
SMUG: Scientific Music Generator

Marco Scirea, Gabriella A. B. Barros, Noor Shaker

Center for Computer Games Research
IT University of Copenhagen, Denmark

{msci,gbar,nosh}@itu.dk

Julian Togelius

Department of Computer Science and Engineering
New York University, NY, USA

julian@togelius.com

Abstract

Music is based on the real world. Composers use their
day-to-day lives as inspiration to create rhythm and
lyrics. Procedural music generators are capable of cre-
ating good quality pieces, and while some already use
the world as inspiration, there is still much to be ex-
plored in this. We describe a system to generate lyrics
and melodies from real-world data, in particular from
academic papers. Through this we want to create a play-
ful experience and establish a novel way of generating
content (textual and musical) that could be applied to
other domains, in particular to games. For melody gen-
eration, we present an approach to Markov chains evo-
lution and briefly discuss the advantages and disadvan-
tages of this approach.

Introduction

Some traditional works in music or lyrics generation already
take into account real-world information. For instance,
Colton et al.’s work creates a mood based on a newspaper
article, and uses this to generate a poem (Colton, Goodwin,
and Veale 2012). In general song composition process, the
composer takes inspiration from his life experiences and per-
ceptions of the world around him. This can enrich the fi-
nal result, creating meaningful pieces of melody, harmony
and/or stories.

Dynamic music generation in itself is not novel. Algo-
rithmic music composition has been actively researched for
the last several decades, using a large variety of approaches.
Some examples include Mezzo’s take into creating Renais-
sance style music through manipulation of leitmotifs (Brown
2012); the Cell-based approach (Houge 2012) used in Tom
Clancy’s EndWar; and the use of neural networks to create
musical improvisations (Smith and Garnett 2012).

This work attempts to create lyrics from academic pa-
pers and appropriate melodies to go with them. We believe
this system can also be modified to use different initial data
sources, be it text sources for the lyrics or music sources
for the music style. We chose academic papers as input due
to their diversity and availability. Furthermore, due to their
usual seriousness, it was our opinion that it would be amus-
ing, not only for readers but also for authors, to see these
works in a different light.

We believe that this system has value in being an inter-
esting novel idea, and for creating a playful experience with
something that, generally, very much lacks fun and playful-
ness.

We also see the proposed approach applicable in multi-
ple areas. The most interesting for us would be in games:
we think that our system (or a fork of it) could be used
to improve player experience. For example, to create con-
tent for games where story is expressed through music (e.g.
Karmaflow (Karmaflow) or Brutal Legend (Studio 2009)).
Or by increasing re-playability and personalized content cre-
ation in games where music plays an important part in, either
as ambiance or gameplay. Some adventure games even use
music in small game sections to remind the player of the
game’s story or to provide a little comic relief moment (e.g.
Deponia (?)).

This paper is divided in six sections. The following sec-
tion (2nd) will describe background theories that we have
adopted and the state of the art of research in those par-
ticular areas. The third and fourth section will present our
approach for music and lyrics generations respectively, giv-
ing special attention to our algorithms’ behaviours. Then we
will present our results and, finally, section six will discuss
these and expose our conclusions.

Background

Lyrics generation

Natural Language Generation, a sub-field of natural lan-
guages processing, has been the focus of several studies
across the years. It includes creating text which is contex-
tual, grammatical and lexical coherent, and is strongly re-
lated to poetry and lyrics generation.

One of the most important works in poetry generation
uses a grammar-driven approach to create poetry, out of
a given subject, that is metrically constrained. This work
define three evaluation criteria to poetry generation: gram-
maticality, meaningfulness and poeticness(Manurung 2004).
Grammaticality means that the poetry/lyrics must follow lin-
guistic conventions dictated by a grammar; meaningfulness
states that the work must convey a context or message that is
understandable; and poeticness involves poetic aspects, such
as rhyme and rhythm.

