
A shared language for creative communities of artbots

Kate Compton, Johnathan Pagnutti, Jim Whitehead
Computational Media Department

University of California, Santa Cruz
Santa Cruz, CA 95064 USA

kcompton, jpagnutt, ejw@ucsc.edu

Figure 1: “Aesthetic legos” made with Tracery: small snip-
pets of code (the ”scatter” layout code examined here) that
can be recombined and shared between creative bots

Abstract

Building on the Techne platform for hosting artbots
and critics, we demonstrate a prototype of a flexible
structure for creating generators of diverse domains that
can still share resources and “communicate” creatively.
These generators can evolve, recombine, and yet remain
human-readable and generate coherent artifacts.

Introduction
The computational creativity community has a rich tradition
of algorithms that make diverse kinds of art (visual art, po-
etry, dance, recipes, music and more). We often person-
ify the agents (or bots) in these systems as having “auton-
omy”, and thus the preconditions for creativity. However,
they lack the ability to communicate, and communication
between members of a creative community is an important
part of creative autonomy. Meaningful communication is
difficult to implement within systems, and even more diffi-
cult across disparate generative systems.

This paper presents a way to structure art generators in
such a way that bots can speak to each other in the ways

that creative communities communicate, while still allow-
ing expressive and diverse generators in a variety of do-
mains. We demonstrate CheapArtistsDoneQuick, a proto-
type of our previously proposed Techne framework (Pag-
nutti, Compton, and Whitehead 2016) for creative commu-
nity for bots, which was flexibly designed to model ideas
such as artistic style, innovation diffusion, curation, and con-
ceptual blending. We then propose that, as this platform is
designed to support a diversity of heterogeneous bots that
can detect mutual intelligibility and initiate communication
autonomously, this could become an open platform for more
computational creativity researchers to release bots reflect-
ing their own models of creativity.

Related Work
Many systems exist which generate “creative” artifacts.
Generative systems are sometimes created in non-academic
communities, like Twitterbots and generative games, or
grow from the academics spaces of artificial intelligence and
computational creativity. Some generators use very simple
algorithms (@tinycarebot, @thinkpiecebot, @losttesla) to
make simple yet widely-appreciated creative artifacts. Other
systems, notably those from the computational creativity
community, can encode complex models of creativity, ap-
preciation, inspiration, and collaboration.

In such systems, it is common for there to be some subsys-
tem which generates artifacts, and another subsystem that
evaluates them. Each project implements this differently
(see ??). The critic and creator may be implemented as
agents, or subprocesses in the same agent. Critic and cre-
ator functions may use the same techniques, or completely
different algorithms. The roles may even be split across the
digital divide, with humans performing the role of critic of a
algorithmic creator, or vice-versa.

The Digital Clockwork Muse (DCM) (Saunders and Gero
2001) is a simulation of a community of art-makers search-
ing for novelty, each possessing a way to create art, and a
way to evaluate it. Each artwork is generated from a tree of
expressions, and “nearby” artworks from tree modification.
Each bot’s self-organizing map attempts to classify artworks
into one of several categories, serving as a compressed mem-
ory of what it has seen recently. An artwork that classifies
without error is considered not novel (the map must have
been trained on ’similar’ art to classify it so well); a difficult-



to-classify art is deemed very novel. Later, Picbreeder (Sec-
retan et al. 2008) would use a similar generation method, but
replace the computational critics with human critics. The
humans could enforce a broader definition of creativity (al-
lowing them to evolve artworks towards dolphins, rainbows,
and cars) with social tools (rating, browsing, self-promoting,
deep-linking) that enabled structures of creative community
even in a critics-only space with no human or agent-based
creation.

The DCM inspired other works, like the Hybrid Society
Project (Romero et al. 2003) a framework that describes a
way to evaluate critics in a community for arbitrary gener-
ative artifacts by testing their ability to distinguish between
style, artists, and (human-evaluated) quality. Greenfield and
Machado (Greenfield and Machado 2009) created a simula-
tion of artists and critics, trained on human-created master-
works from art history. The artists try to match (imperfectly)
the masterworks with a swarm of painting agents, and critics
seek their favorite works to promote to a gallery, but all done
through a greyscale image compressed into an 18-element
feature vector. Like the Digital Clockwork Muse, the qual-
ity of the artifacts does not matter, instead the goal is the
” implementation of a variety of behavioral policies which
result in different dynamics”.

