
Toward Mutual Theory of Mind as a Foundation for Co-Creation

Bobbie Eicher, Kathryn Cunningham, Marissa Gonzales, Sydni Peterson, Ashok Goel
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
{beicher3, kcunningham, mgonzales9, speterson33}@gatech.edu, goel@cc.gatech.edu

Abstract

Despite increasing emphasis on the importance of help-
ing people to understand how computers work, success
in teaching new programmers to properly understand
languages and how they behave has been limited. Our
work focuses on how the cognitive science concept of
theory of mind could be applied to better teach compu-
tational thinking. We achieve this by creating a proto-
type that builds a theory of mind for the user’s miscon-
ceptions in the context of beginning programming, and
then leverages that as a tool for helping the user to build
a more accurate mental model of the prototype itself.

Introduction
Human-computer co-creativity requires deep human-
computer collaboration that goes beyond the usual notion of
turn taking. Instead, co-creativity requires human-computer
collaboration that emulates the depth of human-human
collaboration. Cognitive science theories of human-human
collaboration suggest that the collaborating humans have
a theory of each other’s minds, a theory that ascribes
and expresses intents and beliefs to each other. Further,
each human’s actions on a team are predicated on his/her,
perhaps incorrect, theory of teammates. We posit that
deep human-computer collaboration will need to emulate
human-human collaboration in that both the human and the
computer will need a theory of each other’s minds.

In the learning sciences, there has been significant work
on how a computer - an AI agent - may be given, or might
acquire, a theory of a user’s mind. This is sometimes called a
user model that captures the user’s goals, current beliefs, tra-
jectory of learning, etc. However, there has been relatively
little work on how a human may be given, or might acquire,
a theory of a computer’s or a computer program’s mind. Nat-
urally this brings us close to human understanding of how a
computer program works, including misconceptions in the
understanding.

Background
Theory of mind
Theory of mind was a concept first introduced by Premack
and Woodruff, in the context of experiments on chim-
panzees. The authors define theory of mind to mean “[that]

the individual imputes mental states to himself and to others
(either to conspecifics or to other species as well)” (Premack
and Woodruff 1978). Neurotypical adult humans are capa-
ble of examining a situation involving other humans, under-
stand that distinct individuals may have separate belief and
knowledge about a situation, and drawing conclusions about
kinds of behaviors and responses that may result from those
differences (Premack and Woodruff 1978).

Computer science education
Arguments that Computer Science (CS) should be central
to a liberal arts education go back decades, but the field
nonetheless faces poor retention, high failure rates, and de-
clining diversity. Studies indicate that introductory pro-
gramming courses fail to teach many students how to in-
dependently write code to solve small problems (Utting et
al. 2013). Students may complete such a course ‘success-
fully’ and yet still be unable to even read and understand
short pieces of code (Lister et al. 2004).

Research argues that much of the struggle originates in
misunderstandings of the notional machine, the process a
computer uses to process code in a particular language or
paradigm (Sorva 2013). Students must construct a complex
mental model of the notional machine in order to understand
program execution. Better technologies are required for un-
derstanding what is happening in this model built by the stu-
dents, and how it differs from the correct model, so that er-
rors can be corrected.

Importance to collaboration
Research indicates members of a group have the ability to
effectively understand the mental state and motives of other
members, and is predictive of the collective intelligence for
said group, to a degree not explained solely by assessing
the individual intelligence of each member (Woolley et al.
2010). This work was initially heavily based on tests like
“Reading the Mind in the Eyes,” which is specifically de-
signed to measure an individual’s capacity for “mentalising,”
an alternative term for theory of mind (Baron-Cohen et al.
2001). Experiments found a positive correlation between the
scores on this test and the collective intelligence of a group,
which supports the idea that the most effective collaboration
happens between parties that each have a strong theory of
mind for the other.



Thus far much of the focus on theory of mind and collab-
oration has focused on individuals interacting in the same
physical space, measuring the ability to read face-to-face in-
teractions like eye movements and expressions. However,
research indicates it is equally predictive in on-line settings
where group members never see each other and cannot rely
on physical cues (Engel et al. 2014). Based on this, we have
reason to believe that humans are capable of developing use-
ful mental models in interactions mediated via technology.

The notional machine
The notional machine was first proposed as a way of explain-
ing how humans understand computers in 1986 (Du Boulay
1986) and has become a key framework for understanding
how humans connect to programming languages and the
computer itself as they learn to code (Sorva 2013). A given
notional machine is an abstraction of the true operation of
a computer as it processes code, and its precise nature will
vary depending on the language and paradigm involved. One
of the key challenges for beginning programmers is to de-
velop an understanding of the notional machine specific to
the work they’re doing, and often language they’re learning,
as to effectively interact with the computer and direct its be-
havior (Sorva 2013).