A different approach uses a corpus-based approach to

Proceedings of the Sixth International Conference on Computational Creativity June 2015 204

write lyrics about an user-specified theme (Toivanen et al.
2012; 2013). It copies a piece of text (in this case, a poem)
and iteratively alters it, changing the words one by one.
These words are extracted from a graph and are morpholog-
ically similar to the original. The novelty of the final piece
is evaluated by calculating how many words were changed.

Oliveira’s “PoeTryMe”(Oliveira 2012; Oliveira et al.
2014) uses semantic networks, generation grammars and
sets of relation instances to create sentences. Nguyen and
Sa generate rap lyrics, by extracting words from a database
of real rap songs, and a rhyming database produces words
that rhyme with the extracted ones (Hieu Nguyen 2009). Fi-
nally, they combine them into a fixed song structure.

There has been a great amount of work dedicated to cre-
ate Tamil lyrics. Tamil is an old language spoken mainly
in Tamil Nadu and Sri Lanka, with literature that goes back
two thousand years(Suriyah et al. 2011). Sridhar et al(Srid-
har et al. 2014) use the ontological meaning of a scene and a
N-gram based approach to generate verses in this language.
It identifies syllable patterns for the lyrics, and then create
sentences that match said patterns.

Case-based reasoning has also been applied by the COL-
IBRI poetry generator to generate poetry from text provided
by the user (Dı́az-Agudo, Gervás, and González-Calero
2002). The quality of this approach results rely heavily on
the quality of the original user-given text.

It is also possible to find applications online for this pur-
pose. Country Western Song Machine1 randomly creates
country musics using a templates, and can output a very
large amount of possible combinations. The Romantic Love
Poetry Generator2 uses pre-defined templates and user in-
puts to create poems. The words simply replace specific
spaces in the template. Similarly, the Song Lyrics Gen-
erator3 allows the user to select a style (e.g. “Freestyle”
or “Love song”) or an artist (e.g. “The Beatles” or “Katy
Perry”), and to fill a form, that varies according to the
style/artist. The form answers replace words in real music.

Our method differs from previous work in the sense that
we extract structures from real songs, unlike (Oliveira 2012;
Oliveira et al. 2014) extraction of words or the use of tem-
plates. Thus, we believe our system can allow for more di-
versity and expressiveness. Also, none of the cited works
use the same input as we do (scientific papers), and very few
try to parse information about the real-world into lyrics.

Music generation

Procedural generation of music content is an interesting field
which has received much attention over the last decade. Ex-
amples of research on this topic range from creating sim-
ple sound effects, to avoid repeating the same clip over and
over, to create even more complex harmonic and melodic
structures (Shaker, Togelius, and Nelson 2014). While many

1Country Western Song Machine, 1998,
http://www.outofservice.com/country/

2Romantic Love Poetry Generator:
http://www.links2love.com/poem generator.htm

3Song Lyrics Generator: http://www.song-lyrics-
generator.org.uk/

games use some sort of procedural music structure, there are
different approaches (or degrees), as suggested by Wooller et
al.: transformational algorithms and generative algorithms
(Wooller et al. 2005).

Transformational algorithms act upon an already prepared
structure, for example by having the music recorded in lay-
ers that can be added or subtracted at a specific time to
change the feel of the music (e.g., The Legend of Zelda:
Ocarina of Time (Nintendo 1998) is one of the earliest
games that used this approach). Note that this is only an
example and there are a great number of transformational
approaches (see GenJam (Biles 1994) and Music Sketcher
(Abrams et al. 1999)), but we won’t discuss them in this
paper.

Generative algorithms instead create the musical structure
themselves, which increases the difficulty in maintaining
consistency between the music and the game events. This
approach usually requires more computing power as the mu-
sical materials have to be created on the fly. An example
of this approach can be found in Spore (Maxis 2008): the
music written by Brian Eno was created with Pure Data,
where many small samples created the soundtrack in real
time. Also note that hybrid approaches are possible, see Ex-
periments in Music Generation (Cope 1996)

In this project we adopt the generational approach, al-
though limited to the generation of melodies. The moti-
vation for us choosing this approach is that we believe we
can create more novel content this way, instead of applying
transformations to already existing content. Another pitfall
of the generational approach is the amount of time neces-
sary for generating the content; in our case, as the evolution
of the Markov chains that will generate the melody is done
a priori, we have a very fast (and inexpensive) generation of
melodies.