Each system has some functionality which generates art,
and some functionality which critiques it. Often these cre-
ation and critique implementations aren’t bound to each
other, and that which roles humans and bots take (and
whether an artist can be a critic or not) is quite flexible in
these systems. This means that these elements can be treated
separately. While it is useful for a bot to self-critique, it may
also rely on the community to provide that functionality for
it. So in this paper we only lightly treat evaluation (to be
revisited in Future Work), in favor of pursuing a system that
enables creation and communication.

CheapArtistsDoneQuick
Inspired by the success of CheapBotsDoneQuick, a wildly-
popular site to edit and host Twitterbots, we created Cheap-
ArtistsDoneQuick 1 a prototype system to enable users to
be able to populate a virtual art colony, with one-button
automatically-generated bots. We also want users to be able
to custom-author and edit artbot code. Thus, a user can start
watching an AI-created bot, modify it slightly, and grad-
ually learn to author their own, a design that draws from
the principles to increase gradual engagement from novice
users interacting with AI systems outlined in Casual Creator
(Compton and Mateas 2015).

Features of this tool include:

• A locally running environment of a number of artists

• A factory which manufactures artists various domains

– Diverse domains modeled as a Tracery grammar of
sockets

– which may be filled with different “aesthetic legos” (re-
combinable pieces of Tracery syntax)

1http://tracery.io/techne/

• The ability to edit or rewrite parts of the art-generation
grammars

• Trackable elements of creativity (aesthetic legos) than can
be shared between bots and tracked over time

• A human-readable and human-editable way to write bots
that expressively represent domains (unlike the difficult to
control symbolic function trees used by previous systems)

To create this, we turned to Tracery, a language written
for text-generation, but discovered to also be able to create
expressive generators in an unexpected range of domains.

Tracery
Tracery 2 (Compton, Kybartas, and Mateas 2015) is a ”lit-
tle language”3 for specifying replacement grammars in a
human-readable JSON format. It has been widely adopted
by non-programmers, including poets and children, to create
generative Twitter bots and other works.

A Twitter-bot hosting site, CheapBotsDoneQuick.com,
allowed novice users to paste in their own Tracery grammars
and Twitter credentials to create automatically-posting bots
(without needing to maintain their own server code). This
low-effort/low-code hosting model proved immensely pop-
ular, with at least 3791 active bots running as of Feb 13th,
2017, including several bots with multiple thousands of fol-
lowers (Buckenham 2017). Several users also discovered
that Tracery could generate many kinds of hierarchically-
structured text, including SVG graphics, music, JavaScript,
and other ”little language” used as input by other programs.

The code of a generative Tracery program (a “grammar”)
is a JSON object. Tracery’s replacement grammars are com-
posed of non-terminal symbols their corresponding sets of
expansion rules that can replace symbols. For example, Fig-
ure shows part of a poetry-generating grammar.

As a language, Tracery has several advantages that make
it useful here:

• The symbol/replacement-rule format is modular, allow-
ing straightforward yet expressive modification. We could
easily replace the “farmNoun” rules with an array of city
nouns, or graveyard nouns, and the grammar would gen-
erate lines of a different flavor, with the same structure.
Likewise, we could replace the “poetryLine” rules with
other phrases that made use of the same symbols, to get
similar flavor, with different structure.

• Rules in the grammar can be added or overridden after the
grammar is created, allowing for tricks like using the tags
generated by the art grammar when generating titles for
the art in Fig. 1

• Tracery syntax can embed other “little languages” inside
itself, which can include tags about where symbols came
from or other information. It can also generate SVG code,
ABC musical notation, or even valid Tracery grammars,
so using it as the lingua franca allows a broad space of
possible art.

