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Abstract

We introduce a new sketch based interface for generat-
ing animations. Unlike traditional digital tools, ours is
parameterized entirely by a neural network with no pre-
programmed rules or knowledge representations. The
capability of our sketching tool to support visual explo-
ration and communication is demonstrated within the
context of facial images, though our framework is do-
main independent. Our recorded sketches serve not only
as a means for generating a specific animation, but also
a standalone visual encapsulation of an animation’s se-
mantic operation which can be reused and refined.

Introduction
Sketching is the process of quickly exploring an idea
through rough designs that focus on key details. In anima-
tion, drawings such as thumbnail sketches and pencil tests
are used to study the flow of movement. These drawings are
often gestural in nature, with loose lines that capture quali-
ties of the animation’s structure and its movement. The af-
fordance of speed while still communicating essential qual-
ities makes this process of gestural sketching an ideal tool
for supporting digital animation workflows, where high fi-
delity, production-orientated interfaces may impose obsta-
cles to ideation (Rettig 1994).

Many proposed systems utilise gesture based input in an-
imation sketching by mapping the user’s actions to char-
acter movement. Building on this, we have developed
TopoSketch, a tool for prototyping the animation of faces
by sketching gestures using a tablet pen or mouse (Figure
1). A notable difference is that we have displayed gestures
as a drawing, intended as a form of encoding that visually
communicates qualities of the movement. Gestures gener-
ate a path through a vector space of faces generated by a
neural network - called a conceptual space - that abstracts
the complex task of posing faces into a simple animation
controller. TopoSketch animations are generated by alterna-
tively exploring and charting a path through a pre-defined
topographic conceptual space.

There are aesthetic and functional motivations to explor-
ing gestural input for digital animation sketching. Ab-
stract gestural lines have been used by animators as a men-
tal model for studying and planning movement, such as
”whips” or ”lines of action” (Williams 2001; Blair 1994).

Figure 1: TopoSketch animation process

The director of the hand drawn movie Persepolis (Paronnaud
and Satrapi 2007) describes that the ’vibrations of the hand
make the drawings come to life’ (Education 2007), using
these natural variations as a storytelling device. The ability
digitally impart these gestures may lend a reflexive element
to animation, facilitating a more expressive intuition of the
work (Power 2009).

Our system is unique in that it is parameterized not by a
rule based system, but instead by the geometric representa-
tion layer of the conceptual space. The conceptual space
is built from a neural network trained to reconstruct im-
ages. This parameterization is reconfigurable and the arti-
facts produced support and extend sketching as a medium of
visual exploration and communication. Additionally those
sketches become reusable components of the overall work-
flow. The sketch’s appearance serves as a visual mnemonic
to suggest the types of animations that will result when used
as an operation in the conceptual space, and the operation
the sketch represents can be also reused to achieve a similar
animation on different input images.



Background
Sketch and Gesture Animation Interfaces
TopoSketch builds upon other systems that utilise sketch and
gesture based input for animation. These applications fall
broadly into two categories: the posing of objects or charac-
ters, and the generation of movement of those objects.

Conventional animation systems are production orien-
tated, enabling control over many small aspects of an ani-
mation. However, a high degree of control is overwhelm-
ing and is not ideal for earlier stages of ideation (Rettig
1994). Sketch and gesture based input offer a unique ap-
proach to this problem, as its looser precision and intu-
itive mode of input are suitable qualities for informal tools,
letting users focus on the larger picture (Igarashi 2003;
Zeleznik, Herndon, and Hughes 1996).

It should be noted the word ”sketch” is used in this paper
to generally refer to any form of mark making done quickly
to explore an idea. This can include, but should not be con-
fused with a ”design sketch”, which typically focuses on
structural representation, such as the shape of a car. Our
definition also includes our gesture visualisation as a type of
sketch, along with other notations with less literal represen-
tations.