Lyrics generation

The lyric generation process used in this approach takes as
input an academical paper in PDF format, and output a series
of verses. It has two main steps: pre-processing and lyric
generation.

Pre-processing

Pre-processing involves populating databases of words (and
their stems) and song structures. It needs to be executed only
once, prior to the first lyric generation. Firstly, the word
database was populated using Google searches for lists of
word types (e.g. verbs, prepositions, pronouns). For each
word in the database, its stem value was also extracted using
SnowbalStemmer(Porter and Boulton 2001).

Afterwards, it was necessary to populate the structure
database. By structure we define a group of word types in
sequence that represent a sentence. For instance, the struc-
ture for “We see our big, blue sky” would be “Pronoun verb
pronoun adjective comma adjective other”. Possible values
for the structure are: verb, pronoun, preposition, adjective,
adverb, conjunction, other, onomatopoeia, comma and dot.
“Other” represents both nouns and words that may not fall
into other categories. We chose to use it, instead of “noun”,

Proceedings of the Sixth International Conference on Computational Creativity June 2015 205

because it allows a higher level of diversity while choos-
ing the word. This way, not only can we choose a noun,
but also any of the other categories previously mentioned as
well. Onomatopoeia is an other value with less than three
letters (e.g. “Po-po-poker face” would be represented as
“onomatopoeia onomatopoeia other other”). These types are
represented, in code, as integers.

To identify structures in real songs, a group of 50 songs
were analysed. These songs were selected from famous
artist (e.g. Rihanna, Michael Jackson), using as criteria that
all songs need to be in English and there cannot be more
than 3 songs per singer. For each sentence in the lyrics, the
algorithm extracted its equivalent structure which is then in-
serted into the structure database.

Lyric generation

The process for generating lyrics is divided further into three
steps: parsing and analysis of paper, creation of song struc-
ture, and lyrics word generation.

In the first step, the algorithm receives a PDF file con-
taining the paper and extracts its words using the PDFBox
library4. Then, the text is processed, removing everything
before the abstract and after the references. This aims at
avoiding inputting data that will not significantly improve
the user’s understanding of the paper. If the system cannot
identify the abstract or the introduction (in the absence of
the abstract), it will start at the very beginning.

In order to evaluate the importance of each word in the
text, a word count is performed. It uses the stem value of
the word, and is calculated as the sum of all occurrences of
words derived from this stem, in the text. For instance, as-
sume that “wait” appears once and “waiting” appears twice
in text. The count would be 3 for both of them, because they
have the same stem “wait”. Also, each word was added to a
collection of values types present in paper, according to their
value type (see Section Pre-processing).

Secondly, the algorithm randomly selects a number of
structures from the database. They will represent the total
structure of the music, i.e. each structure will represent the
structure of a line in the final lyrics. For the purposes of this
paper, all songs have a total of 24 structures, divided into 6
groups of 4 structures each.

Finally, for each structure chosen, a sentence is created ac-
cording to type values in the structure. Comma and dot val-
ues are translated directly into “,” and “.”. Types verb, pro-
noun, preposition, adjective, adverb and conjunction trig-
ger a roulette selection among all words from that type that
appeared in text. This selection uses the word count as
probability. Onomatopoeia inserts either “aah”, “ooh” or a
random word from text with its start repeated (e.g. “ta-ta-
taxonomy”). Lastly, other trigger a roulette selection with
all words in text.

Music generation

To create a melody we decided to use two Markov chains.
These are mathematical systems that undergo transitions

4PDFBox is a Java open-source PDF library:
https://pdfbox.apache.org/

from one state to another on a state space (Norris 1998). A
Markov chain is a stochastic process with the Markov prop-
erty: the next state to be selected only depends on the previ-
ous one.

