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Abstract

A design space is a tool used in design and problem
solving when a user is considering many different as-
pects of a problem, and there are many possible options
to consider for each aspect. In this paper, we discuss
what design spaces are, how they are constructed by
users and how a computational agent may be able to
work with a user to suggest areas in the design space to
consider. We propose a mixed-initiative system for the
co-creation and exploration of design spaces.

Introduction
Designers and researchers attack open-ended problems that
require creative ideation, iteration and evaluation. The prob-
lems, by nature, do not have a single, fixed solution, but
many possible solutions. Design fixation is a result of
working towards a local maxima within a multi-dimensional
problem space, though designers and researchers may not
think of fixation in such a mathematical fashion. Design
fixation occurs when focusing on a few related solutions or
dimensions without exploring the vast set of possible solu-
tions or dimensions that are less related to the current one
under consideration.

While some designers and researchers naturally think in
terms of the dimensions of a problem and may even draw
tabular or other representations of the dimensions and so-
lutions under consideration, our research has shown that
such thinking does not come naturally to everyone (Mac-
Neil, Okerlund, and Latulipe 2017). And yet the hard work
of thinking through a problem and creating a dimensional
representation can be very rewarding. A dimensionalized
design space that can be explored offers benefits to users in
being able to see how different possible solutions are related
to one another. More importantly, a dimensionalized space
can allow users to see what areas within the space are under-
explored and ripe for consideration.

One of the challenges with dimensionalized design spaces
is that it can be difficult to define dimensions and to popu-
late these spaces with relevant examples. Considering the
bounds of the space and all of the potential points that exist
within, it can be cognitively demanding and users settle for
adding obvious dimensions and a homogeneous set of exam-
ple points that exist along these dimensions. Our work pro-
poses to address this challenge by co-constructing spaces.

In this workshop paper, we present a web-based tool, the
Design Space Explorer, that we have created for helping
users to build, visualize, and explore dimensionalized de-
sign spaces. Our tool does not currently have a computa-
tional agent to help users construct the space, but that is the
next step for this system and we present here some initial
ideas for how this agent might interact with the user to help
the user explore the design space, reflect more effectively
on the interesting parts of the space, and fill it with more
diverse and comprehensive dimensions and examples. Our
tool has the potential to support ideation and exploration,
but it is necessary to first construct a comprehensive space.
Construction and curation is the main focus of this work.

Background
Dimensionalization and thinking about high-dimensional
spaces are cognitively demanding tasks that humans are
not naturally good at. Providing tools to help users ex-
ternalize high-dimensional problem spaces can be helpful,
but even the process of defining dimensions can be diffi-
cult (MacNeil, Okerlund, and Latulipe 2017). Research has
shown that understanding the different dimensions in a space
and considering the less common, obscure dimensions help
a user to consider more unique solutions (McCaffrey and
Spector 2012). This work has also shown that such obscure
features are hardest for people to generate.

For concept generation and problem solving, design ana-
logues aid in the process of transferring ideas from one do-
main to another (Mednick 1962). In the same way that
considering obscure dimension can lead to more creative
ideas, far analogues are often harder to think of than near
analogues (Gentner, Rattermann, and Forbus 1993), but
they can lead to more original concepts than near ana-
logues (Chan et al. 2011). In both cases, obscure dimensions
and distant examples are the hardest for people to generate
on their own, but are also the most useful for ideation.

Design spaces are used to illuminate design decisions and
enumerate the possible options for each decision. As in
the case of the Question-Option-Criteria (QOC) method, the
design space provides design rationale. The QOC method
lists questions, the options for each question, and criteria
that need to be satisfied (MacLean et al. 1991). Mor-
phological analysis uses a matrix-based representation that
helps designers eliminate infeasible designs as they spec-



ify values for options along each dimension (Zwicky 1967;
1969). A schema-based interpretation of design spaces has
aspects as table headers and options for each aspect as rows
within that column (Biskjaer, Dalsgaard, and Halskov 2014;
Dalsgaard, Halskov, and Nielsen 2008). These approaches
parameterize design and problem solving. While useful,
they focus on mostly on guiding design decisions rather than
on understanding the space in terms of patterns, clusters, or
gaps. Parameterized design is useful, but only if the pa-
rameters are well understood. In this work, we focus on
co-defining such parameters (dimensions) and selecting het-
erogenous design analogues (examples).