One of the ways this is made explicit in the learning pro-
cess is to have students trace the action of code and attempt
to understand what individual lines and operations of code
will achieve when executed (Sorva 2013). Even those stu-
dents who successfully make it through a course, however,
may not gain a strong enough grasp of the notional machine
to perform this task accurately (Lister et al. 2004).

Misconceptions about variable assignment
Misconceptions about assignment statements in the proce-
dural programming paradigm are some of the most well-
studied types of misconceptions. In typical introductory
computing courses, variable assignment is a fundamental
concept that is learned early and which underlies other con-
cepts throughout the rest of the semester. Misconceptions
about variable assignment are also well-constrained, since
they are less complex syntactically and require fewer steps to
execute as compared to more complex programming struc-
tures like loops and selection.

We began with a set of misconceptions about assignment
statements identified by Linxiao Ma as prevalent among be-
ginning programmers in the Java language (Ma 2007) and
then narrowed this list to a smaller set we felt would be likely
to occur in Python as well, and would be suitable for imple-
mentation in a prototype (see Table 1).

Our approach
We have approached this problem with the hypothesis that
the notional machine can be understood as a special case of
theory of mind. The student, therefore, has a theory of mind
for how the computer operates. Our tool is an attempt to give
the computer the ability to develop a theory of mind about
the student and to use that in collaboration with the student
to correct misconceptions.

Table 1: Misconceptions modeled by our system

Name (in
Ma 2007)

Action during variable assignment
(e.g. x = y)

Mr 2 The value in the variable on right-hand-side
is given to the variable on the left-hand-side,
and then the content of the original variable
on right-hand-side is erased (i.e. the variable
still exists, but no content is in the variable)

Mr 4
(Correct)

The value in the variable on the right-hand
side is copied into the variable on the left-
hand-side

Mr 6 The value in the variable on left-hand-side is
given to the variable the right-hand-side, and
then the content of the original variable on
the left-hand-side is erased

Mr 8 The value in the variable on the left-hand-
side is copied into the variable on the right-
hand-side

Mr 10 Variables swap values

Mr 99
(not from
Ma 2007)

Assignment occurs correctly, but in subse-
quent assignment statements, updating one
variable in the assignment statement will up-
date the other variable.

It develops a precise understanding of a student’s beliefs
and misconceptions about assignment statements. To do
this, the program has a set of common misconceptions that it
can model in addition to the ability to the correct version of
the execution. The agent can use these models to determine
what correct or incorrect model a specific student is likely
using, and alert them appropriately while also providing vi-
sualizations that contrast what they’re expecting against the
correct behavior. In this way, it can help the student develop
an accurate understanding of how the code behaves.

Our tool
We developed a GUI tool that allows students, teachers, and
researchers to create and interact with the mistaken models
of the notional machine in a variety of ways.

The tool functions by first taking the input (several lines
of code) and converting the code into an intermediate repre-
sentation of what function each line serves. It then interprets
the intermediate representation and computes over it, track-
ing the active variables and their current state. Based on this,
it generates visualizations of both potential misconceptions
and the behavior of the correct notional machine.

Execute mode
Functionality The primary interface is ‘execute mode’,
where a user inserts program code, selects a programming
language and a misconception, and runs the code according
to the corresponding model of the notional machine.



Figure 1: Model creation and execution process

Figure 2: Visualization of program execution

Figure 3: Interface for diagnosing a misconception

Application Execute mode is a straightforward way to see
what the expected output would be during cognition with
a specific misconception. Knowing what student miscon-
ceptions are most common has been shown to be associated
with more effective teaching (Sadler et al. 2013). Introduc-
tory programming teachers can use this mode to generate ex-
pected answers for code they will demonstrate in class, for a
variety of misconceptions. Teachers can also use this mode
to create effective “distractor” answer options for multiple
choice questions.

Visualization mode
Functionality The visualization setup uses a combination
of variable names and boxes to create a side-by-side display
of both the model requested and the correct model for easy
comparison. The red background in this figure represents
the mistaken case, and the green side represents the correct
execution of the code. A user can click through the code
line-by-line to see exactly what is happening and how the
two interpretations differ at each step.

Application Visualization mode can be used by students
to better understand how their thinking about the notional
machine is different than the correct understanding of the
notional machine. Students are forced to simultaneously ac-
tivate of correct and incorrect conceptions, a process which
is associated with knowledge revision (Van Den Broek and
Kendeou 2008). Current visualization systems, where only
the correct action of the notional machine is demonstrated,
no not make such co-activation explicit.

Diagnose mode
Functionality In this mode, a user can input the expected
variables and values for a snippet of code and get feedback
on whether their understanding is correct or they may be
misunderstanding the way that assignment statements work.

Our tool achieves this by iteratively running each of the
misconception models and comparing the results to the stu-



dent’s responses, to see if they match any given misconcep-
tion or for the correct model.

Application Our diagnosis mode shows how our tool cre-
ates a theory of mind for the student it is working with, by
matching its cognitive model of some given misconception
to the cognitive model posed by a student via a code snippet.

