
Pemuisi: a constraint satisfaction-based generator of topical Indonesian poetry

Fam Rashel1 and Ruli Manurung2

Faculty of Computer Science
Universitas Indonesia

Depok 16424, Indonesia
1fam.rashel@ui.ac.id, 2maruli@cs.ui.ac.id

Abstract

Pemuisi is a poetry generation system that generates top-
ical poems in Indonesian using a constraint satisfaction
approach. It scans popular news websites for articles and
extracts relevant keywords that are combined with vari-
ous language resources such as templates and other slot
fillers into lines of poetry. It then composes poems from
these lines by satisfying a set of given constraints. A Tu-
ring Test-style evaluation and a detailed evaluation of
three different configurations of the system was con-
ducted through an online questionnaire with 180 re-
spondents. The results showed that under the best sce-
nario, 57% of the respondents thought that the generated
poems were authored by humans, and that poems gener-
ated using the full set of constraints consistently meas-
ured better on all aspects than those generated using the
other two configurations. The system is now available
online as a web application.

 Introduction

Poetry is a form of literature with an emphasis on aesthetic
aspects such as alliteration, repetition, rhyme and rhythm,
which distinguishes it from other literary forms. In poetry,
the specifically chosen wording is infused with much more
meaning and expressiveness, hence the difficulty in translat-
ing poetry compared to translating prose.
 Poetry generators are systems capable of automatically
generating poetry given certain restrictions and contexts.
Gervás (2002) presents an overall evaluation of various po-
etry generators. Other notable works include Manurung
(2003), Colton et al. (2012), and Toivanen et al. (2013).
 Colton et al. (2012) proposes an architecture for poetry
generation that is able to generate poetry along with a com-
mentary on the various decisions it chose in constructing the
poem. Toivanen et al. (2013) show how constraint logic pro-
gramming can be used to generate poems that satisfy various
poetic and linguistic constraints.
 Our system, Pemuisi (a rather archaic Indonesian word
meaning poet), combines the architecture and approach pro-
posed by Colton, particularly the fact that generated poems
are based on current news articles, with the constraint satis-
faction-based approach of Toivanen, and generates poems

using a combination of handcrafted and automatically ex-
tracted Indonesian language resources.
 The main contribution of this work, aside from the com-
bination of these approaches, and the adaptation to the Indo-
nesian language, is the user evaluation that was conducted,
as both Colton et al. (2012) and Toivanen et al. (2013) pre-
sent no user evaluation.
 In the Background section below, relevant previous work
will be presented, especially the generator described in Col-
ton et al. (2012). The Language Resources section intro-
duces the various language resources required by our sys-
tem. Pemuisi utilizes two kinds of language resources, tem-
plates and slot fillers. Slot fillers are divided into poetic
words and keywords. Each of these language resources play
their own role in satisfying poetic properties. In the Con-
straint Satisfaction Poetry Generation section, we present
our constraint satisfaction approach to poetry generation.
Poetic features such as number of lines, syllable counts, and
rhymes are defined as a set of constraints. Hence, the system
will try to satisfy the constraints while composing the poem.
The Experiments and Evaluation section details the various
experiments we conducted. We took the output for evalua-
tion through online questionnaire with 180 respondents. The
results were analyzed based on several criteria, such as
structure, topic, and message of the poem. Finally we briefly
discuss our implementation of a live web application that
continuously monitors popular news websites for articles
and produces corresponding poems.

Background

Manurung (2003) claims that poetry must satisfy the three
properties of meaningfulness, grammaticality, and poet-
icness. The property meaningfulness states that a text
should aim to convey a message or concept that has meaning
when readers try to interpret the text. This property could be
a common element for any text, not just poetry. The property
grammaticality states that a poem must comply with lin-
guistic rules defined by a given grammar and lexicon. This
property is also one of the most common needs that must be
met by any natural language generation (NLG) system. The
last one is poeticness. This property states that poetry must
contain strong characteristics of poetry elements, e.g. pho-

