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Abstract
What we appreciate in dance is the ability of people to sponta-
neously improvise new movements and choreographies, sur-
rendering to the music rhythm, being inspired by the cur-
rent perceptions and sensations and by previous experiences,
deeply stored in their memory. Like other human abilities,
this, of course, is challenging to reproduce in an artificial
entity such as a robot. Recent generations of anthropomor-
phic robots, the so-called humanoids, however, exhibit more
and more sophisticated skills and raised the interest in robotic
communities to design and experiment systems devoted to
automatic dance generation. In this work, we highlight the
importance to model a computational creativity behavior in
dancing robots to avoid a mere execution of preprogrammed
dances. In particular, we exploit a deep learning approach
that allows a robot to generate in real time new dancing move-
ments according to to the listened music.

Introduction
The execution of artistic acts is certainly one of the most
fascinating and impactful human activity that robotics aims
to replicate. The abilities of new generation robots can be
thoroughly tested in artistic domains, such as dance, music,
painting and drama.

The appearance and the skills that characterize anthro-
pomorphic robots make the dance domain very interesting
and challenging since human movements can either be repli-
cated, albeit imperfectly, or adapted to the embodiment of
the robot. Dance is a harmonic composition of movements
driven by the music stimuli and by the interactions with
other subjects. Dancing movements follow the rhythm of
the music and are synchronous with the song progression.
Therefore both the timing and rhythm of the execution of
the movements must be taken into account while trying to
imitate human behavior.

The implementation of dancing capabilities in robots is
not purely pursued for entertainment purposes. It provides
new clues to deepen and improve various research themat-
ics, because it requires a robust learning phase that involves
both a real-time analysis of music, the choice of harmo-
nious and suitable movements, and moreover social behav-
ior and interaction capabilities (Aucouturier et al. 2008;
Augello et al. 2016; Shinozaki, Iwatani, and Nakatsu 2007).

The challenge lies in going beyond a preprogrammed
dance executed by robots. A creative process should model

the mental processes involved in human creativity to gener-
ate movements and taking into account different music gen-
res. The robots’ perceptions should influence the choice pro-
cesses and output of a learning process should lead to con-
ceive a personal artistic style, that could be reconsidered or
refined after the audience evaluation.

While some interesting and creative approach has been
proposed for the generation of movements and choreogra-
phies (Jacob and Magerko 2015; Carlson et al. 2016;
Crnkovic-Friis and Crnkovic-Friis 2016; Lapointe and
Époque 2005), few are the works aimed at injecting a com-
putational creativity behavior in dancing humanoids (Vir-
cikova and Sincak 2010; Augello et al. 2016; Manfrè et al.
2016b).

In this work we explore the possibility for a robot to im-
provise a choreography, building on actions that are either
stored in a memory or derived from a continuous elaboration
of previous experiences. In our proposal, we took inspiration
from human dance to create a dataset of movements that the
robot can employ in his dance. The dataset, including also
information about music features related to the sequences of
movements, is used to train a variational encoder. This net-
work allows obtaining a variation of the learned movements
according to the listened music. The resulting movements
are new but are coherent with the learned ones and are well
synchronized with the listened music.

State of the art
Different works in literature propose approaches for dancing
motions generation. One of these has been proposed and ex-
perimented by Luka and Louise Crnkovic-Friis (Crnkovic-
Friis and Crnkovic-Friis 2016). It is a deep learning gen-
erative model, exploiting a Long Short-Term Memory type
of recurrent neural network, that is used to produce novel
choreographies. The network is trained on raw motion cap-
ture data, consisting of contemporary dance motions per-
formed by a choreographer. The training dataset does not
contain any information about musical features.

Cochoreo (Carlson et al. 2016) is a module of a sketch-
ing tool, named danceForms, used to create and animate
keyframes. The module combines the functionality of a
creativity support tool with an autonomously creative sys-
tem, relying on a genetic algorithm, which generates novel
keyframes for body positions. The new keyframes are eval-



uated according to a parameterized fitness function that al-
lows the choreographer to set generation options based on
their personal preferences.

Another example is the work proposed in (Aucouturier,
Ogai, and Ikegami 2007), exploiting chaotic itinerancy (CI)
dynamics generated by a network of artificial spiking neu-
rons. The motions are chosen in real-time by converting the
output of a neural network that processes the musical beats;
then are executed by a vehicle-like robot.

