers to creation of ar-
tifacts that are novel to the individual creator based on its
knowledge (e.g., the artifact could have been invented by
other creators previously). Combinational creativity refers
to the creation of artifacts through the process of recombin-
ing existing knowledge. For the purposes of this paper we
refer to this class of problem as invention problems.

In this paper we present the Creative Invention Bench-
mark (CrIB)1, a publicly available benchmark of 2000 prob-
lems in 5 domains (painting, alien language, photobashing,
narrative, and dessert recipes). All of these problems fit the
general form of the painting example, requiring an agent to
generalize and invent new concepts from a given problem-
specific knowledge base to reach a solution given feedback
from an unseen goal.

The example of painting an unseen grape may seem trivial
but it is analogous to many of the most interesting and prac-
tical problems currently facing society from product inven-
tion to drug discovery. As humans we reflect on our existing
knowledge to invent radical solutions, and we anticipate a
need for artificial agents to do the same.

An important—but largely overlooked—challenge in
computational creativity is cross-domain creativity, wherein
a single agent or model is able to address creative problems
from disparate domains. Commonly creativity researchers
sidestep the need for general creative reasoning through
hand-authoring of domain-specific knowledge. To the best
of our knowledge this represents the first such cross-domain
benchmark for computational creativity.

The rest of this paper is organized as follows: In section
two we discuss related work and historic work that informs
our position for this paper. In section three we discuss CrIB,
all five problem categories and examples of each problem. In
section four we demonstrate various baselines and features
of the benchmark. We end with a discussion of the limita-
tions of the benchmark, applications, and future directions.

1https://github.com/mguzdial3/CrIB



Related Work
Creativity Tests
There exist prior formal tests that involve computational
models of creativity. For example the Lovelace 1.0
(Bringsjord, Bello, and Ferrucci 2003), Lovelace 2.0 (Riedl
2014) and MacGyver tests (Sarathy and Scheutz 2017) for-
malize bounds and loose evaluations that require creative
cognition. However none of these prior approaches present
sets of individual problems. Ravens Progressive Matrices
(Raven and others 1938) has been used as a test for general
cognitive ability, which includes creativity, most notably in
work such as (Shegheva and Goel 2018). However, this test
does not specifically seek to test creativity and only makes
use of a single domain, whereas CrIB focuses on cross-
domain, combinational p-creativity.

Combinational Creativity
There exists a range of combinational creativity techniques,
which we briefly summarize. Notably researchers of combi-
national creativity do not frequently self-identify as address-
ing the same problem or field. Thus many combinational
creativity approaches remain dependent on particular prob-
lem domains. However there has been some recent work to
attempt to tie this field together (Guzdial and Riedl 2018).

Case-based reasoning (CBR) represents a general AI
problem solving approach that relies on the storage, re-
trieval, and adaption of existing solutions (De Mantaras et
al. 2005). The adaption function has lead to a large class
of combinational creativity approaches, falling in two cate-
gories of either substitutional or structural adaption (Wilke
and Bergmann 1998; Fox and Clarke 2009). These tech-
niques tend to be domain-dependent, for example for the
problem of text generation or tool creation (Hervás and
Gervás 2006; Sizov, Öztürk, and Aamodt 2015).

Genetic Algorithms (GAs) represents a general AI prob-
lem solving approach that relies on an abstracted model
of biological evolution (Srinivas and Patnaik 1994). It has
proven extremely popular among computational creativity
practioners, and we make use of it for an initial agent
for solving CrIB. While not often recognized as such, the
crossover function of a GA can be understood as a combi-
national creativity approach (Herrera, Lozano, and Sánchez
2003), though as with CBR adaption crossover functions
tend to be domain-dependent.

Beyond CBR and GAs the area of belief revision, model-
ing how beliefs change, includes a function to merge exist-
ing beliefs with new beliefs(Konieczny, Lang, and Marquis
2004; Steels and De Beule 2006; Cojan and Lieber 2008;
2009; Konieczny and Pérez 2011). The mathematical notion
of convolution has also been applied to blend weights, but
with inconclusive results (Thagard and Stewart 2011).

We identify three combinational creativity approaches
for further discussion given their popularity and generality
across multiple problem domains. We visualize these ap-
proaches with illustrative examples in Figure 1.