Numerous sketch based interfaces have been proposed
to make the task of posing characters easier and more
accessible. Typically this involves mapping a series of
drawn guides as a set of deformations applied to an ob-
ject. Some enable granular adjustments through familiar no-
tations such as stick figure drawings (Davis et al. 2003;
Matthews and Vogts 2011), or by direct drawing on the
model itself (Chang and Jenkins 2006). However, the design
intention of our system more closely resembles the level of
detail afforded by Guay, Cani, and Ronfard, where a single
stroke or ”line of action” is used to control the pose of the
entire character (Guay, Cani, and Ronfard 2013). The au-
thors argue that this abstraction is less time consuming, and
allows users to focus on the overall expressiveness of the
animation, better reflecting cognitive workloads involved in
early stages of animation. TopoSketch also shares similari-
ties to Sketch Express, where a 2D control interface consist-
ing of a window containing separate drawing regions control
different parts of a face (Miranda et al. 2011). While Sketch
Express’ standardisation lets the same poses to be reused on
different faces, our grid based sketches retargets animation
timings to different sets of facial expressions.

Similar to posing, sketch based interfaces for generating
movement involve recording a path traced by the user - such
as a mouse or tablet - and mapping it to an object’s trans-
formation. One approach is based on direct manipulation -
such as dragging an object across the screen - while the sys-
tem records these changes (Moscovich and Hughes 2001;
Davis, Colwell, and Landay 2008).

Another technique is performance based timing, where
the movement of a user drawn path is used to progress
through a set of predefined keyframes (Terra and Metoyer
2004) and (Walther-Franks et al. 2012). This allows users
to act out their animations, while retaining the precision of
keyframes.

Spatial keyframes incorporate aspects of both techniques
- users place keyframes with different poses within a scene.
Animations are created by moving a cursor in between
the spatial keyframes, blending the different poses together
based on their distances (Igarashi, Moscovich, and Hughes
2005). The effect of mapping user’s movements to complex
poses give a ”puppeteering” feel to the system. The authors
note that resulting animations are able to make apparent the
user’s natural sense of timing, contributing to a unique aes-
thetic. The feeling of creating an animation in TopoSketch is
similar in spirit to spatial keyframes, as our animation win-
dow can be thought of as having four ”keyframes”, one in
each corner. However, we do not allow the creation of new
”keyframes” for more customised controls.

In all approaches, human factors such fatigue, physical
limits and acting ability all affect the complexity, quality
and length of the animation. For example, it is unreason-
able to expect a person to act out a five minute animation in
one go. We address this by allowing users to scrub through
the timeline to overwrite an area of animation, or continue
where they left off.

Another style of sketch based animation generation is
through the use of notations. Users draw symbols on top
of the scene, which are then parsed into a series contex-
tual animations for a character based on the symbol’s po-
sition and shape (Thorne, Burke, and van de Panne 2004;
Jang et al. 2014; Kazi et al. 2014). While the notations
are limited to the number of available symbols, they are of-
ten iconic in nature (such as arrows and loops), providing
a meaningful visual record of the animation. Although less
descriptive in comparison, we argue that our visualised ges-
tures are still able to describe high level aspects of an ani-
mation.

In the domain of neural network based tools, sketch input
has been used to facilitate searching and exploration of la-
tent spaces. In image manipulation tools by Zhu et al. and
Brock et al., instead of directly changing pixels, users are
given a ”contextual paintbrush” to draw guiding marks on
the image. This rough drawing is used to indirectly nav-
igate a space of generated images within a smaller man-
ifold of coherent results. These assisted interfaces act as
”safety wheels” that allow novice users to make unsuper-
vised changes while maintaining plausible outputs (Zhu et
al. 2016; Brock et al. 2016).

Conceptual Spaces
Generative models are a popular approach to unsupervised
machine learning. Generative neural network models are
trained to produce data samples that resemble the training
set (Karpathy et al. 2016). Because the number of model
parameters is significantly smaller than the training data, the
models are forced to discover efficient data representations.
These models are sampled from a set of latent variables in a
high dimensional space, called a latent space. Latent space
can be sampled to generate observable data values. Learned
latent representations often also allow semantic operations
with vector space arithmetic (Figure 2), a phonomenon dis-
covered previously in the latent space of language mod-
els (Mikolov et al. 2013).