For what concerns performances executed by humanoids,
generally the interest is in the coordination of dancing ges-
tures and postures according to the detected beats (Ellen-
berg et al. 2008; Grunberg et al. 2009; Seo et al. 2013;
Shinozaki, Iwatani, and Nakatsu 2007)

Some creative approaches are discussed in (Augello et
al. 2016; Infantino et al. 2016; Manfrè et al. 2016a;
Vircikova and Sincak 2010; Eaton 2013; Xia et al. 2012).
Zhou et al. have analyzed some of these works in the tax-
onomy of robotic dance systems discussed in (Peng et al.
2015). In addition to the already mentioned chaotic dynamic
(Aucouturier, Ogai, and Ikegami 2007), they describe other
approaches that have been proposed for the generation of
dance choreographies. Meng et al. (Meng, Tholley, and
Chung 2014), propose the use of the interactive reinforce-
ment learning (IRL), to make robots learn to dance accord-
ing to human preferences. Among the evolutionary com-
puting approaches Zhou et al. (Peng et al. 2015), cite the
algorithms proposed in (Eaton 2013; Vircikova and Sincak
2010). In detail, the authors of (Vircikova and Sincak 2010)
have initialized a population of individuals encoded from
dance characteristics. Then, the value of fitness of the algo-
rithm is obtained with the interaction of the systems users,
obtaining dances reflecting personal preferences. Another
approach exploits the Markov Chain Model. As an exam-
ple, in (Xia et al. 2012), each motion is considered as a
Markov chain state, and the next motion is determined by
the previous motion and the current music emotion. In ours
previous works (Infantino et al. 2016; Augello et al. 2016;
Manfrè et al. 2016b) we proposed the use of both evolution-
ary computing and Markov models. We described the sys-
tem underlying a humanoid dancing performance called RO-
BODANZA, also discussing the impact on different types
of audience. In the performance, a humanoid robot interacts
and dances with professional dancers, autonomously follow-
ing the rhythms suggested by the dancers clapping the hands
and tap on a table. The movements of the robot are gener-
ated according to a Hidden Markov model. Different emis-
sion matrices determine different execution styles of dance.
The Transition Matrix (TM) of the HMM takes into account
how a movement follows the previous one in a sequence of
dance. It derives from observing the composition and occur-
rences of the human movement. The creative computational
process exploits an interactive genetic algorithm that make
the EMs to evolve according to the final user evaluations.
Therefore each performance is always different.

Variational Autoencoder
Autoencoders have been enjoying significant interest as they
can perform a lossy data compression starting from a spe-

cific dataset. Once trained, they represent in the hidden layer
all the data have been previously exposed to; the representa-
tion is “lossy” since the reconstructed x is not perfectly iden-
tical to the original one, this difference being determined by
the chosen distance or “loss” function.

Figure 1: Architecture of Variational Autoencoder network.
The network is able to faithfully reconstruct the input pat-
terns.

As it can be seen in (Vitányi and Li 1997), compression
and prediction are closely related fields, and compressors
can also be used to generate new data.

Variational autoencoders, first introduced in (Kingma and
Welling 2013), have raised much interest for their capability
to produce a variation of the learned input data.

Their most interesting feature is the capability to au-
tonomously draw the boundaries of a latent space in which
the input data can be represented. Given input data x and
calling p(x) the probability distribution of the data, we want
to learn the latent variable z with its probability density p(z)
so that data can be generated when the values of z are varied:

p(x) =

∫
p(x|z)p(z) (1)

The training of the variational autoencoder is based on
the variational inference to estimate the distribution p(x|z).
This method is often used in Bayesian methodology when
you desire to infer a posterior that is difficult to compute.
A simpler distribution qλ(z|x) is thus chosen as to minimize
the Kullback-Leibler divergence between these two distribu-
tions. The variational parameter λ is used to refer to a family
of distributions and, for a Gaussian family, would represent
mean and variance. The divergence is calculated as:

DKL(qλ(z|x)||p(z|x)) = Eq[log
qλ(z|x)p(x)

p(x, z)
] (2)