2”Tracery” http://tracery.io
3”Little Languages” http://wiki.c2.com/?LittleLanguage



Figure 2: A snippet of a Tracery grammar for generating
Whitman-esque poetry. This could generate “Captain, my
sea / the horses wander joyful”

• Tracery is human-readable and writable, in a way
that encourages people writing it to express a strong
sense of style though their grammar. For examples of
clear style, see the Twitter bots @softlandscapes,
@tinycarebot and @losttesla. It has many users,
some of them prolific, who have developed techniques to
author generators maximizing quality and range of output.
Many of these generators can be ported over verbatim (or
taken apart for pieces) in CheapArtists (many of examples
in this papers use components from the authors’ twitter-
bots and other generators).

• Tracery is designed to do a ”best job possible” expansion
of structure, so if it is missing symbols or the grammar is
broken, it will still generate something valid with place-
holder elements. This makes it resilient to any overly-
enthusiastic modifications that break the grammar. Like
CBDQ, we allow users to add their own code, so even
bad code should not crash the system. If bots exchange
incompatible code, their art suffers, but the colony does
not crash.
If a user of CheapArtists wants to add a new bot to their

simulation, they set the dropdown labeled “this bot can cre-
ate: ” to “SVG art”. This bot is created and begins making
images. Another bot can be made, and given the ability to
evaluate art. The first bot can then be given an emotional
state that responds to whether their work is being appreci-
ated. With just these two bots we can have an ongoing con-
versation of producing and consuming art, and producing
and consuming critiques of that art. Of course, few com-
munities of art have just one producer and one critic, so the
user can create more bots, with different combinations of
art-generation and art-critiquing abilities.

Aesthetic legos, genre recipes, and mixed media
To implement our goals of having meaningful communica-
tions between bots, we needed a “lingua franca” so that di-
verse bots, even without identical art-production methods,
would have a structure similar enough that some representa-
tion of creative ideas could move from bot to bot. We created
genre recipes for several kinds of creativity, SVG abstract
art, generative constructed languages, English poetry, mu-
sic, and posters (which combine abstract art and generative
text into concrete poetry). For an art colony, each kind of
genre recipe needs to not only describe one space of possi-
bilities, but a space of possible generators each with their
own visibly-distinct possibility space or “artistic voice”. To
create this controlled variation, we use the concept of “aes-
thetic legos”.

Each genre recipe has a number of “sockets” in its gram-
mar. Some symbols are fixed boilerplate (like the SVG
wrapper and size settings). But within each recipe, there
are spaces for variation, such as the color of foreground
shapes, or the logic of choosing the color to outline of a
shape based on that color. These are all sockets, and each
one can be fit by an aesthetic lego. Each aesthetic lego rep-
resents one choice of logic. There can be a dozen possible
legos per socket, so by giving each generator only one or
two of legos from the total options, we can have bots with
unique flavor, and importantly, an easy way to track each
aesthetic lego as it moves from bot to bot. Some recipes even
reuse legos from multiple sets, like the poster recipe, which
uses legos from both the generative language and abstract art
recipes. This crossover allows bots from separate domains
to reuse each others work: for example one bot in Fig 5 had
read poetry from a bot that simply reposted Shakespeare (a
non-Tracery bot happily co-existing with the others) and be-
gan using that text in its grammar to create Shakespearean
posters.

Generating generators to make art
To create an art generator that speak the same “lingua
franca” as other generators, the bot factory creates an empty
grammar with some set of sockets. The sockets in an art
grammar include:
• background hue and brightness
• foreground shapes: size, type, hue and brightness
• outline width, hue and brightness
• composition and number of shapes

For a language-generating grammar, they are
• consonants appearing at the beginning and end of a sylla-

ble (like ”schr” and ”rst”)
• vowels appearing first, middle or end of a word
• ways to construct words (“starting vowel - end conso-

nant”, ”start consonant - middle vowel - end consonant
- middle vowel - end consonant” or ”starting vowel - end
consonant - ’ing’”)

