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Abstract

Embodied creativity introduces several challenges for
computational creativity research. Particularly, a cre-
ative robot must be able to produce, express, and eval-
uate creative solutions through action and perception in
the physical world. We discuss these challenges by ex-
amining the domain of task transfer for a robot which
learns from interacting with a human teacher; in or-
der for a robot to reuse task knowledge in a way that
is novel to itself and the human teacher, it must utilize a
creative process. We discuss a co-creative approach to
task transfer: by continuing to interact with the human
teacher in order to transfer task knowledge, the robot
can address problems which require a creative solution.
We introduce two modes of interaction for creative task
transfer, and discuss how the robot’s interactions with
the teacher to request assistance will affect its success
in task transfer.

Introduction
Creativity in robotics is often discussed in the context of a
robot performing behaviors that typically require human cre-
ativity. Gemeinboeck & Saunders (2013) suggested that the
embodiment of a robot lends it to be interpreted in the con-
text of human behaviors. The robot’s enactment in human
environments creates meaning to the observer.

A robot can learn to reproduce actions that typically re-
flect human creativity; in robots that learn from interac-
tion, a human may teach a robot to repeat a task by pro-
viding it with a demonstration (e.g. physically guiding
the robot’s hand to complete a task) (Argall et al. 2009;
Chernova and Thomaz 2014; Akgun et al. 2012). However,
a robot that learns to reproduce a demonstrated, creative task
is not necessarily creative itself. Bird & Stokes (2006) pro-
pose two requirements of a creative robot: autonomy and
self-novelty. According to these requirements, a creative
robot’s solutions are novel to itself, regardless of their nov-
elty to a human observer. This represents an instance of
”psychological creativity”: the generation of ideas which are
novel to the individual who produced them (Boden 1996).

This distinction from other problems of computational
creativity is also evident in a robot that needs to transfer
tasks learned in a familiar domain to novel domains. For ex-
ample, if objects in the new domain (referred to as the target

domain) are configured similarly to those in the original do-
main (the source domain), the robot may be able to repeat
the learned task model in the target domain without produc-
ing novel actions. However, if new constraints are present in
the target domain, the robot may need to produce behavior
which was not taught by the teacher in order to reproduce
the task; such processes may require creativity.

We propose the use of human-robot co-creativity to ad-
dress difficult task transfer problems that require the robot
to perform a novel behavior. Just as creativity is evident in
collaboration between humans (e.g. collaborating to assem-
ble a structure out of blocks), human-robot co-creativity in-
volves the coordination of novel, physical actions to achieve
a shared goal. In (Fitzgerald, Goel, and Thomaz 2017a), we
have argued that a robot exhibits creativity by (i) reasoning
over past task knowledge, and (ii) producing a new sequence
of actions that is different from the taught behaviors. We
have also argued that for sufficiently difficult task transfer
problems (in which the robot must produce an action that
is different than that originally taught), creativity is neces-
sary for the robot to perform task transfer successfully. Fi-
nally, co-creativity occurs when the robot collaborates with
the human teacher to perform task transfer, and is necessary
in order to maintain autonomy while addressing a variety of
transfer problems. In the rest of this paper, we discuss the
function of human-robot co-creativity in task transfer, and
propose two modes of interaction for co-creativity.

Grounding in embodied creativity
Creative transfer tasks
In (Fitzgerald, Goel, and Thomaz 2017a) we have argued
that a robot which suitably addresses the problem of creative
transfer meets three criteria:

• Autonomy: Rather than rely on receiving a new demon-
stration of the entire task, an autonomously creative robot
must reason about the task using the representation it has
previously learned, while also minimizing its reliance on
the human teacher. This criteria does not preclude the
robot from deriving new information from human inter-
action, provided that (i) the robot does not require a full
re-demonstration of the task, and (ii) the robot reasons
over what information is needed from the teacher and
how to request that information. We refer to a robot that
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Figure 1: Spectrum of Similarity Between Source and Target Environments

meets these two criteria while collaborating with a human
teacher as exhibiting partial-autonomy.