Concept Blending Fauconnier and Turner (1998) formal-
ized the “four space” theory of concept blending. They

described four spaces: two input spaces represent the un-
blended elements, input space points are projected into a
common generic space to identify equivalence, and these
equivalent points are projected into a blend space. In the
blend space, novel structure and patterns arise from the pro-
jection of equivalent points. Fauconnier and Turner (Fau-
connier and Turner 1998; 2002) argued this was a ubiqui-
tous process, occurring in discourse, problem solving, and
general meaning making.

Concept blending typically requires a large amount of
human authoring for individual concept spaces. More re-
cent work has looked into automatically learning or deriv-
ing concepts (O’Donoghue et al. 2015; Guzdial and Riedl
2016). There has been work in blending individual tagged
exemplars together based on surface level features of com-
ponents (Alhashim et al. 2014). Fauconnier and Turner orig-
inally developed a set of heuristics for domain-independent
measures of quality for blends, while more recent work has
looked to introduce goals for blends (Li et al. 2012).

Amalgamation Ontañón and Plaza designed amalgams
as a formal unification function between multiple cases
(Ontañón and Plaza 2010). Similar to concept blending,
amalgamation requires a knowledge base that specifies when
two components of a case share a general form, for example
“French” and “German” both share the more general form
“nationality”. Unlike concept blending, this shared gen-
eralization does not lead to a merging of components, but
requires that only one of components be present in a final
amalgam. For example, a “red French car” and an “old Ger-
man car” could lead to an “old red French car” or an “old
red German car”.

Amalgams have been utilized as the adaption function
in CBR systems (Manzano, Ontanón, and Plaza 2011),
combined with concept blending for product development
(Besold and Plaza 2015), and adapted to an asymmetrical
form for story generation (Ontanón, Zhu, and Plaza 2012).
Amalgamation represents a strong general method for com-
binational creativity. However it suffers from the drawbacks
of other methods in terms of a traditional reliance on au-
thored knowledge bases and domain-specific generalization.

Compositional Adaption Compositional adaption arose
as a CBR adaption approach (Holland 1989; Fox and Clarke
2009), but has found significant applications in adaptive
software (McKinley et al. 2004; Eisenbach, Sadler, and
Wong 2007). The intuition behind compositional adaption is
that individual concept components can be broken apart and
recombined based on their connections. In adaptive soft-
ware this process takes sets of functions with given inputs
and outputs, and strings them together to achieve various ef-
fects, which makes compositional adaption similar to plan-
ning given a goal state or output. However, it can also be
applied in a goal-less way to generate valid compositions.

Compositional adaption has been applied to recipe gen-
eration (Müller and Bergmann 2014; Badie and Mahmoudi
2017), intelligent tutoring systems (Reyhani, Badie, and
Kharrat 2003), and traditional CBR approaches (Chedrawy
and Abidi 2006). Unlike other methods compositional adap-
tion does not require an explicit generalization knowledge



Figure 1: Example of three combinational creativity techniques. Two input spaces on left with example output from the three
techniques on the right.

base. However, it is common to make use of a knowledge
base to generalize across components and their relationships
in order to expand the set of valid combinations.

Creative Invention Benchmark (CrIB)
In this section we discuss in more detail the Creative Inven-
tion Benchmark (CrIB). Our goal for the benchmark is to
evaluate goal-driven combinational p-creativity, meaning a
creative problem solving technique that relies on recombin-
ing the knowledge available to an individual. We refer to
this class of problems as invention problems. To address our
goal of generality we test combinational p-creativity across
five distinct domains. This further reflects the multidisci-
plinary field of computational creativity. The domains are:

1. Painting, as in the running example in the introduction,
in which an agent must invent new colors from some ini-
tial knowledge base to approximate some unknown goal
painting.

2. Alien language, in which an agent must invent novel
words to recreate an unknown goal sentence.

3. Photobashing, a practice from the field of concept art in
which existing images are pieced together to form novel
art. In this problem domain the agent must combine input
images to approximate some unknown goal photobash.

4. Narrative, in which an agent, given a graphical repre-
sentation of at least two story domains, must tell a target
unknown goal story in some novel domain.

5. Dessert Recipes, in which an agent must combine exist-
ing recipe ingredients to create an unknown goal recipe.

The benchmark has a total of 2000 problems evenly
spread across the five domains for a total of 400 problems
per domain. For each problem an agent receives an ini-
tial knowledge base, a function to apply the agent’s knowl-
edge base in a domain-appropriate way (e.g. adding words
to a sentence in the alien language domain), a function to
clear the current state of the agent’s submission in a domain-
appropriate way (e.g. resetting the current canvas to a blank
canvas in the painting domain), and a scoring function that
measures the agent’s distance to some unknown goal (with
values ranging from 0.0 to 1.0).

