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Abstract

We present Pollite (Pollock-lite), an artificial abstract
artist with the capability to evaluate, augment, and gen-
erate video game visual elements. Our system is based
on a cognitive model of abstract artists built from self-
reports and interviews. The main intelligence behind
our system is a Convolutional Neural Net (CNN), a deep
neural network approach that has shown great success
in image tagging tasks and that can learn associations
between shapes, colors, and concepts. We demonstrate
initial results with our system across three case studies.

Introduction
Procedural content generation (PCG) refers to the body of
techniques for algorithmically generating video game con-
tent through either designer-defined rules and heuristics or
based on machine learned models of existing content (Hen-
drikx et al. 2013; Summerville et al. 2017). The majority of
PCG systems, with some notable exceptions (Cook, Colton,
and Gow 2016a), do not attempt to replicate the internal pro-
cesses of human creative designers, but instead focus on a
particular game development task (e.g. video game level
creation). In addition, the majority of PCG work focuses
on function over form in large part due to functional ele-
ments affording easier evaluation (Cook and Smith 2015).
By function vs. form we indicate the divide between focus-
ing on structural, quantifiable elements in games like level
generation focused on playability over altering the visual ap-
pearance of a game.

A PCG system capable of generating, altering, and eval-
uating the visual aesthetics of a video game could be an
invaluable tool for video game developers, particularly for
those developers who are not themselves skilled in visual
design or do not have access to quality visual design knowl-
edge. Such a PCG system would benefit in being modeled
after a human creative visual designer, in order to facilitate
better collaboration with human developers. Thus a human
developer could communicate their aesthetic intentions to
the automated visual designer in natural language.

In this paper we present an artificial abstract artist, Pollite
(Pollock-lite). Pollite is capable of generating, altering, and
evaluating visual components of video games, and is based
on a cognitive model of a human abstract artist. We focus on
abstract art for our cognitive model in order to avoid tying

our system to a particular style of game art. We learn the
visual aesthetic knowledge for our system from real-world
images (photographs) with a convolutional neural network
(CNN), a deep learning approach.

The rest of this paper is organized as follows. First, we
cover relevant background work from a variety of fields re-
lated to artificial visual aesthetics. Next, we provide an
overview of our system, including the cognitive model and
deep neural network approach. We then present three case
studies showing initial results of our system applied to eval-
uating, generating, and altering visuals for video games. We
end the paper with a discussion of these results and future
avenues for research.

Background
In this section we cover work from a set of related fields.
We discuss the existing prior examples of procedural content
generation applied to visual game artifacts as well as prior
work in artificial visual artists. We then cover style transfer
and texture generation, two related fields within the wider
discipline of computer graphics, both with features relevant
to our work.

Visual Procedural Content Generation
Visual procedural content generation, the generation of vi-
sual components of a video game, has to a large extent been
focused on the generation of photo-realistic textures for 3D
games (Hendrikx et al. 2013). This means that the major-
ity of prior work has focused on a single aesthetic (photo-
realism) and a single type of visual component (textures).
There are notable exceptions to this trend, including genera-
tion of weapon particle effects in a space shooter (Hastings,
Guha, and Stanley 2009), avatar generation for a research
game (Lim and Harrell 2015), and generation of character
and item art for a rouge-like RPG (Johnson 2016). Similar to
our work, the game-creation and playing mobile application
Gamika (Colton et al. 2016) makes use of abstract generated
art, but with no communicated intention or aesthetic.

Cook’s ANGELINA system stands as a particularly im-
portant reference point to our work, with ANGELINA being
an artificial game designer capable of expressing design in-
tent and with substantial focus on aesthetics (Cook, Colton,
and Gow 2016a). For example, one iteration of ANGELINA



read in news articles and created games with an aesthetic in-
tended to match the tone and substance of the article (Cook,
Colton, and Gow 2016b). Notably, instead of generating
art, ANGELINA collected images from online repositories.
More recently Cook has focused on vision-driven procedu-
ral level design, in part to guide a player’s play via aesthetics
(Cook 2015).

Artificial Visual Artists
Generative Systems Current work in developing artificial
visual artists can be broadly divided into one of three cat-
egories (Davis 2015). Generative systems are systems that
automatically create artwork based on a pre-determined cor-
pus of knowledge. Generative systems like AARON (Mc-
Corduck 1991), The Painting Fool (Colton 2011), MONICA
(de Silva Garza and Lores 2004), and KANTS (Fernandes,
Mora, and Merelo ) have succeeded in generating novel and
interesting works of art both in abstract and more realistic
aesthetic styles.