• Novel output: The robot learns to complete a task with
respect to the locations of relevant objects (e.g. pouring
is an action which is completed with respect to the loca-
tion of a bowl and a scoop). By parameterizing the skill
models (learned from the demonstration) based on object
locations, simple adjustments can be made to objects’ lo-
cations without altering the skill model itself. However,
once a transfer problem requires significant changes to
the skill model (either in constraints of the model, or a
replacement of the model entirely), it no longer produces
the same action. The revised model is reflective of a be-
havior that is both novel to the human teacher (since it is
different than what was originally taught), and novel to
the robot (since it is distinct from the output of other skill
models the robot may have recorded).

• Creative reasoning: A robot may need to derive additional
information about the task in the target environment. By
interacting with a human teacher to request additional
task information, the robot would leverage co-creativity
in which the robot and human teacher collaborate to pro-
duce a novel result. As an alternate approach, a robot
can address a target environment by combining aspects of
its previous experiences. For example, a robot may know
how to pour a mug, and separately, how to pick up a bowl.
Knowledge of these two tasks may be combined in order
to address a new problem, such as the robot needing to
pour a bowl. By performing conceptual blending in this
way, the robot would leverage a creative reasoning pro-
cess.

Abstracting and grounding task representations
Not only do robots provide an interesting application for cre-
ativity, but they also introduce challenges that are specific to
embodied creativity. A robot must represent task informa-
tion in enough detail to capture the learned motion (repre-
sented using an action model) and how it relates to percep-
tual data (e.g. features of objects used to complete the task).
In previous work (Fitzgerald, Goel, and Thomaz 2015;
2017b), we have defined the Tiered Task Abstraction (TTA)
representation for tasks learned from demonstrations. The
TTA representation contains the following elements:

• Skill Models: The task demonstration is segmented into
task steps, each of which is represented by a separate skill

model. These models are parameterized in terms of a start
and end location, while maintaining the trajectory ”shape”
of the demonstrated action.

• Parameterization Functions: These reflect constraints
which guide the start and end position of each task step as
an offset from an object location. For example, scooping
ends with the robot’s end-effector 5 cm above the pasta
bowl, before continuing with the next task step. The cor-
responding parameterization function is: <ox, oy, oz +
5>, where o is a reference to the relevant object (in this
case, the location of the pasta bowl).

• Object Labels: These are the labels which are uniquely
associated with each object instance identified in the en-
vironment. Each labeled object represents a single object
which is consistent over a range of feature values.

• Object Features: These are the feature values associated
with each object label. While the label represents a static
object, the specific feature values may differ depending
on the environment, e.g. object locations, color (based
on lighting conditions), spatial configurations, and prop-
erties.

Note that each element is parameterized by the next; by
omitting one or more elements from the task representation,
the resulting representation is one that is abstracted. In do-
ing so, a task can be represented at a level of abstraction
which is common to both the source and target environ-
ments. However, once a representation is abstracted, it must
be grounded in the target environment in order to produce an
output which is executable by the robot. A representation is
grounded in a target environment when each of the TTA ele-
ments are present and defined based on information derived
in the target environment (either by perception or interaction
in the target environment). This challenge of abstraction and
grounding is at the core of embodied creativity.

The source and target environments may differ accord-
ing to the feature values of objects (e.g. dimensions, color,
shape), object properties (e.g. a cup may be filled or empty),
object locations, and/or spatial relations (e.g. the cup is to
the left of the bowl). We have found that transfer prob-
lems can be analyzed based on the similarity between the
source and target environments, and that this similarity can
be expressed on a spectrum (Fig. 1), ranging from identi-
cal environments to highly dissimilar environments. As the
source and target environments become more dissimilar, the
task must be represented at increasing levels of abstraction



for transfer to be successful (Fitzgerald, Goel, and Thomaz
2015; 2017b).