Figure 2: Four examples of unseen goal “paintings”

In the following subsections we discuss each domain in
further detail. Notably we discuss the structure of each prob-
lem in terms of the input knowledge base, functions avail-
able to the agent, and the problem goal. We also discuss
the approach taken to generate the domain problems and
demonstrate an example problem. We note that all relevant
code can be found at the public CrIB GitHub.

Painting
We include painting as a domain due to the long history of
visual art in computational creativity, such as AARON (Co-
hen 1995) and the Painting Fool (Colton 2012). The paint-
ing problems of CrIB reflect the general problem description
outlined in the introduction.

• Input: 2-6 colors as an initial knowledge base or palette.

• Goal: A painting that includes colors not included in the
agent’s initial knowledge base. The agent cannot directly
access this goal painting.

• Domain-Specific Function: The agent is given a function
Paint that takes as arguments two variables x and y (rang-
ing from 0 to 1) that determine the location of a pixel and



Figure 3: Example of a human photobash from one of our artists on the right with the input images used on the left.

Figure 4: Example randomly selected generated photobash
on the right, with the input images on the left.

a color (represented in RGB format). This function then
sets that pixel to the specified color on an initially blank
canvas of fixed size.

• Clear: This function allows the agent to clear the current
canvas, resetting it to an all-white image.

• Score: The scoring function compares the current can-
vas with the target painting running vector subtraction for
each pixel, it then sums over these values and normalizes
to a maximum of 1.0. Without an agent inventing new col-
ors, it is impossible to score a perfect 1.0 on any of these
problems. However, it is possible to get to a relatively
large local maxima.

We present examples of target images in Figure 2. To gen-
erate these problems we wrote a simple combination process
that takes the primary (red, green, blue), secondary, and ter-
tiary colors of a color wheel and finds all possible additive
and subtractive combinations of colors (e.g. red and blue
to make purple) From there it selects either a single color
combination or multiple color combinations to draw upon
for each problem, creating random geometric shapes with
the target colors. We sorted the final 400 questions in terms
of the number of initial colors and the number of colors and
shapes in the target image as a stand-in for difficulty.

Alien Language
We include a fictional alien language as one of our domains
as a stand-in for many language domains in the field of com-
putational creativity such as human and musical language.
In addition, making use of an alien language allowed us to
include one problem domain in which the answers would
be less obvious to a human, given that the language would
follow artificial rules without a basis in real language. This

allows us to consider a human subject study as a future base-
line.
• Input: A set of 3-9 words as an initial knowledge base or

vocabulary.
• Goal: A sentence that includes words not in the initial

vocabulary, representenced as a sequence of words. This
sentence is not directly accessible to the agent.

• Domain-Specific Function: The agent is given a func-
tion AddWord that takes as arguments one word from
the knowledge base and adds it to the current sentence.

• Clear: This function allows the agent to clear the current
sentence, resetting it to an empty sequence.

• Score: The scoring function compares the current sen-
tence with the target sentence, giving a score of 1.0 for a
perfect match, a 0.0 for no match, and a proportional score
for partial matches of words in order in the sentences.
The alien language problems were generated by first

generating a 2000-word vocabulary composed of randomly
composing words from the characters ‘A’, ‘B’, ‘C’, ‘D’, ‘W’,
‘X’, ‘Y’, and ‘Z’ varying in length between two and twelve
characters. From there we made use of arbitrary rules to
compose a total of 400 target sentences varying in length
between two and five words. For each target sentence we
found one or two words in the sentence that could be con-
sidered combinations of between two and three other words
in the vocabulary. For example “WAZZ” could be broken
into ‘WA’ and ‘ZZ’. We then sorted each problem accord-
ing to the number of input words and its length as a stand-
in for difficulty. For example a simple sentence might be
“WAZZ BYXBYW XDWB” with the initial knowledge base
‘BYXBYW’, ‘XDWB’, ‘WA’, and ‘ZZ’.

Photobashing
Photobashing is the practice of combining sets of input im-
ages to create a new composite image. It is a common prac-
tice for concept and key art for films, television shows, and
video games. We include photobashing as it fits our general
problem format and represents a real-world application of
combinational creativity.
• Input: A set of 2-9 images as an initial knowledge base.
• Goal: A goal image that represents a combination of the

input images. This image or photobash is not directly ac-
cessible to the agent.