Markov models can be trained using existing sequences
of events (e.g., words in a book, or notes in a musical piece)
and, once trained, be used to generate a new sequence of
events statistically similar to the training data. It is highly
unlikely for a Markov model to recreate an exact training se-
quence as it contains an intrinsic stochastic element. How-
ever this depends very much on the training data. An im-
portant limitation of Markov chains is that they capture sta-
tistical similarities only on a local scale, and not on a high
level; this means that we lose information of structures like
repetition of musical phrases in different part of the compo-
sition. Nevertheless, even with this disadvantages Markov
chains have classically been extensively used for the pur-
pose of melody generation, as they can be trained easily to
create sequences of notes (Ames 1989).

Examples of research that use Markov chains and Evo-
lutionary Algorithms are Manaris et al.’s Monterey Mirror
(Manaris, Hughes, and Vassilandonakis 2011) and Bell’s
work (Bell 2011). Manaris’ work focuses on evolving
Markov chains to obtain the rare chains that will with high
probability reproduce high-level structure (repetition of en-
tire phrases or in general more structured music) while Bell’s
work uses interactive evolution to produce chains that create
music pleasant to the listener. These are much more complex
works that generate complete music and not just melody, as
in our case.

There are some reasons why we have decided to approach
the creation of these Markov chains through such an un-
orthodox method of using evolutionary algorithms (unortho-
dox only in this particular application of course). Using
traditional (EM-based) training would have been faster and
easier, yet it is in its nature to lead to an overfitting of the
chain to the training set. What we hope to achieve through
our approach is obtaining a chain that would reflect the char-
acteristics of the training set while avoiding overfitting: in
short obtaining a chain that reflects the characteristics of the
training set while maintaining some diversity.

Another interesting feature that this approach gives us is
introducing constraints through the fitness function. This
gives us the option of tuning our chain in more interesting
ways (of course this means in parts deviating from the train-
ing set, but that’s exactly the point). These constraints could
be musical rules, for example avoiding too large intervals
between notes. We discuss these in the fitness function sec-
tion.

Markov chains and Representation

In our approach we decided to use two Markov chains: one
to determine the notes of our melody and another one to
select the duration of these notes. Markov chains can be ex-
panded to include some memory of the previous states by
considering as state not only the current one but some of the
previous ones. The amount of previous states we “remem-
ber” is called order of the Markov chain; if we consider a
chain of order 2, it means that every state is a couple con-

Proceedings of the Sixth International Conference on Computational Creativity June 2015 206

Figure 1: Fitness changes in the notes Markov chains pop-
ulation during 5000 generations. In black is represented the
fitness of the best individual of the generation, while in blue
is the average fitness of the population.

sisting of the previous note and the current one. In our final
implementation we decided to use an order 2 chain.

We implemented a Markov chain as a hash-map. Labels
(or keys) are the name of the state (the current note), and
values are another hash-map containing the probabilities of
choosing a note (transition) from the current state. We also
adopt this hash-map as our genotype. You could visualize
it as a labelled bi-dimensional matrix, with as labels states
and transitions, the next state can be calculated as: (previous
state - older note) + transition.

The state space can be calculated as n!
o!(n�o)! where n is

the amount of notes we consider and o is the order of the
chain. In the case of our order 2 chain, where we consider
3 octaves (36 notes) it would be 36!

2!(36�2)! = 630. To re-
strict this space we apply restrictions to remove states which
we consider not to be good, in particular all the states that
contain a transition between notes with intervals higher than
an octave. To avoid leafs in our chains we do not allow for
allowed states to have a 0 probability to move to any other
(allowed) state.

To extract musical information without be restricted by
the key of the song, we have our Markov chain for note gen-
eration work by degrees. In music degree is defined as the
position of a note in a specific key’s scale: for example a C
can be considered differently depending what is the key of
the song, in a C major song it will be a Ist degree, while in
a G major song it would be a IVth degree (as the scale of G
would be [G A B C D E F]]).