The Design Space Explorer
The Design Space Explorer is a web-based system that
walks users through a process of dimensionalization, popu-
lation and exploration. The user begins by creating a design
space and giving it a name, for example Plant-Based Inter-
active Art Installation. Then the user can go to the first step
of the process, which is defining dimensions.

Defining Dimensions
In the defining dimensions step, the user can define as many
dimensions as they want. Each dimension is given a name,
an optional description and a type. The types of dimensions
currently supported are numeric, categorical and boolean.
Once the type of the dimension is set, the user must specify
additional information about the dimension as noted:

Categorical: The name for each category.

Numerical: Minimum and maximum values in the range.

Boolean: A conditional statement (T/F).

Examples of dimensions for plant-based interactive art
might include the categorical dimensions: type of sensor,
interaction modality; the numerical dimension: number of
sensors; and the boolean dimension: continuously or peri-
odically responsive.

When the user feels they have created enough dimensions
to define their space, they can move on to populating the
design space with potential or existing solutions. Note that
the user is able to go back later and edit or add dimensions,
as design space creation is often an iterative process.

Populating with Examples
With dimensions defined, the user can populate the design
space with examples. To create an example, the user gives a
name for the example and then is walked through the process
of defining how the example fits along each dimension. For
the interactive plant-based art design space, if a user wants
to add “Botanicus Interactus” as an example (Poupyrev et al.
2012), they would type in that name and then be presented
with dimensional widgets. By interacting with these wid-
gets they can define values for each dimension. They would
choose capacitive sensing for the type of sensor and gesture
for the type of interaction modality. For the number of sen-
sors they would choose one and for the boolean dimension,
continuously or periodically responsive, they would choose

continuously. After adding this example, they could add
other examples of plant-based interactive art.

As users add examples, they might find that there are as-
pects of the examples that are not captured by their specified
dimensions, and so they may have to go back and add more
dimensions or refine the options of the existing dimensions.

Exploring
Once the user has added existing examples or ideas to the de-
sign space they are ready to explore the space. We currently
provide a parallel coordinates visualization. Many visual-
izations are designed for visualizing data sets with millions
of data points. Design spaces are interesting because they
are not ‘big data’, they are small data sets with high dimen-
sionality, and typically the number of dimensions is larger
than the number of data points. Thus, the space is naturally
sparse. Figure 1 shows an example of a visualized design
space from our prior work (MacNeil, Okerlund, and Lat-
ulipe 2017). For parallel coordinates the ordering of the di-
mensions can over-emphasize certain dimensions and under-
emphasize others. Our tool supports dimensional reordering
and other interaction techniques to improve usability.

Consider the plant-based interactive art design space.
Even with only the four dimensions described above the
number of possibilities is vast. There might be 3 sensor
types, up to 6 modalities, up to 10 sensors and continuous
vs. periodic options, that is 3 ∗ 6 ∗ 10 ∗ 2 = 360. With
just this very limited set of dimensions there are 360 pos-
sible designs. It is unlikely that a user wants to consider
each of these possibilities, but design fixation occurs when
the user only considers new solutions that are very similar to
solutions already in the space. Dimensional reduction tech-
niques, such as Principal Component Analysis (PCA), may
help but they may also make it harder both to understand the
relationships between dimensions and to reflect on the space
holistically. Such techniques would be useful when using
the tool for constrained-based exploration but may be less
useful for constructing and reflecting on the space.