netic features such as metre and rhyme. This is the key prop-
erty to distinguish poetry from other texts. Such require-
ments imply that it is insufficient for poetry generation sys-
tems to simply produce random words.
 Colton et al. (2012) states that the first poetry generator
to be developed is most probably the Stochastische Texte
system developed by Lutz that utilizes a small lexicon con-
sisting of sixteen subjects and predicates from Kafka’s Das
Schloβ. The system randomly chooses words from Kafka’s
works and fits them into a grammatical template that previ-
ously has been defined.
 Other poetry generators can be grouped into several cate-
gories. Referring to Gervás (2002) who provides a taxon-
omy of poetry generation systems based on the approach and
techniques used, there are at least four different categories,
namely (i) template-based systems, (ii) generate and test
systems, (iii) evolutionary-based systems, and (iv) case
based resoning systems.
 Another perspective from Colton et al. (2012) is that most
existing poetry generation systems behave more as assis-
tants, with varying degrees of automation, for the human
user who has provided the majority of the resulting context
of the poem. Departing from this view, they propose a fully
autonomous computer system poet, which we refer to as
Full-FACE. Full-FACE is a corpus-based poetry generator
that utilizes various resources such as lexical databases, sim-
ile corpus, news articles, pronouncing dictionary, and senti-
ment dictionary. Given these resources, the system is able to
generate poetry independently, to the extent of deciding its
own form of poetry such as the number of lines, rhyme
structure, message, and the theme of the poetry. Overall, this
system consists of several stages. The first is retrieval,
where the various resources needed to produce poetry are
gathered, i.e. the Jigsaw Bard simile corpus, a set of con-
straints, and a collection of keyphrases from Guardian news
articles that will be the topic of poetry. Then we go to mul-
tiplication stage, where the aforementioned resources are
permutated to obtain variations in order for the resulting po-
etry to be more expressive. For example, the existing simile
corpus yields similes in the form of a triple <object, aspect,
description>, which contains information about the simile,
e.g. the tuple <child, life, happy> represents the simile “as
happy as a child's life”. Multiplication is done by applying
three kinds of substitution methods: using the DISCO cor-
pus, the simile corpus, or WordNet to find words that are
similar. During the combination stage, Full-FACE pro-
duces lines of poetry through combining simile corpus, the
simile multiplication result, and article keyphrases. This
combination is done by following a certain template. For ex-
ample, there is a keyphrase “excess baggage” that match the
simile “the emotional baggage of a divorce” can be applied
to the process of combination into line poem “Oh divorce!
So much emotional excess baggage” in accordance with the
specifications of the template. Finally, the results of the pre-
vious process are collated in accordance with the user-given
constraints or existing template in the last stage called in-
stantiation.

 A fully autonomous computer system poet was estab-
lished by handing over high-level control to the system it-
self. This was done by the system with context generation
alongside with the commentary. Context generation is a pro-
cess of how context, topics, templates to structure the po-
etry, such as lines and rhyme patterns, determined by the
system to form poetry. In order to deliver the context, com-
mentary generation is a process to produce a commentary on
the poetry made. In general, the comments contain the con-
dition of the heart/emotions at the time of making the poetry,
a summary of the article reference, and how the process of
writing poetry.

Language Resources

Our system requires at least two types of resources, tem-
plates and slot fillers. These resources are necessary pieces
for the system to make poetry. To prepare these resources
we need to go through several processes. Hereby is the ex-
planation of each process.

Templates

A template is a ready-made sentence (canned text) that has
one or more slots to be filled by certain words. Each slot is
associated with a part-of-speech tag, such as noun, verb, ad-
jective, or pronoun. Templates are used to fulfill the gram-
maticality property of a poem.
 Firstly, we applied an Indonesian part-of-speech tagger
on a corpus consisting of 213 poems written by famous In-
donesian poets. Template extraction is then performed by
removing words that have specific part-of-speech tags, i.e.
nouns, verbs, adjectives, and pronouns. The positions of
these removed words become slots to be filled later. A slot
is also associated with a part-of-speech tag indicating what
words may fill the slot. For example, consider the following
sentence:

Aku mencintai kamu dengan sepenuh hati
I love you with full heart
I love you with all of my heart.

Each word is initially tagged with its part-of-speech. Subse-
quently, we remove all words tagged as <PR> (pronoun) and
<NN> (noun) to obtain the following template:

<PR> mencintai <PR> dengan sepenuh <NN>
<PR> love <PR> with full <NN>
? love ? with all of (my/your/their) ?.

 After extracting such templates, the feasibility and appro-
priateness of a template is evaluated by considering the se-
mantic specificity embedded in the template. This consider-
ation is important to prevent providing too much context to
the system, and to avoid the risk of plagiarism against an
existing line of poetry. Furthermore, with this evaluation we
can determine the limits of human intervention concerning
the poetic knowledge provided to the system. To illustrate,
consider the following two templates (note, VBI indicates
an intransitive verb):

ada yang <VBI>, ada yang <VBI>
some that <VBI>, some that <VBI>
some are ?, some are ?

ya, <PR> tahu mereka masih menggunakan <NN>
yes, <PR> know they still use <NN>
yes, ? know that they still use ?