It can be demonstrated that:

log(p(x)) = Lv +DKL(qλ(z|x)||p(z|x)) (3)
Since 2, to minimize the log(p(x)) it is sufficient to minimize
Lv . Its value can be calculated as

Lv = −DKL(q(z|x)||p(z)) + Eq(z|x)log(p(x|z)) (4)

Where the first term is −DKL(q(z|x)||p(z)) representing
the regularization part imposing the distribution of p(z)



as similar as possible to q(z|x) while the second part
Eq(z|x)log(p(x|z)) takes into account a proper reconstruc-
tion of the values of x. After the training phase aimed at
minimizing the value of log(p(x)), that is equivalent to max-
imizing the likelihood, the values of zeta represent the best
compression for the input values and variation is the z space
corresponds to a variation in the reconstruction of input sam-
ples

Creative Robot Dance with variational
encoder

Throughout this work the expression “variational encoder”
is used to signify a change of the intended use of varia-
tional autoencoders; while the internal structure remains un-
changed, latent variables are not used to allow a faithful re-
construction, but rather to introduce a different kind of in-
formation that proactively alters the reconstruction, enabling
the robot to perform a different set of movements and also
change its dancing style according the past performances.

Figure 2: Architecture of Variational Encoder network. The
network is able to reconstruct sequence of movement that
can be varied giving the music features as an additional in-
put.

The building blocks of a variational encoder are shown in
Figure 4a . It is assumed that the information we deal with
can be faithfully approximated with a Gaussian distribution,
so that the encoder network can map the input samples into
two parameters in a latent space, zmean and zlogsigma

. They
uniquely identify a given Gaussian distribution from which
randomly sampled points z are then extracted. One of our
contributions lies in the sampling function: altering the dis-
tinctive parameters of the Gaussian curve results in a differ-
ent output mapping by the decoder network.

The parameters of the model are trained taking into ac-
count the reconstruction loss that forces the decoded sam-
ples to match the initial inputs. Furthermore, we minimize
the Kullback-Leibler divergence between the learned latent
distribution and the prior distribution, in order to avoid over-
fitting of the original dataset.

The decoding part, formed the hidden layer of the decoder
and the decoder itself is shown in figure 4b and it is used for
the prediction of the output movements. In our system, the
creation of the robotic dance is based on the three processing
phases: processing the sound, learning the movements and
the generation of a sequence of movements.

The sound perceptions is implemented extracting some
music features that represent the information in the listened
music. The generation of the movements is based on the
learning phase of the neural network. The execution is the
combination of the conceived movements with the perceived
music, synchronizing the motions with the rhythm. In the
following sub sections details of the processes are given.

Learning phase
A basic understanding of the learning process in a human
brain is needed when considering the same process in a neu-
ral network. It is believed that, during the learning process,
the neural structure is altered by increasing or decreasing the
strength of synaptic connections involved in a given activity.
Artificial neural networks model this process by adjusting
the weighted connections between neurons. Finding a sat-
isfactory configuration may require several iterations which
are collectively referred to as “training”.

In this work, a choreography is built around sequences
of movements, that is, sequences of couples of poses. The
dataset of joint values is partitioned into two subsets: the
first one will be used to train the variational autoencoder,
the second one for the prediction.

As detailed in previous sections, a correct choice of la-
tent parameters is key to obtain a satisfactory reconstruction
of the original input. Gaussian sampling is performed by
taking into account both the loudness and the variance of a
given music score; the mean value of the curve is the mean of
loudnesses, and its standard deviation is the mean of music
variances. A cycle of forward propagation of all the inputs
and backward propagation of errors is called “epoch”. The
number of training examples in one forward/backward pass
is called “batch size”. In multi-layered networks backward
propagation of errors for training is often used in conjunc-
tion with an optimization method.

In this work we used a variant of the stochastic gradient
descent (SGD) optimization algorithm called Adadelta, first
described in (Zeiler 2012). An extension to a previous al-
gorithm called Adagrad (Duchi, Hazan, and Singer 2011), it
adapts the learning rate to the frequency of parameters; in
contrast to the original technique, only a fixed-size history
of w squared gradients is considered, instead of the whole
set of past gradients.