Two generative systems that are particularly relevant to
our work are Horn et al.’s Visual Information Vases (Horn et
al. 2015) and the DARCI system (Norton, Heath, and Ven-
tura 2013). Horn et al. developed a cognitive model of trans-
media inspiration, using color palettes in photographs to in-
spire a generative AI agent’s creation of 3D printed vases
(Horn et al. 2015). This is similar to the model of inspiration
that we implemented in Pollite, which draws on inspiration
from photographs and stories to create abstract paintings.

DARCI is a generative system that can classify images
using labels (e.g. lonely, peaceful) (Norton, Heath, and Ven-
tura 2010) in addition to using a genetic algorithm to modify
images according to these labels in order to create unique art
pieces (Norton, Heath, and Ventura 2013). This approach is
similar to how Pollite learns how to express emotions vi-
sually from emotion-labeled photographs, with a key dif-
ference being that Pollite creates completely novel abstract
paintings rather than applying filters to existing images.

Creativity Support Tools The second area of work in ar-
tificial visual art is the area of creativity support tools, or
systems that help humans to be more creative. While some-
what less relevant to Pollite than generative systems, several
creativity support tools have been developed that draw on
cognitive models as our system does. For instance, Machado
and Amaro’s system uses a model of ant cognition to assist
humans in transforming photos into non-photorealistic im-
ages (Machado and Amaro 2013).

Computer Colleagues Finally, computer colleagues are
agents that work in collaboration with a human to generate
artwork. Systems like the Drawing Apprentice are capable
of creatively collaborating with human participants, in this
case to create both abstract and more realistic sketch-based
visual art (Davis et al. 2016). These colleagues are arguably
the best cognitive match for human creativity, as they do not
decouple the perception-action feedback loop that is central
to the creative process (Davis 2015). In other words, com-
puter colleagues are able to perceive changes in their en-
vironment and then act accordingly upon the artifact they

are making, allowing real-time creative collaboration rather
than just isolated rule-based generation.

Our system falls in the space between generative systems
and computer colleagues. Pollite is similar to generative
systems like DARCI in that it creates artwork on its own
without external interaction with humans. However, unlike
DARCI, we attempt to model the iterative perception-action
feedback loop that is central to the creative process, making
the cognitive model we have developed more similar to that
of a computer colleague despite the lack of interaction with
a human partner (Davis 2015). Thus, while our system is
not currently applied to real-time collaboration, we imagine
this application as a natural extension.

Texture Generation and Style Transfer
Within the field of graphics there exists a tradition of work
in generating textures and transferring visual style. Both
fields rely on processes that feed some input image(s) to a
system, build a model of the visual aesthetic of these in-
put image(s), and then express this model through output
images. In texture generation this process typically takes
small, low-resolution images and outputs higher-resolution
textures (Fleischer et al. 1995; Wei and Levoy 2000;
Cohen et al. 2003).

Style transfer approaches involve altering an input image
to represent a specific visual style (e.g. a photograph in the
style of Van Gogh’s Starry Night) (Johnson, Alahi, and Fei-
Fei 2016). Similar to our system’s ability to palette swap
there exist approaches in this area to alter the hue and sat-
uration of images to match an input image (Neumann and
Neumann 2005). Recently, there has been a focus on deep
neural networks for style transfer, particularly convolutional
neural nets, which we also make use of (Gatys, Ecker, and
Bethge 2016). While our system can generate textures and
alter the style of existing visuals, we focus on learning a
more abstract, general model based on natural language con-
cepts instead of replicating a specific visual style.

System Overview
At a high level, Pollite is an artificial abstract artist that
learns to visually depict natural language concepts by train-
ing on real world images. Pollite is based on a cognitive
model of an abstract artist, derived through prior research
and interviews with such artists, in order for it to best fill
the role that a visual designer might otherwise have in a
video game development team. The underlying intelligence
of Pollite is based on a convolutional neural net (CNN),
a deep neural network architecture that learns to associate
colors and shapes with natural language concepts based on
real-world training data. In this case, our real-world training
data is a collection of thousands of pre-tagged photographs
downloaded from Flickr.

