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Abstract 

An Unnatural Selection is a generative musical compo-
sition for conductor, eight live musicians, robotic per-
cussion, and Disklavier. It was commissioned by Van-
couver’s Turning Point Ensemble, and premiered in 
May 2014. Music for its three movements is generated 
live: the melodic, harmonic, and rhythmic material is 
based upon analysis of supplied corpora. The tradition-
ally notated music is displayed as a score for the con-
ductor, and individual parts are sent to eight iPads for 
the musicians to sight-read. The entire system is auton-
omous (although it does reference a pre-made score), 
using evolutionary algorithms to develop musical mate-
rial. Video of the performance is available online.1 This 
paper describes the system used to create the work, and 
the heuristic decisions made in both the system design 
and the composition itself. 

Introduction 
An Unnatural Selection can be classified as art as research: 
the author is a composer who has spent the previous thirty 
years coding software systems that are used as composi-
tional assistants and/or partners. In the last ten years, these 
systems have explored greater autonomy, arguably creating 
computationally creative musical production systems that 
produce music that would be considered creative if the 
author had produced them independently. 
 Music has a long history of computational systems cre-
ated by artist-programmers, in which many aspects of the 
musical creative process are automated (Chadabe 1980; 
Lewis 2000; Rowe 2004). Most of these systems have been 
idiosyncratic, non-idiomatic production systems specific to 
the artist’s musical intention; however, some attempts have 
been made at evaluation (Eigenfeldt et al. 2012).  
 The author’s own investigation into creative software 
have included multi-agent systems that emulate human 
improvisational practices (Eigenfeldt 2006), constrained 
Markov selection (Eigenfeldt and Pasquier 2010), and cor-
pus-based recombination (Eigenfeldt 2012). All of these 
systems operate in real-time, in that they generate their 
output in performance using commercially available syn-
thesizers, which, unfortunately, offer limited representa-

                                                
1 https://aeigenfeldt.wordpress.com/works/music-for-robots-and-
humans/  

tions of their highly complex acoustic models (Risset and 
Matthews 1969, Grey and Moorer 1977) 
 In order to bypass these audio limitations, the author’s 
more recent research investigates the potential for generat-
ing music directly for live performers (Eigenfeldt and Pas-
quier 2012b). Complex issues arise when generating music 
for humans, both in terms of software engineering – e.g. 
producing complex musical notation for individual per-
formers – and human computer interaction: asking musi-
cians to read music for the first time during the perfor-
mance, without rehearsal, and without recourse to improvi-
sation. See Eigenfeldt (2014) for a detailed discussion of 
these matters. 

Previous Work 
An Unnatural Selection builds upon the work of others in 
several areas, including genetic algorithms, real-time nota-
tion, and generative music. 

Evolutionary Algorithms 
Evolutionary computation has been used within music for 
over two decades in various ways. Todd and Werner 
(1999) provide a good overview of the earlier musical ex-
plorations using such approaches, while Miranda and Biles 
(2007) provide a more recent survey. Very few of these 
approaches have been compositional in nature; instead, 
their foci have tended to be studies, rather than the genera-
tion of complete musical compositions. 
 Several real-time applications of GAs have been used, 
including Weinberg et al. (2008), which selected individu-
als from an Interactive Genetic Algorithm (IGA) suitable 
for the immediate situation within a real-time improvisa-
tion. Another approach (Beyls 2009) used a fitness func-
tion that sought either similar or contrasting individuals to 
an immediate situation within an improvisation. 
 Waschka (2007) used a GA to generate contemporary art 
music. His explanation of the relationship of time within 
music is fundamental to understanding the potential for 
evolutionary algorithms within art-music: “unlike material 
objects, including some works of art, music is time-based. 
The changes heard in a piece over its duration and how 
those changes are handled can be the most important as-
pect of a work.” Waschka’s GenDash has several im-
portant attributes, a number of which are unusual: an indi-
vidual is a measure of music; all individuals in all genera-
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tions are performed; the fitness function is random, leading 
to random selection; the composer chooses the initial popu-
lation. Of note is the second stated attribute, the result of 
which is that “the evolutionary process itself, not the result 
of a particular number of iterations, constituted the music”. 
Waschka provides some justifications for his heuristic 
choices, suggesting that while they may not be observed in 
real-world compositional process, they do provide musical-
ly useful results. 
 EAs have been used successfully in experimental music 
and improvisation for several years. In most cases, artists 
have been able to overcome the main difficulty in applying 
such techniques to music – namely the difficulty of formu-
lating an effective aesthetic fitness function – through a 
variety of heuristic methods. One particularly attractive 
feature of EAs to composers relates to the notion of musi-
cal development – the evolution of musical ideas over time 
– and its relationship to biological evolution. As music is a 
time-based art, the presentation of successive generations – 
rather than only the final generation – allows for the aural 
exposition of evolving musical ideas. 