• Domain-Specific Function: The agent is given a func-
tion Stamp, which takes as arguments x and y variables
(ranging from 0.0 to 1.0) and one of the images of the
knowledge base and places this image at an x,y location
of an initially blank canvas of fixed size. Note that the
agent can only add entire images from its knowledge base,
meaning invention must occur to reach the goal.

• Clear: This function allows the agent to clear the current
canvas, resetting it to a blank canvas.

• Score: The same as the painting scoring function.

To start generating photobashes we first gathered a palette
of over eighty royalty-free stock images and photographs.
We then made use of two distinct approaches to combine
these images. For one we asked five human artists of a range
of skill to construct photobashes. This lead to a total of 80
photobashes with a median value of 14 photobashes con-
tributed across the five artists. An example of a human phot-
bash can be found in Figure 3. For the remaining 320 photo-
bashes we constructed a simple visual grammar by breaking
apart a number of images of animals into heads, torsos, front
legs and back legs. We then ran a script to combine these
components. We required a human to verify the coherency
of each generated photobash to ensure a baseline of quality.
We reran the generation process for each rejected photobash.
An example of a generated photobash can be found in Figure
4. The problems were sorted according to number of input
images used to construct the goal as a stand-in for difficulty.

Narrative
We include narrative as a problem domain as it represents a
common area of creativity research and allows us to include
a novel representation. We made use of a story or plot graph
representation as it encodes the branching nature of stories
(Weyhrauch 1997). Plot graphs can be understood as a di-
rected graph with the nodes as story events and the edges
representing preconditions for events. Plot graphs represent
multiple possible stories in a given domain and can generate
stories by walking the graph.

• Input: A set of 2-4 distinct plot graphs

• Goal: A goal story represented as a sequence of events
that cannot be generated from any of the input plot graphs.
This story is not directly accessible to the agent.

• Domain-Specific Function: The agent is given a function
Submit, which takes a single plot graph argument, and
finds the closest story in the graph to the goal story. This
closest story is set as the current story.

• Clear: This function removes any current story.

• Score: This function compares the current story and the
target story. It returns 1.0 if the two match exactly, 0.0
if the two completely differ, and otherwise a proportional
score for the number of shared events in sequence.

To begin the generation of narrative problems we first en-
coded ten existing published plot graphs in a common rep-
resentation. We did this to ensure we did not accidentally
encode too much stylistic similarity in the plot graphs. We

pulled the movie, robbery, and pharmacy plot graphs from
(Li 2015), the cat lover, cattle driver, stage coach and tour
bus plot graphs from (Permar and Magerko 2013), the in-
heritance plot graph from (Min et al. 2008), the fantasy
plot graph from (McIntyre and Lapata 2010), and the hor-
ror Anchorhead plot graph from (Nelson and Mateas 2005).
For each plot graph we replaced the names of characters,
each only had up to two, with ’A’ and ’B’. We also simpli-
fied a few of the plot graphs such that each were at most
20 nodes. We then made use of amalgamation (Ontañón
and Plaza 2010) to generate new plot graphs. To allow for
mapping across different plot graphs we hand tagged certain
event nodes with a higher-order theme (e.g. ‘intro’, ‘end-
ing’, etc), additionally allowing mapping on shared words
across nodes. From these plot graph amalgams we gen-
erated stories, which we then hand-checked to ensure co-
herency. For example a combination of fantasy and tourbus
might output: “Monster holds B captive. A slays monster.
A rescues B. A departs with B. A and B get married. A and
B visit a Landmark.” We sorted these problems according
to the number of initial plot graphs used to create the goal
story’s plot graph.

Dessert Recipe
For our final domain we chose recipes, more specifically
dessert recipes, as recipes represent a common example do-
main for adaption and creativity. This also allowed for a
second real-world domain beyond photobashing. For each
dessert recipe problem the agent must invent a recipe given
existing recipes.

• Input: A set of 3-130 distinct recipes encoded as a recipe
name and a set of ingredients (e.g. banana muffins (ba-
nanas, flour, eggs, milk, sugar)).

• Goal: A goal recipe distinct from all of the input recipes.
This goal recipe is not directly accessible to the agent.

• Domain-Specific Function: The agent is given a function
Submit, which takes a single recipe argument. This is set
as the current recipe.

• Clear: This function removes any current recipe.