In this iteration of Pollite we make use of Ekman’s six
basic emotions (Ekman 1992) (anger, disgust, fear, joy, sad-
ness, and surprise), as an initial set of natural language con-
cepts to train the system. We note that this paper repre-
sents an initial experiment into the approaches presented.
Thus our deep neural network approach is not all that deep,



Figure 1: Our model of the process an abstract artist under-
takes in creating art.

our brush stroke model is relatively simple, and we pull on
a well-known rather than well-verified emotional model in
Ekman. However taken together, this is still a system ca-
pable of evaluating, adapting, and generating visual compo-
nents of video games according to Ekman’s six basic emo-
tions.

Cognitive Model
We based our approach on the cognitive process of an ab-
stract artist. We noted a natural corollary between al-
tering and generating game visuals to target certain emo-
tions/concepts and the way abstract art is able to describe
emotions/concepts using aesthetic elements such as shape,
color, and composition. An investigative exploration into the
artistic and cognitive processes of artists like Jackson Pol-
lock (Pollock 1950; 1951; Plowshares Media 2010b), Franz
Kline (Plowshares Media 2010a), and Mark Rothko (Plow-
shares Media 2010c) led us to three main conclusions that
we incorporated in our system implementation. These con-
clusions do not necessarily model the cognition of all artists,
but instead reflect the cognition of the specific artists work-
ing in the style that we were aiming to emulate.

1. Artistic cognition is iterative. That is, artists typically
do not develop a complete mental image of their artwork
before beginning to paint; instead, they compose and eval-
uate the painting as they work (Pollock 1951). This intu-
ition has previously been modeled in artistic agents like
MONICA, which utilize evolutionary algorithms to itera-
tively self-evaluate (de Silva Garza and Lores 2004).

2. Artistic cognition is embodied. As an example, Jackson
Pollock’s painting style is often described by art historians
as “action painting” because the physical movement of the
body and the paint contribute significantly to the artistic
process (Plowshares Media 2010b). This ties in closely
with embodied cognition, the idea that cognition is takes
place not only in the mind but also in the interactions of
one’s body with the outside world (Wilson 2002).

3. Artists draw on multi-modal sources of inspiration.
These sources can include personal experiences, historical
or current world events, other artwork, literature, and/or
music (Plowshares Media 2010a; 2010c; Pollock 1950).

These three principles led to the development of a
cognitive model of an abstract artist that iteratively re-
conceptualizes its paintings while it works, utilizes brush
stroke physics as an aspect of its cognition, and is capable
of drawing on both literature and prior visual experience as
sources of inspiration.

We illustrate our process model derived from this back-
ground research in Figure 1. We note that abstract artists
build up a knowledge base of mappings between emo-
tions/concepts to shapes/colors throughout their lives. We
instantiate this in knowledge base and learning process as a
convolutional neural net architecture trained on photographs
tagged with emotions, which we expand further below.
When actually creating art an abstract artist makes use of
iterative evaluation and alteration, making use of the exter-
nal cognition of the physics of the brush stroke. We model
this as a greedy hill climbing process, with the system gen-
erating hundreds of variations according to a simple brush
physics model (made up of velocity and inertia), and choos-
ing the variation that maximally activates its knowledge base
(the trained CNN). While we do not picture it within Figure
1 we anticipate that artists choose palettes according to the
concept they wish to visualize in a similar iterative fashion,
and we address this further in the next section.

Deep Neural Network Implementation
In this section, we go over the deep neural network archi-
tecture implementation details of our system. We specify
two neural network architectures within our system. First, a
three-layer fully-connection neural network trained to clas-
sify color palettes, sets of colors used for creating art, as-
sociated with a particular emotion. Second, a three-layer
convolutional neural network (CNN) trained to classify im-
ages according to a particular emotion, which serves as the
knowledge base discussed in the prior section.

The palette neural network takes as input a list of thirty-
two colors, with each color represented in an RGB format.
That is each color is made up of a vector of length three,
with the values representing the amount of red, green, and
blue within the color (each value between 0 and 256). We
make use of RGB as our color space representation due to
its typical application in video games, as opposed to other
color space representations. This palette is passed through
three fully connected layers of sizes 32, 64, and 126 with
ReLU activation, before a final soft-max layer.

We use CNNs to model the knowledge base for our sys-
tem. CNNs are powerful pattern recognizers that have
gained recent popularity for a variety of computer vision
tasks (Krizhevsky, Sutskever, and Hinton 2012; Bengio,
Courville, and Vincent 2013). More relevant to our system,
CNNs have the capacity to encode knowledge and learn con-
cepts of part-related information in the form of distributed
representations when trained for a downstream task (Zhou et
al. 2014). We first train our CNN to classify emotions from
photographs, in the process encoding knowledge of abstract
concepts associated with each of these emotions in the net-
work similar to how humans understand abstract concepts
from real experiences, such as bright colors being associated
with happiness, green tints with disgust, etc.