 From these two examples we can see that the latter tem-
plate already carries with it a fairly specific semantic mes-
sage. We believe such templates should be avoided. Further-
more, the former template is much more general and does
not overconstrain the semantics. Such are the desired tem-
plates for our knowledge base. Using this consideration, we
manually identified 22 templates to be used in our experi-
ments. Theoretically it is possible to automate this process
by computing the ratio of open class words remaining in the
template, as opposed to function words, or closed class
words.
 The selected templates, along with illustrative English
translations, are presented in Table 1. Note that due to gram-
matical differences, the translations may not be well-
formed, but they are intended to illustrate the level of gen-
erality of the templates. In particular, note that almost all of
the canned text contained within the templates consist of
function words.
 Additionally, other information that must be provided
along with the template is the number of lexical slots avail-
able and the number of syllables that currently exist in the
canned text of the template. This information is required for
the selection process, such as to count the number of sylla-
bles and keywords. Figure 1 provides an example of how

templates are represented in our system. It shows two tem-
plates (#11 and #5 from Table 1). The first template contains
6 syllables within its canned text (“dan”, “bi”, “sa”, “di”,
“ba”, “wa”), and has 3 lexical slots (2 nouns and an intran-
sitive verb). The second template has 0 syllables within its
canned text and has 4 lexical slots (2 pronouns and 2 intran-
sitive verbs).

Slot fillers

Slot fillers are simply words used to fill the slots contained
in the template. They must also be associated with a part-of-
speech tag and other information that is needed in the selec-
tion process. Slot fillers can be divided into two types, key-
words and poetic words.
 Keywords are slot fillers that will determine the theme of
the constructed poem. These words are expected to fulfill a
sense of meaningfulness in the poem so that readers of the
poem will capture some message that is being conveyed.
 At the beginning of the poetry generation process, we
crawl popular Indonesian news websites such as
kompas.com and detik.com. This is motivated by Full-
FACE, which crawls the Guardian news website to deter-
mine the theme of the poem. An article is selected based on
a given criteria, such as most recent, most commented on,
or most read. After selecting an article, keyword extraction
is done to obtain the keywords. Keyword extraction is done
using simple unigram statistics, with stopword removal.

TEMPLATE: SYLLABLE COUNT, SLOT COUNT

[<nn>,dan,<nn>,bisa,dibawa,<vbi>]: 6, 3

[<pr>,<vbi>,<pr>,<vbi>]: 0, 4

Figure 1. Two examples of templates

Templates manually selected to be used Illustrative translations of the templates