Real-time Notation 
The prospect of generating real-time notation is an estab-
lished area of musical research, and has been approached 
from a variety of viewpoints: see Hajdu and Didkovsky 
(2009) for a general overview. Freeman (2010) has ap-
proached it as an opportunity for new collaborative para-
digms of musical creativity, while Gutknecht et al. (2005) 
explored its potential for controlled improvisation. Kim-
Boyle (2006) investigated open-form scores, and McClel-
land and Acorn (2008) studied composer-performer inter-
actions. However, the complexity of musical notation 
(Stone 1980), limited these efforts to graphic representa-
tions, rather than traditional western music notation that 
affords more precise and detailed directions to performers.  
 Hajdu’s Quintet.net (2005) was an initial implementa-
tion of MaxScore (Didkovsky and Hajdu 2009), a publical-
ly available software package for the generation of stand-
ard western musical notation, one that allows for complexi-
ties of notation on the level of offline notation programs. 
An Unnatural Selection uses MaxScore for the generation 
of the conductor’s score, which is then parsed to individual 
iPads and custom coded software. 

Production Systems versus Compositions 
The creation of a production system for An Unnatural Se-
lection was concurrent with the conceptualization of the 
composition itself, which is often the case in the author’s 
practice. The desired musical results are imagined through 
audiation, and the software is coded with these results in 
mind. The attraction of generativity rests in the ability for a 
musical work to be actuated in varying forms while still 
retaining some form of overall artistic control.  
 The author has chosen to create composition-specific, 
rather than general purpose, systems for two reasons: pre-
vious experience has shown that general systems tend to 
become so complex with added features as to obfuscate 

any purposeful artistic use, and secondly, specifically de-
signed systems allow for a design with a singular artistic 
output in mind.  
 As a result, some modules within the system used in An 
Unnatural Selection are specific to that work; however, it 
also builds upon earlier work (Eigenfeldt and Pasquier 
2010) as well as contributing to successive works. Specifi-
cally, the analysis engine and generation engine can be 
considered a free- standing system, which I refer to as PAT 
(Probabilities and Tendencies); the evolutionary aspects 
are specific to An Unnatural Selection. 

The GA and its role as “Development tool” 
As already mentioned, the use of genetic algorithms – 
modified or otherwise – are attractive to composers inter-
ested in musical development. While this method of com-
position has its roots in the Germanic tradition of the 18th 
and 19th centuries, it remains cognitively useful, since it 
provides listeners with a method of understanding the un-
folding of music over time (Deliege 1996; Deliege et al. 
1996). A description of the work from the program notes – 
“musical ideas are born, are passed on to new generations 
and evolved, and eventually die out, replaced by new ide-
as” – may suggest principles of artificial life, or music 
based upon Brahms, Mahler, or Schoenberg. 
 A general conception of the first movement was a pro-
gression from chaos to order;  
• an initial population of eight musical phrases are pre-

sented concurrently by the eight instrumentalists; 
• the phrases are repeated, and each repetition develops 

the phrases independently; 
•  segments from the individual phrases infiltrate one an-

other; 
•  the individual phrases separate in time, thus allowing 

their clearer perception by the listener. 
 While these concepts began with a musical aesthetic in 
mind, they were clearly influenced by their potential inclu-
sion of genetic algorithms.  