Figure 2: First returned screenshot from each of the seven games in chronological order from left to right: Doom(1993), Super
Mario 64(1996), Super Mario Galaxy(2007), Candy Crush(2012), Bloodborne(2015), Mobile Strike (2015), and Overwatch
(2016).

Ang. Dis. Fear Joy Sad. Surp.
Accuracy 37% 11% 60% 20% 24% 49%

Table 1: Accuracy at which the system predicts the correct
emotional tag in a test set.

Our CNN takes as input images of 256 by 256 pixels, with
each pixel represented according to its RGB value as de-
scribed above. Thus, a total input shape of 256x256x3. We
pass this input through three convolutional layers, each with
leaky ReLU activation with filters of sizes 16, 32, and 32,
with window sizes of 4x4, 2x2, and 2x2 respectively. Each
CNN layer has a max pooling layer of size 2 after it, and the
final max pooling layer ends in a soft-max layer.

Once both models are trained, we begin by selecting a
target concept/emotion and instantiating an initially random
palette. This palette is modified in a greedy manner to max-
imally activate the target concept/emotion until it reaches
some local maxima. We then have our system move on to a
blank canvas, and have the trained model draw incremental
brush strokes on it. Location and color of the brush strokes
is based on a greedy process by which the system simulates
the potential impact of random brush strokes based on a sim-
ple physics model (only including velocity and inertia of the
paint). Each of these simulations is passed through our CNN
model as a distinct image, with the image that maximally
activates the target concept/emotion having its brush stroke
placed on the actual canvas. Intuitively, the network draws
artwork in colors and shapes to express concepts that it has
learned to associate with certain emotions during training.

We use photographs from Flickr as our initial training
dataset. These images have metatags classifying them into
one of six emotions – anger, joy, surprise, disgust, sadness,
and fear. For the palette network, the top thirty-two most
common colors are calculated for each image to create a
palette training set. Note that our approach is robust to the
specific choice of emotions or concepts, and we choose emo-
tions from Ekman’s work to present a proof-of-concept. In
total, we use 1000 training images for each emotion, making
for a total of 6000 images.

Preliminary Evaluation
We present an preliminary objective evaluation to demon-
strate the system’s ability to correctly identify emotional
tags in novel photographs. For this evaluation we collected a

set of one-hundred unique photographs from Flickr for each
emotional tag. Thus creating a test set one-tenth in size to
our training set. We ran each image of this test set through
the entirety of our system and took the maximally activated
index of the output vector as the system’s predicted emo-
tional tag.

We summarize the results of this preliminary evaluation
in Table 1. We note that for this task (choosing one from a
set of six) we can expect a random baseline performance of
roughly 17%. We note that all emotional tags achieved at
least this performance other than disgust. This indicates that
the system has learned some helpful features in predicting
the other emotional tags. We wish to draw special attention
to fear and surprise, both of which should impressive perfor-
mance for such a simple approach. We expect these results
to only improve in future iterations of the system.

Case Studies
To demonstrate the utility of the system, we isolated three
visual design tasks associated with games and performed
three case studies. The studies (identifying tone of game
visuals, abstract texture generation, and adjusting game vi-
suals) were meant to present preliminary results on our sys-
tems ability to evaluation, generation, and adjust game vi-
sual aesthetics. The goal is to determine if the system can be
considered a useful tool for these tasks.

Identifying Tone of Game Visuals
For the first case study, we look at the system’s performance
versus our intuition in identifying the tone of game visuals.
For this experiment, we’ve selected seven different games
from different eras represented a variety of different visual
styles and tones. We briefly describe each of these games
and our expectation on how the system should categorize
each in terms of whether the visual tone is primarily light or
dark.

1. Doom (1993): Doom is a first-person shooter game where
the player must find low-resolution demons through a va-
riety of hellish environments. We note it has a dark tone.

2. Super Mario 64 (1996): Super Mario 64 is a 3D plat-
former game where the titular Mario collects bright stars
through a set of visually distinct stages to save a princess.
We note it has a light tone.

3. Super Mario Galaxy (2007): Super Mario Galaxy is
much like its predecessor, but with higher-resolution



Figure 3: Output of our system given a blank canvas. From left to right the output is intended to represent anger, disgust, fear,
joy, sadness, and surprise.