1. <PR>

2. <PR> <VBI>

3. <PR> <VBI> <RB>

4. <PR> <VBT> <PR>

5. <PR> <VBI> <PR> <VBI>

6. dari <NN> ke <NN>

7. adalah <ADJ> <NN>

8. tapi <PR> <VBI>

9. <PR> dan <PR> <VBI>

10. <PR> ini hanyalah <NN>

11. <NN> dan <NN> bisa dibawa <VBI>

12. <PR> <VBT> <NN> bersama <PR>

13. <VBT> <PR> adalah <ADJ> untuk <PR>

14. dengan penuh <ADJ> dalam <NN>

15. tak ada lagi <ADJ> dan <NN>

16. adakah <NN> padaku atau <NN>

17. ada yang <VBI> ada yang <VBI>

18. mengapa <NN> <VBI>

19. oh <PR> begitu <ADJ>

20. terlalu <ADJ> bagi <PR>

21. <NN> menjadi <NN>

22. apa itu <NN

1. <PR>

2. <PR> <VBI>

3. <PR> <VBI> <RB>

4. <PR> <VBT> <PR>

5. <PR> <VBI> <PR> <VBI>

6. from <NN> to <NN>

7. there is <ADJ> <NN>

8. but <PR> <VBI>

9. <PR> and <PR> <VBI>

10. <PR> is just <NN>

11. <NN> and <NN> can be brought <VBI>

12. <PR> <VBT> <NN> with <PR>

13. <VBT> <PR> is <ADJ> for <PR>

14. with full <ADJ> in <NN>

15. no more <ADJ> and <NN>

16. is there <NN> with me or <NN>

17. some are <VBI> some are <VBI>

18. why <NN> <VBI>

19. oh <PR> is so <ADJ>

20. too <ADJ> for <PR>

21. <NN> becomes <NN>

22. what is <NN>

Table 1. List of templates along with illustrative translations

Words that have the most frequency of occurrence will be
the keywords candidate. An expanded collection of key-
words is then constructed by identifying words that fre-
quently occur together with the extracted words using the
Wortschatz-Leipzig Corpora Collection (Quasthoff et al.,
2006).
 Other information that should be associated with each
keyword is its pronunciation and syllable count. This infor-
mation is used for the selection process, such as for the com-
putation of rhyme and the number of syllables in a line. Fig-
ure 2 shows an example of how keywords are represented in
our system. In this example, the keyword, senja, has a part-
of-speech value of NN (noun), pronunciation (s, eu, n, j, aa),
2 syllables (“sen” and “ja”), and a “keyword” flag that indi-
cates that senja is one of the keywords of the article.
 For the experiments that we conducted, we selected 3
news articles and extracted a total of 247 keywords: 88 from
the 1st article, 72 from the 2nd article, and 87 from the 3rd
article.
 Poetic words are obtained from the same corpus of poetry
used for template extraction. They are designed to help the
generated poem satisfy the property of poeticness. Unlike
other constraints that are more focused on the structure, this
property is more focused on the selection of words to add to
the aesthetics of the poem.
 The frequency of appearance of every word in the exist-
ing corpus is computed and stopwords are removed. The
fifty words that most frequently appear in the corpus are se-
lected. Finally, we apply an Indonesian POS Tagger to ob-
tain their part-of-speech tags. Poetic words tend to convey a
more general concept as opposed to the specific keywords
based on news article. Furthermore, they tend to be more
archaic in nature.. The technical representation of poetic
words is similar to how keywords are represented, as they
must also be associated with pronunciation, and number of
syllables. Figure 3 shows an example of how poetic words
are represented in our system. The poetic word kalbu has a
part-of-speech value of NN (noun), pronunciation (k, aa, l,
b, oo), 2 syllables (“kal” and “bu”) and a “filler” flag that
indicates that the word kalbu is a poetic word.

Constraint Satisfaction Poetry Generation

Our system adapts the approach proposed by Colton et al.
(2012). The system creates poetry from the collection of
templates combined with a particular set of words. The re-
sult of combining templates with keywords and poetic
words will be the lines that will be collated to construct the
poem. Overall, the system is implemented as three stages:
retrieval, combination, and selection.
 It differs from Full-FACE in the following ways. Firstly,
Pemuisi is a much more knowledge-poor system, as there
are far fewer lexical resources available for Indonesian as
there are for English, in particular the Jigsaw Bard resource

that appears to provide a major contribution to the poet-
icness and coherence to the poems generated by Full-FACE.
Secondly, following Toivanen et al. (2013) (and to a lesser
degree, Manurung (2003)), it explicitly treats the generation
process as a constraint satisfaction problem, which affords a
declarative formulation of the generation process, and the
use of efficient off the shelf constraint solvers. Currently,
Pemuisi is implemented as a logic program in Prolog. All
lexical resources are encoded as factual assertions in the
Prolog database, and the poetic constraints are implemented
as clauses with subgoals that must be satisfied. Lastly, Pem-
uisi does not attempt the handing over of high level control
that is implemented in Full-FACE, which is equipped with
various definitions of aesthetics.

Retrieval

During this stage, a simple retrieval is performed by taking
the relevant resources previously described from the
knowledge base. Given an input news article, the system
will populate the Prolog database with all relevant key-
words, poetic words, and appropriate templates. The re-
trieval process can be set to randomly reorder the sequence
of factual assertions, so that the systematic Prolog depth first
search can yield novel results on repeated runs. Figure 4
shows an example of the output of this stage.

Combination

After collecting all the necessary resources, the system can
start building the poem from the simplest unit, namely the
poetry line. The combination process produces a poetry line
through merging of a template with slot filler(s) by obeying
certain rules. Each slot in the template must be filled with
precisely one slot filler. A slot can only be filled with a slot
filler with a corresponding part-of-speech tag. For example,
a slot with a POS tag of NN (noun) can only be filled by a
keyword or poetic word with a POS tag of NN. The system

WORD: POS, PRONOUNCE, SYLL.COUNT, FLAG

senja: nn, [s, eu, n, j, aa], 2, keyword

Figure 2. Example of keyword representation

WORD: POS, PRONOUNCE, SYLL.COUNT, FLAG

kalbu: nn, [k, aa, l, b, oo], 2, filler

Figure 3. Example of poetic word representation

TEMPLATE:

[<nn>,dan,<nn>,bisa,dibawa,<vbi>]: 6, 3
[<pr>,<vbi>,<pr>,<vbi>]: 0, 4

SLOT FILLER

aku:pr,[aa,k,oo],2,filler

kau:pr,[k,aa,oo],2,filler

senja:nn,[s,eu,n,j,aa],2,keyword

kalbu:nn,[k,aa,l,b,oo],2,filler

bayang:nn,[b,aa,y,aa,ng],2,keyword

pergi:vbi,[p,eu,r,g,ee],2,filler

kembali:vbi,[k,eu,m,b,aa,l,ee],3,filler

menunggu:vbi,[m,eu,n,oo,ng,g,oo],3,keyword

Figure 4. Example output of retrieval stage

will exhaustively consider all possible valid combinations of
templates and slot fillers.
 Consider the following example. Suppose that the re-
sources obtained from the retrieval stage are as in Figure 4,
which means the system must now combine 2 templates
with 8 slot fillers consisting of: 2 <PR> slot fillers; 3 <NN>
slot fillers, 2 of which are keywords; and 3 <VBI> slot fill-
ers, 1 of which is a keyword.
 Going by the previous explanation of how the process is
done then all slot combinations are instantiated with the cor-
responding slot fillers to form the poem lines. Based on sim-
ple observation, it can be calculated that the number of com-
binations of lines of poetry can be generated from the col-
lection of the above resources. 63 valid combinations of po-
etry lines can be obtained from the combination of templates
and corresponding slot fillers.

Selection

After the combination stage, the system now has a large col-
lection of poem lines that are ready to be built into larger
units, i.e. the poem itself. This stage combines the lines that
have been previously obtained as results of the combination.
The resulting poem must satisfy the elements of poetry, such
as the number of syllables, rhyme, rhythm, and number of
lines. Such poetic elements are defined as constraints. Con-
straints that will be used include:

1) Number of lines: a constraint that states the number of

poetry lines. As explained in the combination stage, the
definition used for a single line is a result of a combina-
tion of a template with one or more slot filler.

2) Rhyme: a constraint that states the rules of rhyme in be-
tween lines of the poetry.

3) Number of words: a constraint that states the number of
words contained in a single line of poetry. The number
of words can be specified differently for each row.

4) Number of syllables: a constraint that states the number
of syllables contained in a single line of poetry. Number
of syllables can be specified differently for each row.

5) The number of keywords relative to the number of
slots: a constraint that states the number of keywords rel-
ative to the number of slots contained in the whole po-
etry. In order to be more intuitive and easier, this con-
straint is expressed as a percentage. It can be used to con-
trol how the content of the poem focuses on a topic.

 The above set of constraints must be met when choosing
combinations of line results from the previous stage. This is
an important point of the concept of constraint satisfaction
approach as also seen in Toivanen et al. (2013).
 From the previous example results obtained 63 lines of
poetry that can be built into a combination of poetry. For
instance, assume the following constraints:

1) The poem consists of 2 lines.
2) Line 1 and 2 share the same end-of-line rhyme.
3) Line 1 consists of 6 words with a total of 12 syllables.
4) Line 2 consists of 4 words with a total of 10 syllables.

5) 40% of all slots must be filled with content keywords.

 If we only look at the first constraint, it can be calculated
that there are 632 poems that could be generated. But the
more we continue to meet the subsequent constraints, the
less the combinations of lines of poetry that are able to meet
all the constraints.
 There are at least three cases that may occur after the se-
lection process is done: (i) the system does not produce a
single poem at all, (ii) it produces exactly a single poem, and
(iii) it generates more than one poem.
 If no poem is produced, it means there is no combination
that successfully meets the constraints that have been de-
fined. In this case, the constraints will be gradually relaxed
and the selection stage repeated until eventually a poem can
be produced. In loosening constraints, the constraint that has
the lowest precedence is first chosen to be relaxed. This pro-
cess is repeated until the system is capable of producing a
poem that satisfies the remaining constraints.
 If the system is able to produce one or more poems, it will
randomly select one as its eventual output. Another alterna-
tive is to provide all the poetry as the output.
 Pemuisi is currently equipped with six poem structures,
i.e. sets of constraints, to be used during the experiments.
The purpose of the provision of six alternative structures is
for the poetry generated by the system to be more diverse.

An Illustrative Example

In this section we provide an example of the output of Pem-
uisi. It was run to construct a poem based on an article from
an Indonesian news portal, kompas.com, about Sir Alex Fer-
guson’s retirement in 2013 as Manchester United head
coach. We situated Pemuisi to compose a poem with full
constraint parameter and then randomly took 3 stanzas. Fig-
ure 5 shows the poem made by Pemuisi.
 The corresponding constraints which became the refer-
ence for Pemuisi while generating this poem can be seen in
Figure 6. While comparing Figure 5 and Figure 6, we can
see that the set of constraints were all satisfied by the result-
ing poem.

Experiments and Evaluation

We conducted experiments using several constraint config-
urations through an online web-based questionnaire to see
the respondents’ opinions about the poetry generated by the
system. Information about the experiment was distributed
through various mailing lists and social media channels (e.g.
Facebook, Twitter), targeting native Indonesian speakers in-
cluding public groups, academic communities, and poetry
appreciation communities in order to provide a more bal-
anced and valid distribution of respondents, ranging from a
layman’s appreciation of poetry to communities that specif-
ically discuss poetry appreciation. At the end of the data col-
lection, we managed to obtain 180 respondents.