• Score: This function compares the current and target
recipe ingredients. It returns a value between 0 and 1 de-
pendent on the extent to which the two sets overlap.

To generate these problems we drew on the dessert dataset
from (Veale 2017). For each dessert we found all sets
of other desserts whose ingredients could be composed to
match its ingredients. From this point it was simple to ran-
domly select a set of four hundred of these possible compo-
sitions for each problem. We then sorted these problems
according to the number of initial desserts in the knowl-
edge base as a stand-in for difficulty. This number varied
massively from 3 to 142. As an example given banana
muffins (bananas, flour, eggs, milk, sugar), Vanilla wafer
cake (shredded coconut, flour, milk, eggs, sugar, chopped
pecans, vanilla essence), and treacle tart (golden syrup,
lemon zest, butter, flour) produce pound cake (butter, sugar,
eggs, flour, vanilla essence).



Table 1: Average output of two baselines and the random agent for each domain and across all five domains.
Painting Language Photobash Narrative Dessert Total

Null 0.70 0.0 0.76 0.0 0.0 0.29
Uncreative Max 0.85 0.72 0.89 0.45 0.49 0.61

Table 2: Scores for the presented agents and their average total.
Painting Language Photobash Narrative Dessert Total

Random Agent -0.99 -2.42 -1.50 -0.32 -0.50 -1.15
GA100 -0.99 -1.41 0.02 0.76 0.35 -0.25
GA1000 -0.91 -1.19 0.17 0.81 0.35 -0.14

Using CrIB
In this section we discuss how to make use of CriB. We in-
troduce two baselines to better characterize the benchmark,
introduce a scoring function that relies on one of these two
baselines, and present two initial agents that attempt to solve
the benchmark.

Baselines
In this section we demonstrate two baselines to further char-
acterize CrIB. The baseline “null” represents the score of
an agent that does absolutely nothing. The baseline “Un-
creative Max” represents the best an agent could do with-
out any invention of additional knowledge beyond the ini-
tial input knowledge base for each problem. We constructed
Uncreative Max by finding the closest element of the initial
knowledge base to the target concepts.

We summarize the average scores of these two base-
lines in Table 1. We note that the two visual domains—
painting and photobashing—can achieve the highest values
since they only look at pixel-by-pixel comparisons and share
many white pixels. In addition, it is relatively easy to score
high on the alien language domain since the goal sentences
are composed mostly of words from the initial knowledge
base. However, narrative and dessert generation are far less
successful. Our baselines are not meant to signify any intel-
ligence, but to provide a means for analyzing how easy it is
to guess a high-scoring solution without creative reasoning
if we attempt to score naively.

Scoring Function
The prior section demonstrates that it is possible to get high
scores without creative behavior if we score naively. How-
ever, we intend this benchmark to measure a facet of cre-
ativity. Therefore we use the following scoring function for
each problem domain:

Score = (NScorea −NScoreu)/(400−NScoreu)

Where Score represents our final score, NScorea repre-
sents the naive score discussed for each domain above for
some current agent a, NScoreu represents the naive score
discussed above for the Uncertain Max baseline. In other
words an agent’s actual score is the amount that it does bet-
ter than Uncreative Max. We are essentially making the
assumption that if the score of Uncreative Max represents

uncreative computation, whatever is left must require cre-
ative computation. Because Uncreative Max makes use of
all available knowledge without any invention of new knowl-
edge, an agent may receive a negative score if it fails to make
use of all of the knowledge it is initially given.

Initial Agents
We present two initial agents as a means of demonstrating
that the problems of this benchmark are non-trivial. For the
first agent we present a random agent that randomly selects
a single element of the initial knowledge base and runs the
domain-specific function. We note that this first agent can-
not be expected to do better than Uncreative Max, but we
include it in order to compare it to our second agent. Our
second agent is a genetic algorithm (GA) agent, which we
tested in two variations.

The GA agent searches in the space of possibile final an-
swers relevant to each domain (images for painting and pho-
tobashing, sentences for alien language, recipes for dessert
recipe, and stories for narrative). It uses a mutation func-
tion that randomly swaps out some value of the current rep-
resentation with a value from the knowledge base. It uses
a crossover function that randomly selects values from two
parents, selected according to current naive score, to fill in
the variables of a new child representation (e.g. randomly
grabbing words from two parent sentences to create a child
sentence). We used a mutation rate of 0.7, and selected the
20 best parents to create 20 new children with each iteration.
We created two variations on this agent based upon number
of iterations and population size. For the first GA100 we
ran the GA for a maximum of 100 iterations with a popu-
lation of 100 individuals. For the second GA1000 we ran
for a maximum of 1000 iterations with a population of 1000
individuals. We present the scores of all agents in Table 2.