Discussion
The ultimate goal of this work is to make both comput-
ers and humans better at creating and maintaining a model
of one another’s knowledge and processing of information.
Programming is an inherently creative act, but many stu-
dents subjectively experience it as mechanical and dull be-
cause of the difficulty in getting past initial issues of syntax
and understanding the notional machine (Guzdial 2003).

Recent work on nanotutors takes a similar functional ap-
proach towards learning complex concepts (Goel and Joyner
2017): identify a concept to be learned, identify possible
misconceptions, create an exercise that leads to different an-
swers corresponding to these, create a nanotutor to inter-
pret the various answers and provide feedback accordingly.
However, the nantotutor’s theory of mind of the student is
only implicit in the way that humans designed the exercises,
not an attempt to build a meaningful collaboration between
the student and software.

We plan to continue building a more complete version of
this tool for use in an introductory computing course to de-
termine what impact this approach has on student progress.
We hope that this visual and collaborative approach, that of-
fers an opportunity to see exactly how a misconception dif-
fers from the correct understanding, will make it easier for
beginning programmers to understand and correct their er-
rors and to work with the computer more effectively.

Limitations
Our prototype only works with a very specific set of poten-
tial misconceptions, and these are currently concerned only
with assignment statements. More work would be needed
to identify the specific misconceptions which may present
themselves in more complex programming constructs, and
to model those in a similar fashion.

The current implementation of our tool doesn’t have spe-
cial handling for the possibility that a single student may
possess multiple misconceptions (which could either appear
in their attempt to decipher a single piece of code, or over
multiple code samples).

Conclusion
Research on collaboration has made it clear that having the
ability to use theory of mind to understand a partner or team
leads to better results. Humans routinely engage in creative
collaboration with computers, but they rarely do so within a
framework that allows the computer itself to actively engage
in the communication and in building a shared understand-
ing of the task and how commands should be carried out.

This project is only a first small step in the direction of
building computer programs that can collaborate with hu-
mans to build mutual understanding and agreement as they

carry out their tasks. Nevertheless, this paradigm for build-
ing the interaction could form the basis of much more com-
plex tools that enable creative collaboration between humans
and machines.

References
Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; and
Plumb, I. 2001. The reading the mind in the eyes test re-
vised version: A study with normal adults, and adults with
asperger syndrome or high-functioning autism. Journal of
Child Psychology and Psychiatry 42(2):241–251.
Du Boulay, B. 1986. Some difficulties of learning to pro-
gram. Journal of Educational Computing Research 2(1):57–
73.
Engel, D.; Woolley, A. W.; Jing, L. X.; Chabris, C. F.; and
Malone, T. W. 2014. Reading the mind in the eyes or read-
ing between the lines? theory of mind predicts collective in-
telligence equally well online and face-to-face. PLoS ONE
9(12):1 – 16.
Goel, A., and Joyner, D. 2017. Using AI to teach AI. AI
Magazine 38(2).
Guzdial, M. 2003. A media computation course for non-
majors. SIGCSE Bull. 35(3):104–108.
Lister, R.; Seppälä, O.; Simon, B.; Thomas, L.; Adams,
E. S.; Fitzgerald, S.; Fone, W.; Hamer, J.; Lindholm, M.;
McCartney, R.; Moström, J. E.; and Sanders, K. 2004. A
multi-national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, volume 36, 119–
150.
Ma, L. 2007. Investigating and improving novice program-
mers’ mental models of programming concepts. Ph.D. Dis-
sertation, University of Strathclyde.
Premack, D., and Woodruff, G. 1978. Does the chimpanzee
have a theory of mind? Behavioral and Brain Sciences
4(4):515–629.
Sadler, P. M.; Sonnert, G.; Coyle, H. P.; Cook-Smith, N.;
and Miller, J. L. 2013. The influence of teachers knowl-
edge on student learning in middle school physical sci-
ence classrooms. American Educational Research Journal
50(5):1020–1049.
Sorva, J. 2013. Notional machines and introductory pro-
gramming education. Trans. Comput. Educ. 13(2):8:1–8:31.
Utting, I.; Tew, A. E.; McCracken, M.; Thomas, L.; Bouvier,
D.; Frye, R.; Paterson, J.; Caspersen, M.; Kolikant, Y. B.-
D.; Sorva, J.; and Wilusz, T. 2013. A fresh look at novice
programmers’ performance and their teachers’ expectations.
In ITiCSE Working Group Reports, 15–32.
Van Den Broek, P., and Kendeou, P. 2008. Cognitive pro-
cesses in comprehension of science texts: the role of co-
activation in confronting misconceptions. Applied Cognitive
Psychology 22(3):335–351.
Woolley, A. W.; Chabris, C. F.; Pentland, A.; Hashmi, N.;
and Malone, T. W. 2010. Evidence for a collective intelli-
gence factor in the performance of human groups. Science
330(6004):686–688.