Figure 2: Schematic of the latent space of a generative
model. In the general case, a generative model includes an
encoder to map from the feature space (here images of faces)
into a high dimensional latent space. Vector space arithmetic
can be used in the latent space to perform semantic opera-
tions. The model also includes a decoder to map from the
latent space back into the feature space, where the semantic
operations can be observed. If the latent space transforma-
tion is the identity function we refer to the encoding and
decoding as a reconstruction of the input through the model.

Generative models are often applied to datasets of im-
ages. Two popular generative models for image data are
the Variational Autoencoder (Kingma and Welling 2013)
(VAE) and the Generative Adversarial Network (Goodfel-
low et al. 2014) (GAN). VAEs use the framework of prob-
abilistic graphical models with an objective of maximizing
a lower bound on the likelihood of the data. GANs instead
formalize the training process as a competition between a
generative network and a separate discriminative network.
Though these two frameworks are very different, both con-
struct high dimensional latent spaces that can be sampled
to generate images resembling training set data. More-
over, these latent spaces are generally highly structured and
can enable complex operations on the generated images by
simple vector space arithmetic in the latent space (Larsen,
Sønderby, and Winther 2015).

In the latent space of generative models, many high level
attributes can be represented as a vector (Figure 3). Using
techniques from (White 2016), multiple attributes can be
decoupled further to create a visualization of possible states
across multiple semantic vectors (Figure 4). For example,
when trained on a dataset of portraits, latent vectors can be
computed for ”smiling” and ”mouth open” which then ap-
plied to new face images.

Figure 3: Traversals along the smile vector using a GAN
model from (Dumoulin et al. 2016)

Figure 4: Decoupling attribute vectors for smiling (x-axis)
and mouth open (y-axis) allows for more flexible latent
space transformations. Input shown at left with reconstruc-
tion adjacent. Using a VAE model from (Lamb, Dumoulin,
and Courville 2016)

Prior to the discovery of neural network latent spaces
supporting semantic operations, cognitive science had hy-
pothesized the existence of knowledge representations that
were primarily geometric instead of symbolic. One primary
proponent was Gärdenfors who proposed a framework of
”Conceptual Spaces” as structured multi-dimensional fea-
ture spaces to support modeling information processes such
as concept learning and prototype theory (Gärdenfors 2011).
Notably, conceptual spaces were proposed as a model of
how people structure concepts, independent of any pro-
posed computational implementation of how they might
come about.

We adapt the terminology and claim that latent spaces
of generative neural networks function as conceptual spaces
which can be used as a non-symbolic knowledge represen-
tation layers in other tools. Conceptual spaces are a use-
ful medium for building human-centered tools as compared
with the ”black-box” neural network systems which lack
useful substructures or the more brittle symbolic approaches
of rule based systems.

With this framework, we examine the ability of a geo-
metric representation layer built from the latent space of a
generative neural network model to support a new type of
sketching interface tool. In our initial iteration, we explore
the conceptual space of human faces, but the tool itself is
domain independent and could be used on other similar do-
mains. In exploring the domain of human faces, our tool
constructs subspaces of the larger conceptual space of hu-
man portraits as a parameter space of a sketch driven anima-
tion tool.

TopoSketch
TopoSketch is a sketch based facial animation tool that uses
neural networks to navigate a plausible animation manifold.
Posing and animating a believable face is a complex process,
due to the interrelation of different facial features (eg: the
eyes narrowing during a smile). While other systems allow
posing of individual facial features, TopoSketch uses utili-
ties a higher level control grid based on expressions such as
’smiling’, or ’opening mouth’. These expressions represent
changes of many separate features simultaneously. Drawn



gestures are then used to control the interpolation and tim-
ing between these different expressions.