Evolving Markov Chains

We evolved our Markov chains using a genetic algorithm.
The parameters used for our final chains are:
• Population size = 200
• Generation number = 5000
• Elitist factor = 1/4 (this means that we keep the best 1/4th

of the population in the next generation)

Figure 2: Fitness changes in the durations Markov chains
population during 5000 generations. In black is represented
the fitness of the best individual of the generation, while in
blue is the average fitness of the population.

• Mutation chance = 10%
The procedure to create the new generation is to copy to the
new one the best individuals of the previous, then we fill the
rest of the population with offspring of randomly selected
individuals from the previous generation. Finally each indi-
vidual has a chance of mutating.

To create offspring we use a one-point crossover ap-
proach: we select a random index of the states in our Markov
chain (hashmap) and we create two new chains, the fist will
contain the values of the first parent until the index and the
values of the second parent for the following ones, while the
second one the opposite. Because of the way we are repre-
senting the chains all of them always have the same amount
of states, so the only thing changing while doing crossover
are transition probabilities between states.

We are aware that using crossover will sometimes lead
to broken Markov chains, with some orphan sub-chains
that will result unreachable. This is an inherent issue with
crossover, but we assume that a broken chain with high fit-
ness will still present the characteristics that we desire and
through our elitist strategy we will be able to preserve the in-
dividuals that presents good gene combination, be they bro-
ken or not. Vice versa, a broken chain with low fitness has a
higher chance to be replaced.

To mutate a chain we consider a chance of
1

numberOfStates for each state to randomize it’s transi-
tions; this way we will statistically only have one state
changing when mutating the chain, but still allowing for
bigger mutations (or no mutation) to happen.

Fitness function

The fitness function we have chosen to apply for the evolu-
tion of the chains can be described as:
f =

X
Si2Songs

PredictRew(Si)� ConstraintsPen

where Songs is a set of melodies from existing songs,
PredictRew(Si) is defined as the probability of the Markov

Proceedings of the Sixth International Conference on Computational Creativity June 2015 207

Figure 3: Output of program the program for a paper by Togelius et al.(Togelius et al. 2011). a) Actual lyric generated. b)
Random structure used, represented in code. c) Same structure, in natural language.

chain we’re currently evaluating to predict the melody in the
song Si and ConstraintsPen is the penalty assigned to the
chain according to the constraints we want to apply to it.

By considering Si = {n0, n1, ..., nk}, where ni is the i-th
note in the melody and k + 1 is the amount of notes in the
melody, we calculate PredictRew(Si) as:

PredictRew(Si) =
X

{ni,ni+1,ni+2}⇢Si

P (ni+2|ni, ni+1)

where P (ni+2|ni, ni+1) is the probability that the Markov
chain we are evaluating presents for the transition ni+2 from
the state (ni, ni+1). To make a practical example, if the song
presents a sequence of the type (C,D,E), the fitness of the
chain will increase by the probability it has of making the
transition E from the state (CD).

ConstraintsPen is composed by two rules we intro-
duced to eliminate cases we consider musically uninterest-
ing:

ConstraintsPen = BigLeap+ SameNoteLoop

where BigLeap is defined as:

BigLeap =
X

nk|(ni,nj)2Chain
P (nk|(ni, nj))

if |(nk � nj)| > 12

So it will increase for every transition that appears in the
chain that presents a voice movement bigger than an octave
(e.g. (C1, C1) ! D2). SameNoteLoop is instead defined
as:
SameNoteLoop =

X
ni|(ni,ni)2Chain

P (ni|(ni, ni))

This way we will have a higher penalty for transitions that
keep us in the same state when the state is comprised of a
couple of identical note (e.g. (C1, C1) ! C1).

The fitness function for the chain that will determine the
duration of the notes (instead than the notes themselves) is
evaluated the same way, but without ConstraintsPen, as
these constraints are pitch specific.

Our Songs set consists of 20 songs taken from a list of
most popular pop songs. It presents a variety of styles, but
all the songs are in a major mode. This limits our generation
to melodies in major mode, while for minor melodies we
would have to evolve a new chain using a set of songs in mi-
nor key. This is necessary because the intervals between the
notes in a major and minor scale differ, making us hypoth-
esize that our chain will only be able to produce melodies
appropriate for the key of the songs used to calculate the
fitness.