Mixed Initiative Interaction
In order to help the user make the most of the externalized
representation that the Design Space Explorer offers and to
explore distant possibilities, a computational agent could
propose areas of the multi-dimensional space to consider.
There are a number of issues that have been considered in
designing an interactive agent:

initiation: should the agent begin interacting as soon as the
user has added some dimensions and examples? If so how
many dimensions and how many examples? Or should the
user be the one to signal that they are ready to interact?

clustering and gap detection: which gaps are most rele-
vant in sparsely populated, high-dimensional spaces that
likely contain many gaps?

interest definition: is it possible to create rules that would
help an agent determine what combinations of dimension
options are likely to be interesting? if so, what are the
criterion that lead to interesting combinations?



Figure 1: An example design space visualized as a parallel coordinate chart.

nonsensical combinations: if the agent suggests a solution
that consists of combinations of dimensional options that
make no sense, what is the best way for the user to com-
municate this, and can the user then be asked to delimit
the range of the nonsense in some way?

reinforcement: if the user responds positively to a solution
suggested by the agent, how can the agent learn from that,
and what is the appropriate way for the agent to generalize
that knowledge across the multi-dimensional space?

closure: when and how should the interaction between the
user and the agent end?

interaction history: how should the interaction history be-
tween the agent and the user be stored and presented so
that the user can revisit agent suggestions at a later time?
We’re considering these issues as we think about how

to create an agent that can help a user identify interest-
ing gaps in a design space. As users construct and ex-
plore their space they may be overwhelmed by the options
within that space; however, in practice these spaces are often
sparsely populated (MacNeil, Okerlund, and Latulipe 2017).
Given that people often struggle to think of far design ana-
logues or obscure dimensions (McCaffrey and Spector 2012;
Gentner, Rattermann, and Forbus 1993), a computational
agent might be best suited to guide users to populate the
space and reflect on the dimensions and examples. Such an
agent could prompt users to contribute either examples or di-
mensions. To do this, the agent might fill out the dimensions
for a theoretical example and then ask the user if they can
think of a specific example that meets the criteria. Similarly
for dimensions, the agent would identify two examples that
are very similar along each dimension and ask the user to
define a new dimension that differentiates the two examples.

In the case of co-creating examples, the agent would
perform a modified outlier detection to identify a multi-
dimensional point that is most distant from other points and
maximizes the coverage of the space. An information the-
oretic model could choose the outlier based on increasing
the overall complexity of the space (Lee and Xiang 2001).
The chosen point would represent a point that is most distant
from the points the user has already created. The associated
values for this point are implied. If the user can think of no
existing examples that fit these dimensional values, the user

could consider this an “ideation prompt” and try to imagine
what a solution that fits these values would look like. This
might lead to a novel idea that they could try themselves. Af-
ter naming the point, it would be added to the design space.

In the case of co-creating dimensions, the agent would
need to find the two points that are most similar, as mea-
sured by the proximity to each other in the multidimensional
space. By computing the distances between all points, the
points with the minimum distance would be recommended
to the user. The user would be asked to think of a dimen-
sion that distinguishes them. The user would be prompted
to identify how existing examples fit within this new dimen-
sion. The agent could provide feedback about how much
the new dimension improved coverage in terms of distances
between the points in the space.

While co-creating dimensions and examples may lead to
more comprehensive design spaces and opportunities for
ideation, each approach this in complimentary ways. The
goal for co-creating examples is to improve the coverage
within the design space and is convergent in nature. On the
other hand, co-creating dimensions opens up the space with
more possible ways to categorize each example, leading the
user to consider the space more holistically. These oppor-
tunities for both convergent and divergent thinking can lead
to more creative ideas (Guilford 1956; Cropley 2006). Of
these two ways of co-creating, co-creating examples is most
similar to Yannakakis et al.’s view of Mixed-Initiative Co-
creation (Yannakakis, Liapis, and Alexopoulos 2014).

Conclusion
We have presented the Design Space Explorer and a theoret-
ical co-creation agent that would guide users to create more
comprehensive design spaces. As shown in previous work,
thinking of relevant examples, dimensions, and actually con-
structing the design space itself are cognitively demanding.
Therefore, a co-creation agent may be one way to support
users as they grapple with dimensional reasoning and design
space construction; leading to more comprehensive spaces
that are more interesting to explore.
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