Constraint configurations

There are three constraint configurations that were applied.
In the first configuration, the full set of poetic constraints are
applied, and a ratio of 50% of the open slots must be filled
by content keywords. The second configuration is similar to
the first, but in this case all the open slots must be filled by

content keywords. Finally, the loose constraint configura-
tion is one where the system is more or less left unguided to
generate poems, with the only constraints being the use of
templates, part of speech tags, and the number of lines to be
generated, i.e. poetic features such as syllable counts,
rhymes, and content keyword ratios are ignored. Obviously,
respondents were not made aware of the distinction of these
three configurations, and were simpy asked to rate the per-
ceived quality of the generated poems regardless of the con-
figuration of the generator.

Turing Test

Before conducting the main experiment to see how respond-
ents’ evaluated the computer generated poems in terms of
various aspects, we first conducted a simple Turing Test-
like experiment to to determine how the system is able to
imitate human behavior, in this case writing poetry. For this
experiment, we selected snippets from four poems created
by famous Indonesian poets (such as Chairil Anwar,
Sutardji Calzoum Bachri, and WS Rendra), four poems gen-
erated by the system with the full constraint configuration,
and four poems generated by system with the loose con-
straint configuration.
 For this Turing Test, the system only used poetic words
as slot fillers so that the poetry does not specifically discuss
a particular topic. These poems were randomized in the
questionnaire and respondents were asked to annotate each
poem by guessing whether the poem was written by a human
or system. Figure 7 shows some poem examples for the Tu-
ring Test section.
 The questionnaire results for the Turing Test are shown
in Table 2. 74% of the respondents correctly identified hu-
man-authored poems, but 26% of the human-authored poem
judgments were erroneous (i.e. deemed to be machine-au-
thored). As for the poems generated with the full set of con-
straints, 57% of the judgments were erroneous, i.e. they
were deemed to be human-authored, and for the poems gen-
erated with the loose constraints, in only 35% of the cases
did respondents falsely identify them as human-authored.

fergie pergi

ferguson pensiun, ferguson berhenti

adakah masa padaku atau juri

fergie berhenti

fergie pensiun sendirian

dengan penuh merah dalam perjuangan

tak ada lagi akrab dan perjalanan

fergie pensiun sendirian

dengan penuh biru dalam kesedihan

tak ada lagi akrab dan pertandingan

ferguson, ini hanyalah kompetisi

usia dan keputusan bisa dibawa pensiun

fergie, ini hanyalah tradisi

pemain dan manajemen bisa dibawa pensiun

fergie is gone

ferguson retired, ferguson stopped

is there time with me or jury

fergie stopped

fergie retired alone

with full red in struggle

no more friendship and trips

fergie retired alone

with full blue in sadness

no more friendship and matches

ferguson, this is just a competition

age and decisions can be brought in retirement

fergie, this is just a tradition

players and management can be brought in retirement

Figure 5. Illustrative output of Pemuisi

Stanza 1

Number of lines: 4

Line 1 – number of words: 2; number of syllables: 4

Line 2 – number of words: 4; number of syllables: 12

Line 3 – number of words: 5; number of syllables: 12

Line 4 – number of words: 2; number of syllables: 5

Line 1, 2, 3, and 4 rhyme with each other

Keywords composition: 100%

Stanza 2

Number of lines: 6

Line 1 – number of words: 3; number of syllables: 10

Line 2 – number of words: 5; number of syllables: 12

Line 3 – number of words: 6; number of syllables: 12

Line 4 – number of words: 3; number of syllables: 12

Line 5 – number of words: 5; number of syllables: 12

Line 6 – number of words: 6; number of syllables: 12

Line 1, 2, 3, 4, 5, and 6 rhyme with each other

Keywords composition: 100%

Stanza 3

Number of lines: 4

Line 1 – number of words: 4; number of syllables: 12

Line 2 – number of words: 6; number of syllables: 16

Line 3 – number of words: 4; number of syllables: 10

Line 4 – number of words: 6; number of syllables: 16

Line 1 and 3 rhyme with each other

Line 2 and 4 rhyme with each other

Keywords composition: 100%

Figure 6. Constraint configuration used for poem in Figure 5

Main experiment

For the main experiment, the three constraint configurations
were each applied to three different news articles, resulting
in 9 different poems being assessed. The poems were ran-
domly obtained from the system output.
 In this section of the experiment, we aim to analyze how the
poems generated by the system under different configura-
tions were appraised by respondents. The questionnaire ran-
domly presents one of the three chosen news articles along
with the three poems produced from that article under the
previously discussed constraint configurations. Each poem
is the result of concatenating three stanzas that were gener-
ated and selected randomly. Respondents were asked to give
an assessment of the poems based on the following criteria:

1) Structure: a criterion to evaluate the overall structure of

the poem, i.e. whether or not it fulfilled the respondent’s
subjective expectations of what constitutes a poem.