The elements of the set are the voice track from the songs;
we have isolated the voice melody and stored it in a MIDI
file, from this file we extract the degrees of the notes of the
melody (by considering in which key the song is) and the
duration of these notes. We will then use these values in the
evaluation of our chains (remember that to abstract the key
our chain work by degrees).

From text to melody

To create a melody to go with some particular lyrics we our
method is:

1. Find the total amount of “syllables”. In this case we con-

Proceedings of the Sixth International Conference on Computational Creativity June 2015 208

sider a simplistic concept of syllable: we consider a sylla-
ble for every time we encounter a vowel (groups of vowels
are considered as part of the same syllable).

2. Create as many notes as the syllables in the lyrics using
the notes chain

3. Define the duration of the notes using the durations chain
4. Add rests after each word (with a 30% chance that there

is going to be no rest)
Finally, for easy usage and visualization of the melody we

produce a midi file representing our melody.

Results

Lyrics

Figure 3 shows two verses of lyrics generated using To-
gelius et al. paper (Togelius et al. 2011), and it’s basic struc-
ture. It is possible to notice some degree of understanding in
the sentences, and diversity in word choices.

Figure 4 shows a small part from lyrics generated by the
system using Darwin’s paper (Darwin 1991), with melody.
Another verse from the same work goes as follows:

Natural who in, throw all selection
Re-re-related nature relations law on any
Cl-cl-class that false but it inhabitants generic
It natural origin its, species to sp-sp-special and on its
.
That more be all, – reflecting
Each relations on these – natural
Each dr reflecting gr-gr-grouping circumstances
Selection introduction

Figure 5 show some verses from a song generated with
this paper. In a different iteration, the following verses were
generated:

Parent chain mutating
Another should, we pre-processing musical be with pr-

pr-pre-processing states
That songs structures that, sridhar, other possibility use
Im-im-improve, pr-pr-priori, ad-ad-add, im-im-

improved, rh-rh-rhyming, on-on-on, ooh
’
Papers to music lyrics generation, figure
Generation that, consider, generate, correct, with we is

using
Restrict input and note statistical final as music
Create it, approaches, create, be, into it chains gener-

ated

Music

In this section we’ll try to analyse some of the melodies our
generator produced.

In figure 4 we can see an example of a melody generated
by our system from Darwin’s paper On the origin of species
by means of natural selection, the generation of melodies is
very fast, as the training is done a priori. Interesting to note
is how our generator doesn’t create melodies that strictly
stick with the diatonic scale but introduces alterations.

In the figure we can see how in the fifth bar it lowers the
VII degree to a B[, and more interestingly how it presents
the note again on a different octave. Looking at the other
notes played in the chord we can recognize how the chord
underlying the measure could well be a C7 with the omission
of the V degree [C E B[]. While this chord goes out of the
normal key it is not uncommon to use it in this key and it
doesn’t necessarily signify a change of key.

Another example generated from this paper can be ob-
served in figure 5. This score shows even more alterations
than the other one with a more dissonant and almost jazz-
like feel. Interesting to note how musical passages seem to
emerge and be repeated with alterations: for example the
succession E-D-C (bars 1, 2 and 3, with a rest in the latter)
and the succession C-C-B[-C] (repeated two times in bar 4
and inverted and transposed just afterwards becoming C-C-
D[-C].

Nonetheless, we haven’t conducted an evaluation study on
the melodies produced so we cannot make any statement on
how interesting or musically pleasing the melodies are to the
listener. Also we believe that to achieve a more interesting
result we would need a harmonic framework to give more
musical context to the produced melody; as we discussed in
this section we can see some passages that seem to present
some chord, but that is a purely emergent behaviour.

Discussion

This section will discuss our main findings in this project,
and final considerations about them and the work in general.