The Score as template 
An Unnatural Selection is the most developed system in 
my pursuit of real-time composition (Eigenfeldt 2011): the 
possibility to control multiple complex gestures during 
performance. As will be described, An Unnatural Selection 
involves a number of high-level parameter variables that 
determines how the system generates and evolves individ-
uals; dynamically controlling these in performance effec-
tively shapes the music. As the performance approached, I 
doubted my performative abilities, and instantiated a score-
based system that allowed for the pre-determined setting of 
the control parameters for each successive generation: 
while the details of work would still be left to the system, 
the overall shape would be preset. The use of such tem-
plates is not uncommon in other computationally creative 
media: Colton et al. (2012) used similar design constraints 
in generating poetry in order to maintain formal patterns. 
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Probabilities and Tendencies (PAT) 
The heart of PAT rests in its ability to derive generative 
rules through the analysis of supplied corpora. Cope (1987) 
was the first composer to investigate the potential for style 
modeling within music; his Experiments in Musical Intel-
ligence generated many compositions in the style of Bach, 
Mozart, Gershwin, and Cope. Dubnov et al. (2003) suggest 
that statistical approaches to style modeling “capture some 
of the statistical redundancies without explicitly modeling 
the higher-level abstractions”, which allow for the possibil-
ity of generating “new instances of musical sequences that 
reflect an explicit musical style”. However, their goals 
were more general in that composition was only one of 
many possible suggested outcomes from their initial work. 
Dubnov’s later work has focused upon machine improvisa-
tion (Assayag et al. 2010). 
 The concept of style extraction for reasons other than 
artistic creation has been researched more recently by Col-
lins (2011), who tentatively suggested that, given the state 
of current research, it may be possible to successfully gen-
erate compositions within a style, given an existing data-
base. 
 For An Unnatural Selection, corpora included composi-
tions by the following composers: 
• Movement I: 19 compositions by Pat Metheny 
• Movement II: 2 compositions by Pat Metheny and 2 by 
Arvo Pärt 
•  Movement III: 1 composition by Terry Riley and 2 by 
Pat Metheny 
 These specific selections were arrived at through trial 
and error, as well as aesthetic consideration. The contem-
porary jazz material of Metheny provided harmonic rich-
ness without the functional tonality of the 19th century. 
Combining this corpus with Pärt’s simpler harmonies and 
melodies gave them an interesting new dimension, while 
the repetitive melodic material of Riley’s In C, when com-
bined with Metheny’s harmonies created a new interpreta-
tion of minimalist melodic and rhythmic repetition with 
more complex harmonic underpinnings. 

Analysis of corpora 
PAT requires specially prepared MIDI files that consist of 
a quantized monophonic melody in one channel, and quan-
tized harmonic data in another: essentially, a lead-sheet 
representation of the music. Prior to the creation of melod-
ic, harmonic, and rhythmic n-gram dictionaries (Pearce and 
Wiggins 2004), harmonic data is parsed into pitch-class 
sets (Forte 1973). Melodic data is stored in reference to the 
harmonic set within which it was found, both as an actual 
MIDI note number and pitch-class as relative to the set.  

Representation 
Music representation, and its problematic nature, has been 
thoroughly researched: Dannenburg (1993) gives an excel-
lent overview of the issues involved. Event-lists are the 
standard method of symbolic representation currently used, 
as they supply the minimally required information for rep-

resenting music within a note-based paradigm. However, 
since event-lists do not capture relationships between 
events, they have proven problematic for generative pur-
poses (Maxwell 2014). For this reason, PAT includes non-
events that are displayed in music notation. 

Figure 1. A notated melodic phrase, with beats 1 through 4  
indicated, and non-events marked below. 

 
 Figure 1 presents a simple melodic phrase, and its event-
based representation is shown in Table 1. While the onset 
times and durations are captured, their interrelationships, 
clearly shown in Figure 1, are difficult to determine. The 
initial event’s prolongation into the second beat, as shown 
through the tie (marked with an x), is missing. Similarly, 
the rest on the third beat (also marked with an x) segments 
the second and third beats, also not obvious in Table 1. 
 

Event # Beat Pitch Duration 
1 1.0 60 1.5 
2 2.5 62 0.5 
3 3.5 64 0.5 
4 4.0 65 1.0 
Table 1. The music of Fig. 1, represented as events.  