The current TopoSketch prototype is based on a VAE
model described in (Lamb, Dumoulin, and Courville 2016).
Our model is initially trained in an unsupervised fashion on
images from the CelebA training set (Liu et al. 2015) re-
sized to 256x256. After training, concept vectors are built
using attributes from both the CelebA and the Radboud
Faces Database (Langner et al. 2010). We have extended
the techniques of constructing concept vectors as described
in (White 2016) by also using vectors orthoginal to an SVM
hyperplane in latent space, which we have found gives supe-
rior results when given sufficient training data.

Extended information covering our current TopoSketch
implementation including videos is available online.1

Workspace
The main TopoSketch workspace is organized into two win-
dows side by side: the animation window and preview win-
dow (Figure 5). When an image of a face is loaded into the
tool, it is processed by TopoSketch and an animation grid of
generated faces is displayed in the animation window. The
x and y axis of this grid each represent the results of dif-
ferent operations applied to the input face, increasing in ef-
fect along the axis. For example, the face’s mouth widens
and smile gets larger along x and y axis respectively. An-
imations are recorded by drawing gestures within the ani-
mation window. Animation playback is controlled using a
timeline located beneath both windows. Buttons above the
windows provide additional functions for exporting, loading
and clearing animations or grids.

Figure 5: TopoSketch in use

Creating Animations
When the cursor is placed within the animation window, the
face closest to the cursor on the grid is shown in the preview
window. The user can move the cursor over the animation
window to create gestures, ”scrubbing” through the anima-
tion grid to create transisitions between the faces. Moving
along a single axis will only affect the corresponding oper-
ation (eg. only smiling) while moving in both axes changes
the face with both operations. Once a suitable gesture has

1https://vusd.github.io/toposketch/

been found, the cursor’s movement can be recorded by click-
dragging within the animation window. The movement is
recorded in real time, with the cursor position recorded 25
times a second. This recording is displayed as a line over
the animation grid as the user draws, allowing them to see
how the animation has progressed. Releasing the cursor
stops the recording. To create a smooth loop, the start and
end points of the recording are automatically joined with a
Bezier curve.

Editing Animations
TopoSketch currently supports basic editing capabilities
such as erasing the recording, jumping to any particular
time, and continuing the recording from that point. Ani-
mations are stored in a modular path file and the animation
grid image is an interchangeable element. Paths can be ex-
ported for use in another animation or fruther refinement in
another program. Path files can also be rendered offline by
fully interpolating and sampling in the model’s latent space
for more temporal resolution. Different animation grids can
also be loaded into TopoSketch to reuse the effect of an ex-
isting animation with either new faces or conceptual spaces.

Discussion
TopoSketch proposes a method of creating facial animations
through a very high level, sketch based interface. Neural
network generated conceptual spaces provide an underlying
”intuition” that allows simple gestural strokes to be trans-
lated into feasible looking transitions between different face
expressions. We aspire that the affordances of this style of
tool could be useful in a number of practical and aesthetic
exploratory applications. The combination of quick low pre-
cision gestures, simple representation, and low investment of
face posing creates an environment that supports weak filters
for quality, encouraging experimentation (Kim, Bagla, and
Bernstein 2015).

Many aspects of our system are modular, as both gestures
and faces are interchangeable. While naı̈ve gesture and face
combinations may not yield practical results, a similar sys-
tem by (Igarashi, Moscovich, and Hughes 2005) suggests
transferring gestures would be useful within similar classes
of motion. Examples of these classes can be seen in guides
used to plan animation timing, such as ”whips” and ”waves”,
that are general enough to be applied to a variety of use
cases. For example: both batting eyelashes and an expres-
sive laugh both use an underlying ”whip” gesture (Figure 6).
The same expression can also vary based on factors such as
age and or stress. By changing our conceptual space, we
are able to compare the nuances present in these different
situations (eg: stressed smile versus a relaxed one). The ef-
fects can also be made more extreme, for a caricature-like
effect. This can be used as an underlying guide in anima-
tion workflows, and for exploring more diverse expressions.
While our faces are photorealistic, different stylistic results
may be obtained by employing a different model, such as
one trained on line drawings. We currently do not provide a
way in the tool for users to customise the parameters of the
animation grid. However, we envision a mature version of
this tool could have a library of expressions that users can



browse from, or custom expression creation using a web-
cam.