Lyrics

Regarding lyric generation, although our approach may be
perceived by some as simplistic, we believe it is capable
of creating relatively fluid and interesting lyrics. The sen-
tences structure seem somewhat sensible, although there are
definitely space for improvement. Rhyming also happens
in some moments, however it does occasionally, as the cur-
rent version of the system cannot guarantee rhyming. We
intend to correct it in further implementations, perhaps us-
ing a rhyming library or accessing a service online to check
possible words. This would permit to create musical rhyme
patterns (e.g. ABAB or AABB, where A and B represent
rhyming endings of sentences). The size of sentences, too,
varies, and a syllable measure constraint could help improve
it.

Furthermore, it is possible to understand, to some extent,
basic ideas transposed from the paper to lyrics. Some words
that are clearly significant in the paper also appear in the
lyrics. But there is no perceptible line of thought. It would
be interesting to take the structure of the paper into account
in the generation, by changing the probability value of words
according to the current verse number. For instance, in the
first verse, words from the paper’s introduction would be
more likely to be chosen than others. We would also like
to try different techniques, such as an evolution strategy, to
see if the outcome presents higher or lower semantic mean-
ing in comparison to this approach. Further mechanisms for
dealing with the meaningfulness of lyrics need to be applied.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 209

Figure 4: Excerpt from the score generated from Darwin’s paper On the origin of species by means of natural selection (Darwin
1991) C major.

Figure 5: Excerpt from the score generated from this paper in C major.

Music

The main point we have to discuss is our choice of adopt-
ing evolution of Markov chains instead of the more com-
mon method of training them. While this method is more
time consuming, we believe it is interesting. There is an ar-
gument of novelty, because the method of evolving Markov
chains for music production, while not completely new, is
not very explored.

As we stated at the beginning of the Music Generation

section, we believe that this method results in lower de-
pendency on the training set than traditional training. We
think that, this way, our chains should be able to express a
greater music space while maintaining some structure from
the training set. One cost we expect to have to pay is a
smaller rate of emulation of the training set style. Sadly, at
the moment we don’t have enough data to support this state-
ment, but an evaluation study is already planned. Another
pitfall is the possibility of getting in a part of the melody
space where there is not enough information to create mu-
sically interesting melodies, degenerating in the worst case
scenario to a random search.

As seen in section , we see some interesting emergent
behaviour (like the almost key changes and the jazzier sec-
tions) which might hint to how the Markov model might not
be very effective at producing a coherent whole.

Still, we believe that our approach will be able to cap-
ture the style of a specific genre/style of music with a large

enough corpus of songs to use in our fitness function. We
have to recognize how we might have achieved better re-
sults by having a bigger training set, but we believe we have
already achieved some very interesting results.

Finally by observing the increase of the fitness function of
our evolved population in Figures 1 and 2 we notice how the
duration chain evolves much faster and with higher fitness.
This is due to the smaller space we consider for this chain,
which is less than half of the notes chain’s one.

Conclusions

We have presented a method for creating melody and lyrics
using real-world data. To do so, we developed a musical
generator that evolves Markov chains to create melodies,
and a lyric generator, that extracts content from academi-
cal papers and transforms them into songs. We have a fully
functional system that complete both tasks, taking an aca-
demic paper in PDF format and outputting a melody and the
according lyrics. Our generator seems to produce interest-
ing music/lyrics combinations, but we still have to conduct
further studies to prove their interestingness. The generator
also still shows much room for improvement, as discussed
previously, and future work will be in both fine-tuning the
evolutionary approach and introducing more features in the
lyrics generation, such as rhyming, stricter metric structure
and improved semantic content transfer from the original pa-
per. Still, we need to recognize that there might be issues
inherent to using Markov chains for melody production that

Proceedings of the Sixth International Conference on Computational Creativity June 2015 210

might not be resolved, like insuring the production coherent
whole.

Ultimately, we believe think these techniques might be
used in music-based games to add and customize content.