 
 The solution in PAT is to include all non-events: rests 
are represented as pitch 0 with appropriate durations, and 
ties are represented as incoming pitches with negative du-
rations: see Table 2. 
 

Event Beat Pitch Duration 
1 1.0 60 1.5 
2 2.0 60 -0.5 
3 2.5 62 0.5 
4 3.0 0 0.5 
5 3.5 64 0.5 
6 4. 65 1.0 

Table 2. The music of Fig. 1, showing the “non-events” 2 and 4. 
 

 Associations between events are retained within PAT 
through encoding by beat. As the generative engine uses 
Markov chains, the important relationships within and be-
tween beats are preserved through separate pitch and 
rhythm/duration n-gram dictionaries. 

Rhythm Events are stored as onset/duration duples, 
grouped into beats, with onset times indicating offset into 
the beat. Thus, Figure 1, segmented into individual beats, 
is initially represented as: 
  

(0.0 1.5) 
(0.0 -0.5) (0.5 0.5) 
(0.0 0.5) (0.5 0.5) 
(0.0 1.0) 
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 Each beat, as a duple or combination of duples, serves as 
an index into the rhythm n-gram dictionary, which stores 
all continuations and the number of times a continuation 
has been found. Thus, after encoding only Figure 1, the 
rhythm dictionary would consist of the following: 
 

(0.0 1.5) 
  (0.0 -0.5) (0.5 0.5) 1  
 (0.0 -0.5)(0.5 0.5) 
  (0.0 0.5)(0.5 0.5)  1 
 (0.0 0.5)(0.5 0.5) 
  (0.0 1.0)     1 

Pitch Melodic events are stored in relation to the harmon-
ic set within which they occurred. The total number of oc-
currences of each pitch-class (PC), relative to the set, are 
stored, as well as PCs that are determined to begin phrases 
(initial PCs) and end phrases (terminal PCs). Lastly, an n-
gram for the continuation of each PC (n>) is stored, along 
with an n-gram of its originating PC (>n). 

Figure 2. A melodic phrase with accompanying harmony;  
pitch-classes are indicated. 

 Thus, given the melodic and harmonic material of Fig-
ure 2, the melodic dictionary shown in Table 3 is con-
structed. Note that separate contour arrays are kept so as to 
retain actual melodic shapes. 
 
Set:  0 4 7          
Pitch Class 0 1 2 3 4 5 6 7 8 9 10 11 
Total PCs:  1 0 0  0 1 1 0 2 0 1 0 1 

Initial: 1 0 0 0 0 0 0 0 0 0 0 0 
Terminal: 0 0 0 0 1 0 0 0 0 0 0 0 

0> 0  0 0 0 0 0 0 0 0 0 0 1 
5> 0 0 0 0 1 0 0 0 0 0 0 0 
7> 0 0 0 0 0 1 0 0 0 1 0 0 
9> 0 0 0 0 0 0 0 1 0 0 0 0 

11> 0 0 0 0 0 0 0 1 0 0 0 0 
>4 0 0 0 0 0 1 0 0 0 0 0 0 
>5 0 0 0 0 0 0 0 1 0 0 0 0 
>7 0 0 0 0 0 0 0 0 0 1 0 1 
>9 0 0 0 0 0 0 0 1 0 0 0 0 

>11 1  0 0 0 0 0 0 0 0 0 0 0 
Table 3. The music of Fig. 2, storing individual PC’s movement 
to (n>) and from (>n), as well as a count of overall PCs for the 

set, and which PCs initiated and terminated phrases. 
 

 A similar system is used for harmony, with the n-gram 
storing the relative root movement of each set. Lastly, as 
well as melodic contours, an array of root movements (bass 
lines) is also kept. In both cases, these contours are normal-

ized and their length’s scaled. New contours are compared 
to those existing using a Euclidean distance function, and 
those below a user-set minimum similarity level are culled, 
in order to avoid excessive similarity. 