While some categories of task transfer (represented by
discrete similarity levels indicated on this spectrum) do re-
quire a co-creative approach, task transfer does not inher-
ently necessitate creativity. To address problems in which
objects are displaced in the target environment (image 2 in
Fig. 1b), the object features element must be grounded in
the target environment, while other elements of the origi-
nal representation can be retained. This grounding occurs
by observing the new object locations in the target (Pas-
tor et al. 2009; Fitzgerald, Goel, and Thomaz 2015;
2017b). In transferring a task to a target environment which
requires an object mapping (image 3 in Fig. 1b), the robot
must first obtain a mapping between objects in the source
and target environments. With this mapping, the skill model
can be re-parameterized according to the correct objects.
Thus, the learned skill models are again reused, and so the
resulting action is not novel to the robot or human teacher.

In contrast to these examples, consider target environ-
ments 4 and 5 in Figure 1b. Target 4 differs from the source
in Figure 1a in that objects are: (i) displaced, (ii) replaced,
and now (iii) constrained because of the new scoop size.
The robot’s actions must now be constrained such that its
end-effector remains higher above the table in order to com-
plete the task successfully. Accordingly, new parameteriza-
tion functions must be identified in the target environment,
applying constraints to the learned skill models that are dis-
tinct from those of the original demonstration. If a robot
can identify the new parameterization functions with some
degree of autonomy (e.g. does not simply receive a new
demonstration of the task in the target environment), this
category of transfer problems meets the criteria for creative
transfer: partial-autonomy and novel output.

Target 5 in Figure 1b contains one additional difference:
an extra step is needed in order to lift the lid off the pasta
pot prior to scooping the pasta. As a result, the original skill
models learned in the source cannot be directly transferred.
In addition to deriving new parameterization functions in the
target environment, this problem also requires that the robot
derive or learn a new skill model to account for the missing
step. We later discuss potential methods for deriving this
information via further interaction with the human teacher.
Regardless of what method is used, the robot would (i) au-
tonomously transfer the task representation (since it does not
rely on receiving a full re-demonstration of the task), (ii)
produce action that is novel to both the robot and the hu-
man teacher, and (iii) utilize a creative reasoning method (by
blending previously and newly learned skill models). There-
fore, a robot that successfully completes transfer problems
of this kind meets the criteria for creativity.

Figure 1 illustrates that without addressing problems of
creative transfer, task transfer methods are limited to ad-
dressing a narrower set of transfer problems: those which
do not require novel behavior or reasoning to address (tar-
gets 1-3 in Fig. 1b). By proposing human-robot co-creativity
as a framework to address problems of creative transfer, we
broaden the range of problems that a robot can address from
transferring a single task demonstration.

Co-creative Task Grounding
To address problems in which objects are replaced in the
target environment (e.g. target 3 in Fig. 1b), both the ob-
ject features and object labels must be grounded in the target
environment. We have demonstrated a method for ground-
ing this information by inferring an object mapping from
guided interaction with the human teacher (Fitzgerald et al.
2016). An object mapping indicates which objects in the
source environment correspond to each object in the target
environment, and is used to ground object labels in the tar-
get environment. By asking the teacher to assist in the ob-
ject mapping by indicating the first object the robot should
use in the target environment, the robot can attempt to infer
the remainder of the object mapping. We have found that a
robot can accurately infer an object mapping within the first
1-3 mapping-assistive interactions, and could then repeat the
rest of the task autonomously (Fitzgerald et al. 2016).

To similarly abstract and ground the task representation
in order to address problems of creative transfer, two ele-
ments of the TTA representation must be grounded in the
target environment: the parameterization functions (for both
categories of creative transfer problems) and skill models
(for creative transfer problems involving new skill models).
These two elements also contain the most high-level infor-
mation about the task: the constraints between the robot’s
hand and objects in the environment, and the skill model
which preserves the trajectory shape of the demonstrated ac-
tion, respectively. Because these represent high-level infor-
mation and are informed by the goal of the task, they cannot
be grounded by the robot with complete autonomy. Presum-
ing that the human teacher is aware of the goal of the task,
and how that goal should be met in the target environment,
we propose that the teacher is available to assist the robot in
reaching that goal. The aim of this co-creative approach is
enable the robot to (i) exhibit partial-autonomy, (ii) collab-
orate with the human teacher to infer information about the
task in the target environment, (iii) produce parameterization
functions and/or skill models that can ground an abstracted
task representation, and (iv) produce and execute a trajectory
in the target environment.