2) Diction: a criterion to evaluate the choice of words used
in the poetry generated.

3) Grammar: a criterion to evaluate how well the grammar
was in the poem.

4) Unity: a criterion to evaluate the unity between the form
and content of poetry produced.

5) Message/theme: a criterion to evaluate the suitability of
the poetry content with the reference article.

6) Expressiveness: a criterion to evaluate the level of ex-
pression of the resulting poem.

An overview of the data analysis results of the question-

naire can be seen in Figure 8. The blue bar represents 50%
keywords-full constraint, the red bar represents 100% key-
words-full constraint, and the green bar represents loose
constraint.
 Every respondent’s assessment is transformed to number
scale with range of 0-3 then accumulated for the six criteria
that have been mentioned previously. From the overview we
can see that in general 50% keywords-full constraint and
100% keywords-full constraint parameter give better perfor-
mance than loose constraint parameter in every criterion.
 As can be seen from Figure 8, poems made with 50% key-
words-full constraint and 100% keywords-full constraint
have a better structure than loose constraint. The structure is
evaluated from the number of lines, number of syllables, and
rhyme in the poem. We can predict this result as the full
constraint configuration is meant to give a strict rule for the
system when composing poems that the loose constraint

Figure 8. Overview of main experiment results

Human authored (Hilang (Lost), by Sutardji Calzoum Bachri)

batu kehilangan diam

jam kehilangan waktu

pisau kehilangan tikam

mulut kehilangan lagu

A stone loses silence

A clock loses time

A knife loses stab

A mouth loses song

Full constraint

tak ada lagi pilu dan rindu

dari rindu ke mentari

ada yang terdiam

ada yang menunggu

no more pain and yearning

from yearning to the sun

some lay silent

some lay in waiting

Loose constraint

cinta kau adalah sakit untuk kau

aku melayang, aku melayang

cinta kau adalah sakit untuk kau

your love is pain for you

I fly, I fly

your love is pain for you

Figure 7. Poem examples for Turing Test

Human

authored

Full

constraints

Loose

constraints

Human 74% 57% 35%

Machine 26% 43% 65%

Table 2. Results for Turing Test experiment

configuration does not have to obey. This phenomenon was
also seen in unity and message aspect. Poems made with
50% keywords-full constraint and 100% keywords-full con-
straint seem to have a message and stay in specific
theme/topic rather than loose constraint. The system is ex-
pected to achieve a good performance for discussing a spe-
cific theme given the way that the keywords are selected.
The keyword ratio constrains the poems to remain on topic
while the loose constraint configuration does not. However,
it is important to remember that Pemuisi is not deliberately
conveying a particular semantic message as it is simply con-
structing lines of poetry by randomly filling slots (given
constraints). Thus, we claim that Pemuisi composes poems
that can be said to be related to the article rather than faithful
to the article. Tables 3 and 4 show the detail between topic
and message aspect retrieved from the questionnaire re-
sponse. 50%-FC stands for 50% keywords-full constraint,
100%-FC stands for 100% keywords-full constraint, and LC
stands for loose constraint.

 50%-FC 100%-FC LC

 Topic Msg Topic Msg Topic Mes

TA 29% 10% 11% 6% 5% 2%

A 59% 61% 76% 61% 54% 49%

D 10% 25% 11% 31% 34% 42%

TD 1% 4% 2% 3% 7% 8%

TA: Totally Agree; A: Agree; D: Disagree; TD: Totally Disagree

Table 3. The existence of topic and message

 50%-FC 100%-FC LC

 Topic Msg Topic Msg Topic Msg

TA 24% 4% 11% 7% 5% 2%

A 64% 66% 68% 61% 46% 41%

D 12% 28% 20% 31% 42% 49%

TD 1% 2% 1% 1% 7% 8%

TA: Totally Agree; A: Agree; D: Disagree; TD: Totally Disagree

Table 4. The relation of topic and message with the article

 The unity between the form and content is better in 50%
keywords-full constraint and 100% keywords-full constraint
than loose constraint. This aspect shows us about the unity
of poem structure and content.
 50% keywords-full constraint and 100% keywords-full
constraint have a slight lead in expressiveness aspect. This
could be due to the composition between poetic words and
keywords that is regulated by the keywords ratio. While
keeping the poem to stay on topic, we allow the system to
also be expressive by using poetic words. Finally, an almost
tie result is shown in diction and grammar aspect with 50%
keywords-full constraint and 100% keywords-full con-
straint, with both yielding a slightly better result than loose
constraint. We can infer that for every parameter we use the

1 http://eclipseclp.org

same templates set that already holds for grammaticality
property.