Generation 
The generative and evolutionary algorithms within An Un-
natural Selection utilize user-set parameters that define 
how the algorithms function; it is the dynamic control of 
these parameters over time that shapes the music. As has 
been mentioned, An Unnatural Selection employs a param-
eter score to control these values.  

Evolutionary Methods in An Unnatural Selection 
An Unnatural Selection uses the architecture of PAT within 
a modified evolutionary system. Within this system, musi-
cal phrases operate as individuals, or phenotypes, and indi-
vidual beats – a combination of rhythmic and melodic ma-
terial – operate as chromosomes. Phrases are developed in 
such ways that they represent successive generations. Since 
all individuals pass to the next generation, there is no se-
lection, and thus no fitness function; however, each indi-
vidual experiences significant crossover and mutation. 
Several independent populations exist simultaneously. 
 The use of evolutionary methods are extremely heuris-
tic; earlier uses of such techniques by the author are docu-
mented elsewhere (Eigenfeldt 2012; Eigenfeldt and Pas-
quier 2012a). 

Figure 3. A root progression request (red), and the generated 
progression based upon possible continuations (grey). 

Generating Harmonic Progressions 
A harmonic progression is the first generated element. A 
root progression is selected from the database as a target, 
and scaled by the requested number of chords in the pro-
gression. An initial chord is then selected from those sets 
that initiated phrases, and its continuations are compared to 
the next interval in the target. A Gaussian selection is then 
made from the highest probabilities. This process continues 
until a phrase progression is generated (see Figure 3). At 
this point, the progression has not been assigned individual 
durations. 

Generating Phrases/Individuals 
A number of required parameter values are calculated 
through a combination of corpus data and user-set ranges. 
For example, in order to select a phrase length for an indi-
vidual, the actual phrase lengths from the corpus are or-
dered, and a value is sampled from this list from within a 
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user-set range (in this case phraseLengthRange). Thus, if 
this range is fixed between 0.9 and 1.0, a random selection 
will be made from 10% of the corpus’ longest phrase 
lengths. 
 Individual phrases are assigned to specific instruments; 
since An Unnatural Selection was composed for eight in-
strument, Disklavier, and robotic percussion, the popula-
tion consisted of a maximum of 12 individuals (the piano 
and percussion used two independent phrases). An im-
portant user parameter is whether the instrument (and thus 
the phrase) is considered foreground or background: in the 
case of the former, rhythmic data is selected from the cor-
pus based upon density, while in the latter, data is selected 
based upon complexity (syncopation). Foreground individ-
uals are deemed to be more active and have more variation; 
background individuals are either more repetitive or of 
longer duration, as set by a user parameter.  

Foreground The number of onsets per beat is determined 
by a user parameter, phraseDensityRange. At initialization, 
the corpus’ average beat density is scaled between 0.0 (the 
least dense) to 1.0 (the most dense), and a selection is 
made within the user range. 

Background At initialization, the corpus’ onsets are also 
rated for complexity: the relative amount of syncopation 
within each beat. Background phrases are comprised of 
either rhythmic material or held notes; in the case of the 
former, an exponential selection is made from the top 1/3 
of the corpora (the most syncopated), while a similar selec-
tion is made from the bottom 1/3 for held individuals. 
Background phrases are immediately repeated if they are 
less than one measure in total duration. 

Figure 4. The continuations for a specific PC (7), left; a 
weighting that favors more distant PCs, center;  

the final probability for PC selection, right. 

 Once an initial selection is made for foreground or 
background individuals, the continuations from that beat 
are constrained by the same user parameters. 

Melodic material Similar to harmonic and rhythmic gen-
eration, melodic generation selects an initial PC from those 
PCs in the corpus that began melodic phrases; continua-
tions of that PC are then weighted to derive the probabili-
ties for the next PC. In the case of foreground individuals, 
a fuzzy weighting is applied so as to avoid direct repetition 
and small intervals. (see Figure 4); for background phrases, 

the opposite weighting is applied to avoid large melodic 
leaps. 