Figure 6: A sketch demonstrating a ”whip” action in mo-
tion (left) being applied to the head of a laughing character
(right) and batting eyelashes (bottom). (Williams 2001)

Our animation workflow is much more reflexive com-
pared to conventional systems, where animators go back and
forth between setting keyframes, and playing back the an-
imation changes. In TopoSketch, animation is created in
real-time and viewed in tandem, allowing many different
gestures to be explored quickly and practiced, before com-
mitting to a final recording. Being able to ”act out” or ”pup-
peteer” faces using gestures allows users to make reactive
adjustments as they are sketching, leading to some stylistic
affordances that are not easy to do in conventional tools. For
example, start-stop movements that are based on the previ-
ous position, or repetitive actions that vary naturally over
time. This animation style can potentially be compared to
motion capture, or techniques such as straight-ahead anima-
tion, which encourage more spontaneous movements (Las-
seter 1987).

Displaying recorded gestures as a drawing may have po-
tential applications as a communication aid. While ours does
not specifically describe the contents of an animation such
as (Thorne, Burke, and van de Panne 2004) or (Kazi et
al. 2014), our gestures can still provide some context on the
type of the movement. For example, a jagged drawing indi-
cates sudden changes in expression while smoother gestures
indicate gentler transitions. Animators already employ sim-
ilar abstract gestures as guides to study motion. Exposing
the visual qualities of more types of animations may lead to
serendipitous ideas by way of gestalt effect, or seeing im-
ages within the drawings (Owen 2012).

Neuroscience research suggests that being able to see arti-
facts such as brushstrokes can evoke empathetic responses in
viewers (Freedberg and Gallese 2007). While the ”mark”,
or underlying structure is quite visible with traditional ani-
mation processes (such as guidelines), there is a lack of such
in computer animation. Our displayed gestures can been
seen to facilitate such a mark, by exposing the construction
of movement. Power suggests these indexical artifacts may
enable animators to ”feel the movement behind the mark”
(Power 2009), opening up a different way to perceive anima-

tions. Applications of this can include comparing work from
different artists, or as a classification technique for large an-
imation sets. In practice, we have adopted drawn gestures
into a notation for planning and describing animations on
paper, a formalized version of which is employed in the fig-
ures.

Future Work
We plan to expand the concept of the animation grid to ac-
commodate more user customization and potential operation
combinations. As an alternative to the grid format, we are
exploring using geometric shapes to define how operations
are distributed. Adapting TopoSketch to a more freeform
interface used in our previous research (Loh 2017) could
allow for customized layouts supporting a wider range of
animation possibilities.

TopoSketch is able to create a wide range of operations
that go beyond facial expressions (eg. getting older or
putting on sunglasses). In addition to encouraging users to
provide their own images to be used as the subject of an an-
imation, we are also exploring allowing one-shot training of
custom facial operations by accepting reference image pairs
to define new concept vectors.
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Zhu, J.-Y.; Krähenbühl, P.; Shechtman, E.; and Efros, A. A.
2016. Generative visual manipulation on the natural image
manifold. In Proceedings of European Conference on Com-
puter Vision (ECCV).



Appendix: Example Animations

Figure 7: Chewing Animation. The loops in the sketched sequence indicate repeated motions in the animation. The sketch
gesture can also be transferred to a second input image without modifying the path.

Figure 8: Kissing Animation shows how a sketched sequence is reused on a second input image. The captured sketch is a
reusable component that can be applied to other inputs.



Figure 9: Evil Grin Animation. Depending on the intent, the attributes represented in the conceptual subspace can be changed.
In this example, a subspace is created which combines disgust, smiling, and skin tone.

Figure 10: Parameters for animations can combine facial expressions with other changes such as orientation and lighting. Here
a ”double take” animation is constructed from face rotation and an expression of surprise.