Let us call θ the parameters of the training set, J(θ) the
objective function, and gt the gradient of the objective func-
tion at time step t:

gt = ∇θJ(θ) (5)

To take history values into account, a running average
over the gradient is introduced, depending only on the pre-
vious average and the current gradient:

E[g2]t = γE[g2]t−1 + (1− γ) ∗ g2t (6)

where γ = 0.9.
A SGD update can be described using the following equa-

tion:

θt+1 = θt − η ∗ gt,i = θt + ∆θt (7)



Figure 3: On the left side the schema of the learning phase used to obtain a set of dance movements by human demonstration is
depicted. On the right there is the screenshot of the skeleton acquisition process during the learning phase and the corresponding
posture of the simulated robot.

(a) End-to-end model of the variational autoencoder (b) Detailed view of the decoder/predictor

Figure 4: Block diagrams for the variational autoencoder

where ∆θt is the parameter update vector.
It can be demonstrated that the parameter update vector

can be rewritten as follows:

∆θt = − η√
E[g2]t + ε

gt = − η

RMS[g]t
gt (8)

If the decaying average over squared parameter updates is
defined as:

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ) ∗∆θt2 (9)

the update rule in a way that is not dependent on the learn-
ing rate η:

θt+1 = θt −
RMS[∆θ]t−1
RMS[g]t

gt (10)

Robotic Dance
In order to have a dataset of variegated movements, during
multiple sessions we have recorded and stored the move-
ments of four users having different experience. The dataset
is composed of both slightly harmonic repetitive sequences

and movements with high variability and harmonicity. The
different dance experience and the multiple session of the
users provide a diversified dataset since a human usually do
not use the same sequences of movements during an impro-
vised dance with music. The heterogeneity of the dataset is
due to the different level of dance experience of the users. In
our opinion, all these movements may contribute to creating
new unseen movements mixing the learned samples.

The generation of the movements starts with the extrac-
tion of some feature from the music input, in particular, the
system extracts the loudness and the variance of the rhyth-
mic sound that will be used as input of the latent space of the
variational autoencoder to generate the movements accord-
ing to the perceived music.

Since the latent space of the network is Gaussian, the
values of loudness and variance have to be transformated
through the inverse cumulative distribution function of the
Gaussian to produce coherent values with the latent space.
The transformed value are the real input of the network’s la-
tent space and these value lead the generation of the move-
ment related to the perceived music.

Our idea is to allow the robot to execute one motion ac-



cording the beat. Given the position of the beat and the in-
terval between two consecutive beats, the system can exe-
cute one movement for each detected interval. The network,
using as an input the intensity and variance of the music in-
terval outputs a configuration of joints that represents one
single movement. The numbers of movements that the net-
work predicts is function of the number of processed music
features.

The final part of the system focuses on the execution of
the movements by the robot in synchrony with the music.
The execution of the dance is made up combining the move-
ments predicted by the network and the features of the audio
signal to keeping time, in fact, we use the information of
the beat position and beat interval to regulate the duration of
each movement.
The proposed system is flexible and can adapt to different
music genres, in fact, whatever type of rhythmic music is
provided as an input, the system can generate sequences of
movements. Moreover, it is possible to continue to train the
network with others music genres, adding new movements
captured in different learning sessions with human dancers.

Experimental Results and Discussion
In the following subsections we describe the experimental
setup, the results and a brief discussion about evaluation is-
sues of the system.

Dance Movement Acquisition
To collect the dataset of the movements, we employed the
Microsoft RGB-D1 Kinect camera to track the improvised
movements of the human dancers. We used the Kinect cam-
era since it is non-invasive and cheap compared to other mo-
tion capture systems, avoiding to use high precision capture
devices. Using a Kinect camera the dancer does need to wear
any device and he can act in a natural manner; moreover,
considering that the robot cannot reproduce all the possible
human posture due to its structural limitation more precision
does not resolve such problem.

The Kinect includes a RGB camera and four microphones
to capture sounds, an infrared (IR) emitter and an IR depth
sensor to capture the depth map of each image. The col-
lected information enables the extraction of the spatial posi-
tion of the dancer’s joints in a non-invasive way. The advan-
tage in employing the kinect is that any person in a room can
be recorded as a teacher for the dance without the any prepa-
ration and without setting the connections that are required
for the body sensors.

The use of Kinect camera allows capturing graceful and
pleasant movements displayed in front of the acquisistion
system and the good sampling frequency, around thirty
frame per second, allows to maintain a high correlation be-
tween a motion and the next one.