References

Abrams, S.; Oppenheim, D. V.; Pazel, D.; Wright, J.; et al.
1999. Higher-level composition control in music sketcher:
Modifiers and smart harmony. In Proceedings of the ICMC.
Ames, C. 1989. The markov process as a compositional
model: a survey and tutorial. Leonardo 175–187.
Bell, C. 2011. Algorithmic music composition using dy-
namic markov chains and genetic algorithms. Journal of
Computing Sciences in Colleges 27(2):99–107.
Biles, J. 1994. Genjam: A genetic algorithm for generating
jazz solos. In Proceedings of the International Computer
Music Conference, 131–131. International Computer Music
Association.
Brown, D. 2012. Mezzo: An adaptive, real-time composi-
tion program for game soundtracks. In Proceedings of the
AIIDE 2012 Workshop on Musical Metacreation, 68–72.
Colton, S.; Goodwin, J.; and Veale, T. 2012. Full face po-
etry generation. In Proceedings of the Third International
Conference on Computational Creativity, 95–102.
Cope, D. 1996. Experiments in musical intelligence, vol-
ume 12. AR editions Madison, WI.
Darwin, C. 1991. On the origin of species by means of
natural selection, 1859. Murray, London.
Dı́az-Agudo, B.; Gervás, P.; and González-Calero, P. A.
2002. Poetry generation in colibri. In Advances in Case-
Based Reasoning. Springer. 73–87.
Hieu Nguyen, B. 2009. Rap lyric generator.
Houge, B. 2012. Cell-based music organization in Tom
Clancy’s EndWar. Demo at the AIIDE 2012 Workshop on
Musical Metacreation.
Karmaflow. Karmaflow: The rock opera videogame.
Manaris, B.; Hughes, D.; and Vassilandonakis, Y. 2011.
Monterey mirror: Combining markov models, genetic algo-
rithms, and power laws. In Proceedings of 1st Workshop in
Evolutionary Music, 2011 IEEE Congress on Evolutionary
Computation (CEC 2011), 33–40.
Manurung, H. 2004. An evolutionary algorithm approach to
poetry generation.
Maxis. 2008. Spore.
Nintendo. 1998. The legend of zelda: Ocarina of time.
Norris, J. R. 1998. Markov chains. Number 2008. Cam-
bridge university press.
Oliveira, H. G.; Hervás, R.; Dı́az, A.; and Gervás, P. 2014.
Adapting a generic platform for poetry generation to pro-
duce spanish poems. In 5th International Conference on
Computational Creativity, ICCC.
Oliveira, H. G. 2012. Poetryme: a versatile platform for
poetry generation. Computational Creativity, Concept In-
vention, and General Intelligence 1:21.

Porter, M., and Boulton, R. 2001. Snowball stemmer.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2014. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer. (To appear).
Smith, B. D., and Garnett, G. E. 2012. Improvising musical
structure with hierarchical neural nets. In Proceedings of the
AIIDE 2012 Workshop on Musical Metacreation, 63–67.
Sridhar, R.; GANGA, K.; PRABHA, G. D.; et al. 2014.
Automatic tamil lyric generation based on ontological inter-
pretation for semantics. Sadhana 39(1):97–121.
Studio, D. F. 2009. Brutal legend.
Suriyah, M.; Karky, M.; Geetha, T.; and Parthasarathi, R.
2011. Special indices for laalalaa lyric analysis & generation
framework. In Proc. Internat. Tamil Internet Conf, 287–292.
Togelius, J.; Kastbjerg, E.; Schedl, D.; and Yannakakis,
G. N. 2011. What is procedural content generation?: Mario
on the borderline. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games, 3.
ACM.
Toivanen, J.; Toivonen, H.; Valitutti, A.; Gross, O.; et al.
2012. Corpus-based generation of content and form in po-
etry. In Proceedings of the Third International Conference
on Computational Creativity.
Toivanen, J. M.; Toivonen, H.; Valitutti, A.; et al. 2013.
Automatical composition of lyrical songs. In The Fourth
International Conference on Computational Creativity.
Wooller, R.; Brown, A. R.; Miranda, E.; Diederich, J.; and
Berry, R. 2005. A framework for comparison of process
in algorithmic music systems. In Generative Arts Practice
2005 — A Creativity & Cognition Symposium.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 211