Ang. Dis. Fear Joy Sad. Surp.
Doom 1 3 4 1 7 3
SM 64 4 5 7 3 2 2
Galaxy 3 5 3 2 3 6
Candy Crush 5 5 1 5 4 7
Bloodborne 2 1 6 4 6 1
Mobile Strike 7 2 2 7 1 5
Overwatch 6 4 5 6 5 4

Table 2: A table of the ranking of the median values of each
game for each emotion.

graphics and taking place in space. We note it has a light
tone.

4. Candy Crush (2012): Candy Crush is a casual mobile
puzzle game focused on bright candy and flashy effects.
We note it has a light tone.

5. Bloodborne (2015): Bloodborne is an intense, high-
definition action game with strong horror elements. We
note it has a dark tone.

6. Mobile Strike (2015): Mobile Strike is a gritty mobile
strategy game. We note it has a dark tone.

7. Overwatch (2016): Overwatch is a bright first-person
shooter with Pixar-like environments. We note it has a
light tone overall, but darker than most of the other light
tone games.

To collect data for this case study we performed a Google
search for each game and collected the top ten unique screen
shots. We include a section of the first screenshot for each
game in Figure 3. In order to avoid the issue of differ-
ent screen resolutions, we parsed the screen shots to iden-
tify their palettes (see System Overview section), ran the
ten palettes through the CNN to get the confidence values
of each of the Ekman emotion tags. We ran a Kruskal-
Wallis test for each emotion and found that at least one of
the game’s score distributions differed significantly from the
others for all the emotions but anger (p < 0.01).

We summarized the results of the experiment in a table of
rankings of the median score for each game and each emo-
tion in Table 2. Each row i represents a video game and
each column j represents one of Ekman’s six basic emo-
tions. To illustrate, row/column combination Doom/Ang
represents that Doom was ranked number 1 by the system
for anger, while the combination Overwatch/Surp represents

Overwatch ranked number 4 out of the video game images
analyzed for surprise.

The results summarized in Table 2 largely follow our in-
tuitions. Doom is identified as the most angry game, Blood-
borne as the most disgusting game, and Mobile Strike as
the saddest game. Further the system equally ranked Super
Mario 64, Super Mario Galaxy, and Candy Crush as all be-
ing the least disgusting.

Notably the system still has some unintuitive perfor-
mance, for example rating Doom as the most joyful game.
Over different input-output sequences, it can be said that the
system tends to identify sharp contrast in pixel coloring with
joy. Doom’s overall color design exhibits sharp contrast be-
tween the objects themselves and the background, which
thus explains the ranking. While we note that both of the
Mario games appear next in the ranking, it is clear that there
is the potential for improvement in this area of performance.
However, we still take these initial results as promising.

Abstract Texture Generation
The second case study looks at whether our system, devoid
of any stylistic parameters, can create abstract images that
can be utilized as abstract textures for 3D games. We specify
abstract textures in contrast to the majority of texture gener-
ation techniques for photo-realistic video games. To accom-
plish this, we set running Pollite through the complete gen-
eration process for each of the target emotions. As covered
in the system overview section, this meant that the system
first generated a 32-color palette based on greedily perturb-
ing an initially random palette, then greedily make ”brush
strokes” with this palette on an initially blank canvas. We
ran this complete process five times for each target emotion,
and selected the output image that most highly activated the
target emotion in our system. We note that we could have
hand-specified a specific palette to use, but wished to present
results that represented the entire system to understand it as
a whole.

We present the results from this evaluation in Figure 3.
From left to right the images present our system’s attempts
to visualize the target emotions of anger, disgust, fear, joy,
sadness, and surprise. Informally, we find these results to
be representative of the target emotions. Anger appears to
have warm orange colors boiling underneath a selection of
other colors. Disgust appears sewer-like with graffiti-esque
highlights. Fear has similar markings and coloration as a
poison dart frog. Joy is simple and bold. Sadness has cool
colors weighing downwards. Lastly, surprise appears almost



Figure 4: Tiled examples of the disgust and surprise images.

confetti-like. A formal evaluation is necessary to determine
whether our subjective interpretations of these results hold
true for others (see Future Work).

We highlight the disgust and surprise results as represen-
tative images that without any alteration can be treated as
textures. We demonstrate this in Figure 4 with tiled versions
of these two images. We note that the other final images ap-
pear more like abstract art than 3D game textures, besides
perhaps fear. This is to be expected given our technique,
and alterations could be made to encourage more texture-
like output. However, we still claim that given that the sys-
tem was based on a cognitive model of an abstract artist, it is
a promising result that some of the output already resembles
3D game textures.