Pemuisi: Up-to-date Poem Feed

We have developed a web application as a showcase to pub-
lish Pemuisi poems at http://budaya.cs.ui.ac.id/pemuisi. The
core generation system runs as a background process of the
site and is scheduled at noon everyday to crawl various news
portals. In order to make Pemuisi up-to-date with the world
situation, Pemuisi will find a recent article published by
looking into the news portal RSS feed. The entire prepro-
cessing work is automated.
 Pemuisi composes a poem consisting of 3-4 stanzas about
the chosen news article. As Pemuisi would produce all poem
combinations which satisfy the set of given constraint, we
demand a fast processing and relevant poem. We provide
seven sets of constraints which represent various kinds of
Indonesian traditional poem form structure. We also provide
22 templates and 50 poetic words as static language re-
sources. These constraints and language resources can be
added anytime later. The Pemuisi web application also ran-
domly shuffles the order of all the language resources and
set of constraints before generation commences in order to
raise the diversity level of the output.
 The poem produced by Pemuisi is then published to the
site page. The first line of the poem is also tweeted by the
Pemuisi Twitter account (@pemuisi) along with the website
page link. In the site page connected with Twitter and Face-
book, viewers can comment and share their thoughts about
the poem to social media.

Conclusions and Future Work

We have developed an automatic poetry generation system
that is capable of automatically generating poems in Indo-
nesian based on specific context restrictions defined by ex-
isting constraints and reference news articles.
 The system combines the general architecture of the Full-
FACE system introduced in Colton et al. (2012), particularly
the aspect that generated poems are based on current news
articles, with the explicit treatment of the generation process
as a constraint satisfaction problem as in Toivanen et al.
(2013) (and to a lesser degree, Manurung (2003)), which af-
fords a declarative formulation of the generation process,
and the use of efficient off the shelf constraint solvers (alt-
hough in our current system we use Prolog, we plan to use
purpose-built constraint solvers such as ECLiPSe1).
 The main contribution of this work, aside from this com-
bined approach, and the adaptation to Indonesian, is the user
evaluation that was conducted, as both Colton et al. (2012)
and Toivanen et al. (2013) present no user evaluation.
Lastly, Pemuisi is in effect a much more knowledge-poor
system than Full-FACE, as there are far fewer lexical re-
sources available for Indonesian as there are for English, in
particular the Jigsaw Bard resource that appears to provide

a major contribution to the poeticness and coherence to the
generated poems.
 From the experimental results, it was found that when all
the implemented constraints are applied the system is able
to produce poetry that is deemed more similar to human-au-
thored poetry rather than the poetry generated under the
loosely-constrained configuration. They were also deemed
to have better structure, more focus on a topic and conveyed
the message from the reference article better.
 Many aspects from the system are still rudimentary, and
there are still many opportunities to improve the system,
such as expanding the types of constraints that can be han-
dled, developing a better interface for the user, and improv-
ing the language resources. A careful qualitative evaluation
from poets and other poetry experts would be valuable in
order to gain feedback about the output of the system. With
the developed web application, viewers can leave comments
about the generated poem, thus this provides a channel for
collecting information for a deep analysis on human percep-
tion about the generated poems.

References

Colton, S., J. Goodwin, and T. Veale. 2012. Full-FACE Po-

etry Generation. In Proceedings of the 3rd International

Conference on Computational Creativity, 2012. Dublin, Ire-

land.

Gervás, P. 2002. Exploring quantitative evaluations of the

creativity of automatic poets. In Proceedings of the 2nd.

Workshop on Creative Systems, Approaches to Creativity in

Artificial Intelligence and Cognitive Science, 15th Euro-

pean Conference on Artificial Intelligence (ECAI). Lyon,

France.

Manurung, H. 2003. An evolutionary algorithm approach to

poetry generation. PhD. Dissertation, University of Edin-

burgh, Edinburgh, United Kingdom.

Quasthoff, U., M. Richter, and C. Biemann. 2006. Corpus

Portal for Search in Monolingual Corpora. In Proceedings

of the fifth international conference on Language Resources

and Evaluation (LREC 2006), Genoa, pp. 1799-1802

Toivanen, J. M., M. Järvisalo, and H. Toivonen. 2013. Har-

nessing Constraint Programming for Poetry Generation. In

Proceedings of the 4th International Conference on Compu-

tational Creativity 2013. Sydney, Australia.