We note a number of interesting results comparing the
scores across these agents. GA1000 did the best, as one
might expect, but did far worse than one might naively as-
sume. The primary reason for this was that the simple mech-
anism by which both GA agents introduced new knowledge
(random mutations and crossover) was insufficient to pro-
duce the desired combinations given the feedback of the
scoring function. This is most clear in comparing GA1000

and GA100 in terms of the Dessert Recipes and Narrative
performance. In the former there was no improvement in the
score despite a tenfold increase in iterations and population.



The most successful domain was Narrative, since the agent’s
crossover and mutation functions were well-suited to swap-
ping out events in a story. We found with additional tests
that the GA1000 values largely represent the upper-bound of
this approach, indicating that solving this benchmark is not
simply a problem of longer training time.

Ways of Using CrIB
We include all of the discussed agents and baselines and
a few additional agents on the public GitHub. Beyond
reporting scores we recommend researchers make use of
these given agents to draw comparisons. In particular be-
yond score we recommend reporting the average increase in
size of the knowledge base per problem and the number of
guesses or training steps necessary to achieve the reported
scores. These features can allow for better comparison in
terms of an agent’s ability to make insightful or human-
like combinations quickly. In terms of formats for report-
ing results we anticipate that this will depend on the agent.
One clear approach would be to make use of Reinforcement
Learning, which might involve reporting average score over
time. Alternatively one might approach this problem with a
more traditional classifier, at which point reporting training
and testing error may be appropriate.

We note that one naive approach might be to hand-author
knowledge for each domain. For example, simply giving
an agent all primary, secondary, and tertiary colors for the
painting domain. However, this goes against the spirit of
the benchmark, and entirely removes any need for creative
reflection or invention from an agent.

Limitations and Future Work
We note that the benchmark at present has a number of limi-
tations. We do not present any successful, creative agents by
our own measures in this paper. The development of such
agents remains the largest area of future work Further, while
relatively large at first glance 2000 problems is small com-
pared to similar benchmarks in other domains. Notably it
would be trivial to expand the painting, alien language, and
the dessert recipe domains to many times their current size,
which one can accomplish given the GitHub generator code.
However the need for human evaluation for narrative and
photobashing represents a limiting factor.

There are many more possible domains we could include
in this benchmark. For example music and product gener-
ation, both common computational creativity domains. We
fully intend to expand CrIB in future versions.

Conclusions
We present the Creative Invention Benchmark (CrIB), a
benchmark for evaluating combinational p-creativity. We
demonstrate the generative process for creating the 400
problems for each of the five domains of the benchmark,
and the performance of a set of baselines and agents. We
make this baseline available to the general research commu-
nity through GitHub, and hope that it inspires further devel-
opments in the field of computational creativity.
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Konieczny, S., and Pérez, R. P. 2011. Logic based merging.
Journal of Philosophical Logic 40(2):239–270.
Konieczny, S.; Lang, J.; and Marquis, P. 2004. Da2 merging
operators. Artificial Intelligence 157(1-2):49–79.
LeCun, Y. 1998. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.
Li, B.; Zook, A.; Davis, N.; and Riedl, M. O. 2012. Goal-
driven conceptual blending: A computational approach for
creativity. In Proceedings of the 2012 International Confer-
ence on Computational Creativity, Dublin, Ireland, 3–16.
Li, B. 2015. Learning knowledge to support domain-
independent narrative intelligence. Ph.D. Dissertation,
Georgia Institute of Technology.
Manzano, S.; Ontanón, S.; and Plaza, E. 2011. Amalgam-
based reuse for multiagent case-based reasoning. In Inter-
national Conference on Case-Based Reasoning, 122–136.
Springer.
McIntyre, N., and Lapata, M. 2010. Plot induction and
evolutionary search for story generation. In Proceedings of
the 48th Annual Meeting of the Association for Computa-
tional Linguistics, 1562–1572. Association for Computa-
tional Linguistics.
McKinley, P. K.; Sadjadi, S. M.; Kasten, E. P.; and Cheng,
B. H. 2004. A taxonomy of compositional adaptation. Rap-
port Technique numéroMSU-CSE-04-17.
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