Grounding Parameterization Functions
In order to address problems in the New Object Relations
category, it will be necessary to ground parameterization
functions. The robot should interact with the teacher so that
it infers the necessary information to ground missing ele-
ments of the task representation, without requiring too much
information and time from the human teacher (so as to max-
imize the robot’s autonomy).

We propose a method for grounding parameterization
functions in a manner similar to object mapping. Rather than
evaluate only the object mapping confidence at each step of
the task, the robot should also verify its confidence in using
the next step’s parameterization function. One method of
measuring confidence may be to compare the objects used
in the next step to those which the robot would have used in
the source environment. Assuming that similarly-shaped ob-
jects can be manipulated in similar ways, dissimilar objects



may need to be manipulated differently (despite serving the
same purpose). If the robot is not confident in this similarity
(meaning its confidence value is below some threshold β),
it can request the human teacher to align its end-effector in
preparation to complete the next step of the task.

To do this, we propose that the robot asks the teacher
”Please move my hand to the next object,” or ”Can you show
me where to move my gripper?” The teacher would then pro-
vide assistance by moving the robot’s gripper to the correct
location, which the robot would record as the new offset be-
tween its gripper and the utilized object.

Grounding Action Models
To address tasks requiring new skill models (such as image
5 in Figure 1b), the robot will need to ground the same el-
ements as before (object features, object labels, and param-
eterization functions) in addition to the new skill models.
To do this, we hypothesize that the robot can again evaluate
its confidence for completing each step of the task. We in-
troduce an additional threshold to this evaluation process: if
object similarity is below a second threshold α < β, then the
robot searches for other previously-learned task demonstra-
tions which contain the unfamiliar object. Additionally, an
unfamiliar object which does not share the same affordances
as its counterpart in the original demonstration will need to
be manipulated differently in order to achieve the same task
goal. If there exists another demonstration of any task which
also uses the new object, the robot should then evaluate the
similarity between (i) the task step involving the object in
the original source environment and (ii) the task step in the
newly-retrieved demonstration that involves the new object.
If the two task steps are similar, then the newly-retrieved step
may be applicable toward the task in the target environment.

If they are not similar, the robot may ask the teacher to
re-demonstrate the task step, e.g. ”Can you show me the
next step of the task?” The teacher would respond by mov-
ing the robot’s hand to complete the task step, during which
the robot would record the trajectory of its gripper. This
form of assistance would require the most involvement from
the teacher, but also provide the robot with the most detailed
information. A challenge of this approach will be clearly in-
dicating that the teacher should demonstrate a full task step,
rather than simply reposition the robot’s hand.

Conclusions and Future Work
In (Fitzgerald, Goel, and Thomaz 2015; 2017b), we identi-
fied a relation between (1) source and target similarity and
(2) the level of abstraction at which the task should be trans-
ferred. A result of this relation is that more dissimilar trans-
fer tasks require more information about the target environ-
ment in order to ground the task abstraction in that envi-
ronment. We now view this problem through a lens of co-
creation; how should the robot interact with a human teacher
in order to derive the information necessary to ground its
representation? Furthermore, how should it request this as-
sistance from the human teacher?

In accordance to our findings in (Fitzgerald, Goel, and
Thomaz 2015; 2017b), we hypothesize that transfer prob-

lems can be addressed once the appropriate amount of assis-
tance is provided, based on the level of abstraction at which
the task is represented and transferred. We also hypothe-
size that the extent of a teacher’s assistance varies according
to (1) how the robot requests assistance and (2) the type of
interaction enabled. Additionally, we expect that there is a
correlation between (1) the amount of assistance provided,
and (2) the effort by the teacher in order to provide that assis-
tance. As such, we expect that assistance requests should be
selected based on the particular transfer problem. Our next
steps will be to evaluate these interaction methods through a
user study, analyzing the information gained via each assis-
tance method and the types of transfer problems which they
enable. By evaluating its own confidence in its representa-
tion of the transfer task, the robot may be able to select the
assistance type which provides the necessary information for
the task, while also maximizing its own autonomy.
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