Individual locations within overall phrase Once all 
phrases have been generated, the maximum length is de-
termined, in beats; this value is rounded up to the next 
measure, and becomes the overall phrase length to which 
the harmonic progression is overlaid.  
 Individuals are placed within the overall phrase, either 
attempting to converge upon other individual’s locations, 
or diverge from them, depending upon a user-set parameter 
phraseVersusPhrase. Each phrase’s current onset locations 
are summed, which will determine the probability for the 
placement of individuals in the next overall phrase while 
the inverse will provide probabilities for divergence (see 
Figure 5). Rests are added to the beginning and/or end of 
the individual in order to place them in the overall phrase: 
these rests are not considered part of the individual. 

Figure 5. The number of total onsets per beat, left; the inverse as 
avoidance probability, center; the final probability for phrase 

starts, right. Because of the individual’s length, its placement is 
limited to the first six locations of the overall phrase. 

Melodic Quantization  
 With the harmony now in place, PCs are quantized to 
sets within which they are located. A PC is compared to 
the total n-gram for its current harmonic set, which acts as 
an overall probability function, scaled by intervallic close-
ness to the PC (see Figure 6). In this way, PCs are not 
forced to a pre-defined “chord-scale” for the set, but ad-
justed to fit the n-gram for the set within the corpus. 
 Pitch ranges are then adjusted for each individual, and 
dynamics, articulations, slurs, and special text (i.e. arco vs. 
pizzicato) are applied: space does not allow for a discus-
sion of how these parameters are determined. 

Figure 6. The n-gram for the set (0 3 7 10), left; a weighting for a 
raw PC (1) that favors intervallic closeness; the final probability 

for PC quantization, right. 
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Figure 7. The first two generations of a population of four individuals, demonstrating crossover by segment. 

Evolving Populations 
As mentioned previously, all individuals progress to the 
next generation, unless they are turned off in the user 
score. Evolution of individuals includes crossover (within 
set populations) and mutation. 

Crossover The individual’s chromosomes are its beats; as 
rests are considered events within PAT, every beat, includ-
ing rests, constitutes a separate chromosome. Crossover 
does not involve the usual splicing of two individuals, but 
instead the insertion or deletion of musical segments be-
tween individuals. Segmentation is done using standard 
perceptual cues, including pitch leaps, rests, and held notes 
(Cambouropoulos 2001), resulting in segments of one to 
several beats (see Figure 7). 

Figure 8. Two generations of three individuals (red, blue, green), 
showing expansion through crossover of segments. Segments a, f, 

and g are copied to the segment pool, potentially mutated, then 
inserted into other individuals 

 Individuals will either expand or contract during crosso-
ver, depending upon a user-set parameter. Contracting an 
individual involves deleting a segment, and splicing to-
gether the remaining parts in a musically intelligent way. 
Expansion involves copying segments from different indi-
viduals into a separate pool that contains a maximum of 16 
segments, differentiated by individual type: foreground 
versus background (see Figure 8). Segments are potentially 
mutated (see next section), then inserted into individuals. 
 
Mutation Mutation can occur on segments within the 
segment pool prior to insertion, or on the entire individual, 

depending upon the user-set parameter multiBeatProbabil-
ity. Mutations are musically useful variations, including: 
• scramble – randomly scramble the pitch-classes; 
• transpose – transpose a segment up or down by a fixed 
amount, from 2 pitch-classes to 12; 
• sort+ - sort the pitch-classes from lowest to highest;  
• sort– - sort the pitch-classes from highest to lowest; 
• rest for notes – substitute rests for pitch-classes, to a max-
imum of 50% of the onsets in the segment. 
 The type of mutation is selected using a roulette-wheel 
selection method from user-set probability weightings for 
each type. 

Logistics 
An Unnatural Selection is coded in MaxMSP2, using 
MaxScore for notational display. Custom software was 
written to display individual parts on iPads, which received 
JMSL (Didkovsky and Burke 2001) data wirelessly over a 
TCP network. The generative software composes several 
phrases in advance, and sends the MIDI data to Ableton 
Live3 for performance (specifically the Disklavier and ro-
botic percussion); Ableton Live provides a click track for 
the conductor, and sends messages back to the generative 
system requesting new material. 