To interface the acquisition device with the NAO robot,
that is used to reproduce natural motion, we used ROS
(Robotics Operating System)2. It is an open-source oper-
ating system for robots that provides a layered structure to

1Red Green Blue plus Depth
2http://wiki.ros.org/it

communicate in a peer-to-peer topology between server and
hosts. ROS allows the user to connect different hosts at run-
time, managing messages among processes, sensors and ac-
tuators.

Through the Kinect sensor it is possible to extract the
skeleton data of a human dancer, obtaining in real-time the
list of the 15 joint position of the human body along the three
axis (x,y,z). The skeleton information cannot be directly
used for the robot positions since the coordinate system are
different and the robot has several limitations if compared
to human movements. Hence, the skeleton data extracted
should be transformed to change the coordinate system to
perform the movements in the robot. To track the position
of the arms and the head during the motion of the dancer
we have used the ROS package skeleton markers3. In (Ro-
driguez et al. 2014) is described a system, based on the same
technologies, to set up a robust teleoperation system. In the
current implementation a stronger focus has been given to
the movement of the upper body part not to compromise the
stability of the robot during the dance.

The dataset of the movements has been created by ob-
serving the dance of four different people; User 1 and User
2 have a limited competence in the dance field. User 3 owns
an expertise in dance, she is not a professional but often per-
forms dance and has a good sense of rhythm. User 4 is a
professional in couple dancing, highly skilled to follow the
rhythm. They were asked to execute spontaneous motions
while listening to different songs, while the RGB-D camera
of the Microsoft Kinect v1 acquired the sequence of their
movements and saved photo shots.

The system tracks and samples the movements of the hu-
man dancers as soon as music beats are detected. After the
conversion in the robot coordinate system, the transformed
joint positions are stored to be subsequently used during the
training phase. Since the robot has less degrees of freedom
than human beings, some complex movements appear to be
truncated if compared with the original ones. For example,
the robot is not able to perform sinusoidal movements with
the arm or push forward its shoulder.

Sound Processing
The Essentia Library (Bogdanov et al. 2013) has been used
to identify music features that will be used to generate move-
ments, enabling the robot to dance in synchrony with the
music.

The following features are extracted: Beats location, Beat
Per Minute (BPM), beat interval, variance and loudness.

Beat locations give the timestamps where the rhythm falls,
whereas beat intervals indicate the interval of time between
two consecutive beats; both are used to compute the inten-
sity and the variation within two subsequent musical beats
and to synchronize the movements with the music.

From the beat positions we calculate the loudness and the
variance within the frame between two consecutive beats
that are used in the successive steps to generate movements
by mean the network.

3wiki.ros.org/skeletonmarkers



Table 1: Evaluation of Robot movements versus the learning epochs

Poses Comments

The robot basically repeats the same simple movements.

There is some more variability. The left arm is risen independently.

Much more variability. Movements become more complex and do not
seem to follow a pre-recorded pattern.

Maximum variability. Uses both new and old poses. Even the head
starts moving.

Dancing Experiments
Robotic dance information has been acquired using a set of
custom Python scripts. The autoencoder has been imple-
mented using the Keras4 (Chollet 2015) open source frame-
work for rapid prototyping of deep networks.
To train the model four datasets are needed:

• Two sets P1, P2 containing k joint poses.

• Music variances V

• Music loudnesses L

The mean of values in V , Vm, and the mean of values inL,
Lm, are calculated; they will be used to create the Gaussian
distribution used to sample latent features.

Successive joint poses in P1 and P2 are coupled to form
two sets M1 and M2 containing k/2 movements. The set
M2 is M1 forward shifted of 1 time unit. Movements in M1

and M2 will be supplied as input and as expected output,
respectively, to train the encoder.

When training process has converged new movements can
be generated providing values of variance and loudness val-
ues to the latent units of the network. If the values are ex-

4http://keras.io/

tracted from the musical piece, the robot can improvise a
dance following the features of the listened song.

Table 2 shows the variance of generated joint values as the
requested number of epochs increases up to the 25th, which
is the last we have considered, as seen in , as further runs do
not produce an appreciable decrease in the error function.