• four kinds of words (imagine these as verbs, nouns, etc)
• four kinds of phrases and how they are constructed from

words or subphrases
To fill in the replacement rules for each grammar, the bot

factory selects from a large, hand-authored set of “aesthetic
legos”, snippets of Tracery code representing new expan-
sion rules for that socket. These legos were written to cap-
ture small-yet-meaningful aesthetic choices during art cre-
ation, such as deciding to outline a shape with a darkened,
saturated shade of its color, or to instead outline it with its
complementary color. For each socket, a particular gram-
mar may only get one or two options, representing a limited
set of style choices, and maintaining an artistic “voice” that
makes each grammar’s output recognizably distinct. Some
legos are hand-coded with fixed values, such as always using
the color purple, others take state from the current genera-
tion such as a complementary color rotating the current hue



Figure 3: A bot with borrowed and forgotten aesthetic legos

by 180 degrees. Others are custom-generated on demand,
such as generating sub-words for the language or particu-
lar colors or offsets, although these are difficult to tag with
meaningfully human-readable tags.

In Fig. 5, several bots are generated, each with unique sets
of legos to use. Art bots uses art legos, the language bots use
language legos, the poetry bots augment the language legos
with English text legos, and the poster bots reuse legos from
all sets. Because the legos are just snippets of Tracery, they
often represent reusable modules (for creating words, for
drawing shapes) that can be recombined with relative safety.

Modeling constructive critique and inspiration Model-
ing critics is a different challenge from modeling artists.
While it seems clear that an ”artist” produces artifacts, it
is less clear what a critic produces, aside from a numerical
score, as in the previous systems. As any academic paper
reviewer knows, a critic’s job may also include responding
to the artist with information to improve the work, including
changes to make (changes that would improve the critic’s
evaluation of the work) or additional resources that the critic
possesses that the artist does not. Because these legos can
be treated as independent units, the critic can pass their own
legos to the artist, or can borrow the artist’s legos that were
used in the art for their own work. In Fig , an artist has
“learned” too many legos from others, and has then removed
them until its achieves a satisfying artistic practice.

Future Work
We believe these generators are fun and easy to build, but
have not yet opened up the system for all users to create
their own. The current project allows the users to reroll the
bots, but we also want to enable users to create generators
for music, cocktails and more. The Techne project that this
work is a part of will also require evaluation functions as
well, so we intend to develop analysis tools that can make
use of these rich grammatical and tag structures as well as
traditional evaluations of NLP and machine vision.

References
Buckenham, G. 2017. Personal correspondence.

Figure 4: Code to generate aesthetic legos for a poetry gen-
erator. Each line creates a set of legos expressing ”farm
nouns” or ”melancholy adjectives”, so that bots receiving
different sets will create distinct kinds of poems. This meta-
generator can generator the grammars in Figure ??

Figure 5: A colony of bots: creating poetry, plagiarizing
Shakespeare, and making posters with text from other bots

Compton, K., and Mateas, M. 2015. Casual creators. In Pro-
ceedings of the International Conference on Computational
Creativity.
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Trac-
ery: an author-focused generative text tool. In Interna-
tional Conference on Interactive Digital Storytelling, 154–
161. Springer.
Greenfield, G., and Machado, P. 2009. Simulating artist
and critic dynamics. In Proceedings of the International
Joint Conference on Computational Intelligence, Funchal,
Madeira, Portugal, October, 5–7.
Pagnutti, J.; Compton, K.; and Whitehead, J. 2016. Do you
like this art i made you: Introducing techne, a creative artbot
commune.
Romero, J.; Machado, P.; Santos, A.; and Cardoso, A. 2003.
On the development of critics in evolutionary computation
artists. In Workshops on Applications of Evolutionary Com-
putation, 559–569. Springer.
Saunders, R., and Gero, J. S. 2001. The digital clockwork
muse: A computational model of aesthetic evolution. In Pro-
ceedings of the AISB, volume 1, 12–21.
Secretan, J.; Beato, N.; D Ambrosio, D. B.; Rodriguez, A.;
Campbell, A.; and Stanley, K. O. 2008. Picbreeder: evolv-
ing pictures collaboratively online. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, 1759–1768. ACM.