Adjusting Game Visuals
In this case study, we demonstrate the potential for our ap-
proach to be used to alter game visuals to better reflect a
specific emotion or concept, in essence altering the game’s
mood or tone. Our approach was to take examples of exist-
ing game visuals (either in-game spritesheets or screenshots
of an existing game) and pass them into our system along
with a target emotion (either anger, disgust, fear, joy, sad-
ness, or surprise).

Our system first determined the current palette of the im-
age, or the set of colors present in the image. Given that our
system can only represent palettes of thirty-two colors, in
the case where there were too few colors, our system filled
the remaining slots with noise. In the case where there were
too many colors, our system made use of the thirty-two most
common colors in the image. Then, our system greedily al-
tered this palette to better match the target emotion, altering
the original image colors as it went. This can be understood
as automated palette-swapping, a technique used in video
games to alter a character or environment to make it appear
to be a different character or environment (e.g. the Luigi
avatar in the original Super Mario Bros. is actually a palette-
swapped Mario).

After this palette swapping phase the system then under-
took the same process as in the prior case study. However,
it made use of the input image instead of a blank canvas and
the final palette from the palette-swapping phase. This lead
to a greedy alteration process in order to better excite the
target emotion in the trained CNN.

We present an illustrative example of this output in Figure

5. In this figure we present a comparison between an original
image (left), an attempt by our system to make the original
image seem ”angry”, and an art piece by an artist named
Nathaniel Bart, who attempts to make ”darker” versions of
classic game visuals. We note a clear similarity between
the system’s output and Bart’s image in terms of heightened
contrast, particularly on the building and roots of the trees.

We present further examples of this approach applied to a
spritesheet from Super Mario World as visualized in levels
in Figure 6. We made use of spritesheets, collections of all
the visual elements in a game, for Super Mario Bros. with
the the target emotions of anger, joy, and surprise. While we
lack a human example to refer to, we find the results alto-
gether to match our intuition. Specifically, anger mutes most
colors while making the blocks more red, and giving an an-
gry “eyebrow” to the goombas (the small, squat mushroom-
like enemies in Mario). Joy lends a pleasing easter-like color
scheme to the level elements. Surprise was the most inter-
esting, adding pink polka dot splotches to the background
and altering the arrow at the start of the level into a 7-shape,
along with adding stripes to the arrow base. While it can-
not be seen when not animating still, the target emotion of
surprise also added a flashing green to the block animation,
which is certainly surprising.

Future Work

A clear next step for this project would involve an evaluative
study intended to formally assess how well the new textures
generated by our system represent the target emotion. This
could be accomplished by letting participants play a game
several times, each time with a different texture applied. Af-
ter each game-play session, the participant would be asked
to match the tone of the game visuals with one of Ekman’s
six basic emotions (Ekman 1992). A study like this would
provide a more quantitative measure of how well our system
represents emotions.

Another area for future work is augmenting the system
with the ability to analyze a game design document or other
text forms and generate abstract textures from it. The chal-
lenge with this approach comes with not only correctly iden-
tifying what is useful to the generating mechanism, but also
making sure that the system’s understanding of those specifi-
cations matches the overall aesthetic intended for the game.
That is where an evaluation mechanism would become in-
creasingly important. Using an off-the-shelf text parser we
have begun an initial exploration into this and present exam-
ple output of this experimentation in Figure 7.

We note that while our system has shown some success
generating abstract game visuals, the majority of game visu-
als are representative even if not photo-realistic. We identify
the ability to represent game objects with a particular emo-
tion as an open problem that we hope to engage with in fu-
ture work. In particular, we think generative adversarial net-
works (GANs) might be helpful given the success they have
shown in generating high quality representative images.



Figure 5: Comparison between the original background (left), our system’s “anger” version of the background image (center),
and a human interpretation of a “darker” version of the same scene.

Figure 6: From top to bottom, Super Mario World graphics, then altered to express anger, joy, and surprise.

Conclusion

In this paper we present Pollite, an artificial abstract artist
capable of evaluating, generating, and adjusting game visu-
als to better match target natural language emotions. Our
technique makes use of a cognitive model of an abstract
artist, with the majority of its intelligence made up of deep
neural network architectures trained from thousands of im-
ages tagged with the names of emotions. Through a series of
three case studies we demonstrate the breadth of tasks that
the system can accomplish and some promising initial re-
sults. Taken together this represents an initial iteration for a
system that could become a visual designer partner for game
development.
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