The variance of joint configurations measures how far
robot movements deviate from the mean; higher values of
variance may thus be used to signify an increased creativity
in motion sequence generation. This insight is substantiated
if we consider some example movements generated at dif-
ferent epochs, as shown in the table 1.

While at epoch 1 movement sequences are quite repet-
itive, they become more and more harmonic as the neural
network continues the training. At epoch 25 a remarkable
distinctiveness can be detected.

We have also computed mean of the variance of the joint
value during different epochs. An interesting consideration
to be taken into account is that the trend of variance stalls
between 10 and 20 epochs, and then reaches a maximum
at epoch 25. In Figure 5 are shown the plot of the angle
values (in radiant) of the right and left joint in the should
and elbow. The value are referred to epoch 25 and show a
rich set of movements learned at the final steps.



Table 2: Variance of the joints

Names of Joints Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25
LElbowRoll 0.0584 0.8002 0.1806 0.1651 0.1522 0.3280
RElbowRoll 0.0390 1.0252 0.4269 0.1781 0.1924 0.3049
LElbowYaw 0.2596 0.2529 0.2095 0.1018 0.6654 0.3256
RElbowYaw 0.2219 0.3678 0.2021 0.3635 0.1965 0.1898
LShoulderRoll 0.1045 0.1724 0.2383 0.0376 0.3827 0.4827
RShoulderRoll 0.0253 0.1207 0.2563 0.3597 0.5258 0.2854
LShoulderPitch 0.3577 0.1392 0.1505 0.1388 0.3065 0.7498
RShoulderPitch 0.1993 0.1547 0.2927 1.2272 1.1995 1.4630
HeadYaw 0.0416 0.0980 0.0539 0.0306 0.0176 0.0152
HeadPitch 0.0001 0.0002 0.0003 0.0000 0.0001 0.0002

(a) Left arm chain of the robot (b) Right arm chain of the robot

Figure 5: Progress of the joints values during a dance session

Table 3: Mean of the variance of the joint value during dif-
ferent epochs

Variance Mean
Epoch 1 0.1307
Epoch 5 0.3131
Epoch 10 0.2011
Epoch 15 0.2603
Epoch 20 0.3639
Epoch 25 0.4145

In our opinion the evaluation of the output of artificial sys-
tems is a key issue for well founded computational creativ-
ity. The implementation of the dance with neural encoders
tends to focus on a restricted set of movements and to re-
peat the same patterns. From this point of view the variance
of the movements is a key parameter indicating that a large
set of movements has been learned and the dance resem-
bles human movements. Furthermore an extern evaluation
from people staring at the dance performance can be used
to select the most adapt movements for a robotic dance. In
previous work (Manfrè et al. 2017), we used a clustering
approach to define groups collecting similar dance actions.
Within the cluster, each movement has an evaluation score
initially set to 100. The centroid of the cluster is the first rep-
resentative of the group used to determine the dance creation

as previously described. If a user evaluates the performance
as negative, then the scores of the movements belonging to
the sequence are lowered. After hundreds of performances,
when a movement has a score below a given threshold (e.g.
less than 50), the system searches for the substitute with the
highest score in the same cluster. The positive evaluation
causes an increment of the related scores of involved move-
ments. The judgment of an expert evaluator provides an-
other evaluation mechanism that has a strong influence on
dance execution. In fact, the expert could indicate inade-
quate a single movement or a short sequence and directly
causes an inhibition (i.e. the score is equal to 0).

In (Augello et al. 2016) we report the evaluation results
of various live performances with heterogeneous audiences.
Even we have no rigorous experimental evidence the results
seem to demonstrate that variability of movement is an im-
portant factor for a positive evaluation.

Conclusions
In this work, we proposed a deep learning approach to in-
duce a computational creativity behavior in a dancing robot.
In particular we used a variational encoder that allows map-
ping input patterns in a latent space.

The encoder has been trained with a set of movements
captured from differently skilled dancers. The generation is
obtained by injecting the representation of the listened mu-
sic in the latent space of the encoder network. As a result,



the robot is able to improvise dancing movements accord-
ing to the listened music even if it has not been previously
presented in the learning phase.
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Manfrè, A.; Infantino, I.; Vella, F.; and Gaglio, S. 2016b. An
automatic system for humanoid dance creation. Biologically
Inspired Cognitive Architectures 15:1–9.
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