Discussion 
An Unnatural Selection is, first and foremost, an artistic 
system designed to create multiple versions of a specific 
composition – the author’s interpretation of “generative 
music”. Many aspects of the system’s development – for 
example, the multiple populations – were arrived at 
through artistic reasons, rather than scientific. Algorithms 
were adjusted and parameters “tweaked” through many 
hours of listening to the system’s output; as a result, heu-
ristics form an important aspect of the final software. 
 Whether the system is computationally creative is a 
more difficult matter to determine. While I echo Cope’s 
desire that “what matters most is the music” (Cope 2005), I 
am fully aware of Wiggins reservations that “with hand-
coded rules of whatever kind, we can never get away from 
                                                
2 www.cycling74.com/  
3 www.ableton.com/  
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the claim that the creativity is coming from the program-
mer and not the program” (Wiggins 2008).  
 The overriding design aspect entailed musical produc-
tion rules derived through analysis of a corpus; however, as 
I discuss elsewhere (Eigenfeldt 2013), how this data is 
interpreted is itself a heuristic decision, especially when 
being used to create an artwork of any value. 

Evaluation 
While the intention of An Unnatural Selection was primari-
ly artistic, the notion of evaluation was not entirely ig-
nored, an issue the author has attempted to broach previ-
ously (Eigenfeldt et al. 2012). The work was clearly exper-
imental: it would have been much easier to generate the 
music offline, and select the best examples of the system, 
allowing the musicians to rehearse and perform these in 
ways in which they are accustomed. However, the fact that 
the music was generated live was an integral element to the 
performance: in fact, interactive lighting was used in which 
the musician’s chairs were lit only while they played, an 
effort to underline the real-time aspect.  
 While no formal evaluation studies were done, the musi-
cians were asked to critically comment upon their experi-
ences. Their comments are summarized here.  

Limited Complexity in Structure Some musicians com-
mented on the relatively unsophisticated nature of the 
overall form of the generated music: 

 “I didn't sense a strong structural aspect to the pieces. I 
thought the program generated some interesting ideas 
but I would like to see more juxtaposition, contrast of el-
ements, in order to create more variety and interest.” 
 “I would venture to say… that the music… certainly 
wasn't as developed or thoughtful as something that a 
seasoned, professional composer would create.” 
 “…any of the versions would likely have struck me as 
somewhat interesting but fairly basic.” 

Generating convincing structure is an open problem in mu-
sical metacreation, which is not surprising, as it is one of 
the most difficult elements to teach young composers. 

More Overall Complexity When asked for specific sug-
gestions, several musicians provided very musical sugges-
tions, including a greater variety of time signatures, more 
subtle instrumentation and playing techniques, different 
groupings of musicians, accelerando and rubato. Many of 
these aspects can, and will be incorporated into future ver-
sions of the system. 

Positive comments Keeping in mind that these are profes-
sional musicians specializing in contemporary music per-
formance, I was happy to receive positive comments:  

 “I assume the software is going to continue to grow 
and become more accomplished through further expo-
sure to, and analysis of, sophisticated compositional 
ideas.” 
 “I thought some of music was beautiful, especially in 
the second movement.” 

 “It seems to me that what you are doing is ground-
breaking and interesting, even if still at a relatively 
primitive stage.” 

Conclusion 
 An Unnatural Selection was the culmination of my re-
search into generating music in real-time for live musi-
cians. Upon reflection after the fact, my goal was to pre-
sent musical notation to the performers that was as close as 
possible to what they were used to, since no improvisation 
would be expected. Naturally, this would necessitate hav-
ing the musicians perform the music without any rehearsal 
– and extremely demanding request. While the extended 
rehearsals did allow the musicians to gain some expecta-
tions of what to expect from the software, it failed to pro-
vide them with what rehearsals usually provide: a time to 
discover the required interactions inherent within the mu-
sic. One musician suggested that these indications, normal-
ly learned during rehearsal periods, could somehow appear 
in the notation:  

 “Maybe the screen could indicate to the players when 
they have an important theme to bring out, and also in-
dicate which instrument they are in a dialogue with or 
have the same rhythmic figure as?” 

  Future versions of the system will explore this new par-
adigm, which also suggests the potential to involve the 
performers within the generative composition in ways that 
would not be possible without intelligent technology. 
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