
Creative Web Services with Pattern

Tom De Smedt
Experimental Media

Research Group (EMRG)
St Lucas Univ. College, Antwerp

tom.desmedt@kdg.be

Lucas Nijs
Experimental Media

Research Group (EMRG)
St Lucas Univ. College, Antwerp

lucas.nijs@kdg.be

Walter Daelemans
Computational Linguistics
Research Group (CLiPS)

University of Antwerp, BE
walter.daelemans@uantwerpen.be

Abstract

Pattern is a Python toolkit for web mining, natural lan-
guage processing, machine learning, network analysis
and data visualisation. In this paper, we discuss how it
can be useful as a computational creativity tool, in par-
ticular how its new pattern.server module can be used
to set up creative web services.

Introduction
Pattern (http://www.clips.ua.ac.be/pattern) is a Python 2.5+
toolkit for web mining, natural language processing, ma-
chine learning, network analysis and data visualisation. It
is organised in different modules that can be intermixed.
For example, the pattern.web module can be used to re-
trieve Google results, Wikipedia and Wiktionary articles,
DBPedia triples, Twitter and Facebook statuses, to crawl
and parse HTML, and so on. The pattern.en module has an
English part-of-speech tagger, sentiment analysis, regular
expressions for inflecting nouns and verbs, and so on. The
pattern.vector module contains machine learning tools for
classification (e.g, k-NN, SVM), clustering (e.g., k-means),
dimensionality reduction, feature selection, and so on. The
pattern.graph module has tools for network analysis, and
for network visualisation using Pattern’s canvas.js helper
module for interactive graphics in the web browser. For an
overview, see De Smedt & Daelemans (2012).
 In recent years, the functionality has steadily expanded.
Pattern now contains pattern.es, de, fr, it and nl modules
for multilingual text analysis, with part-of-speech taggers
for Spanish, German, French, Italian and Dutch, and sen-
timent analysis for Dutch and French (Italian is upcoming).
The pattern.web module now supports CSS selectors that
make parsing HTML trees more flexible and scalable. The
pattern.vector module now comes bundled with LIB-
LINEAR for fast linear SVM’s (Fan, Chang, Hsieh, Wang
& Lin, 2008). Finally, our most recent addition is a pat-
tern.server module that can be used to set up web services.
It is based on CherryPy1, and has syntax similar to Flask2.

1 http://www.cherrypy.org
2 http://flask.pocoo.org

Pattern for Computational Creativity
Pattern does not specialise in any particular task. For each
task, it provides one or two well-known approaches, usual-
ly one that is intuitive and one that is faster (e.g., k-NN vs.
SVM). Users that need more may move on to specialised
toolkits such as NLTK for natural language processing
(Bird, Klein & Loper, 2009) and Scikit-learn for machine
learning (Pedregosa, Varoquaux, Gramfort, Michel et al.,
2011) as their projects become more involved.

Instead, Pattern offers creative leverage by allowing its
users to freely combine a range of cross-domain tools. For
example, the toolkit comes bundled with a common sense
dataset, which can be traversed as a semantic network with
pattern.graph to generate creative concepts (e.g., “Brussels,
the toad”, see De Smedt, 2013). The pattern.web module
can then be used to search the web for evidence whether or
not such concepts already exists to assess their novelty
(“external validation”, Veale, Seco & Hayes, 2009). Or,
pattern.web can be used to mine words, word inflections
and their parts-of-speech from the Italian Wiktionary, and
analysed with the pattern.metrics helper module to con-
struct an Italian part-of-speech tagger and regular expres-
sions for Italian verb conjugation (De Smedt, Marfia,
Matteucci & Daelemans, in press). With pattern.server we
can subsequently launch a web service for Italian part-of-
speech tagging that others can harness for language genera-
tion games, for example.

One user has compared Pattern to a “Swiss Army knife”.
Another user has called it a “treasure trove”. In short, the
toolkit is not designed for a specific purpose; rather it pro-
vides an open-ended range of tools that can be combined
and explored – similar in philosophy to Boden’s view on
creativity (Boden, 2006). We think that Python coders who
need to deal with data mining, natural language processing,
machine learning, and so on, and who are active in the dig-
ital humanities and in the computational creativity (CC)
community, will find Pattern useful, especially with its
new pattern.server module.

Web Services with Pattern
Computational creativity covers a diverse range of tasks. It
has been argued that web services are beneficial to the CC
community (Veale, 2013). Different researchers can work
on different tasks and share their results without having to
reinvent algorithms from published pseudo code, deal with
myriad installation instructions or adopt new programming
languages. Instead, a request is sent to a web service and
the response can be incorporated into any project. Many
different web services can be combined to augment novel
creativity research.
 To demonstrate how web services work in Pattern, the
example below implements a web service for semantic
similarity, using just a few lines of code. Pattern comes
bundled with WordNet 3 (Fellbaum, 1999). It also has an
algorithm for Lin's semantic similarity (Lin, 1998), which
measures the likelihood that two concepts occur in the
same context, and whether they have a common ancestor in
the WordNet graph. The similarity() function in this
example takes two nouns, retrieves their WordNet synsets
and estimates the semantic similarity between the two
synsets as a value between 0.0 and 1.0. For example, the
similarity between “cat” and “dog” is 0.86, whereas the
similarity between “cat” and “teapot” is 0.0.
 The @app.route()decorator defines the relative URL
path where the web service is available. Optional keyword
arguments of the similarity() function can be passed
as URL query string parameters. The similarity()
function returns a Python dictionary that will be served as a
JSON-formatted string. Finally, the app.run() function
starts the server.

from pattern.en import wordnet
from pattern.server import App

app = App()

@app.route('/similarity')
def similarity(w1='', w2=''):
 synset1 = wordnet.synsets(w1)[0]
 synset2 = wordnet.synsets(w2)[0]
 s = synset1.similarity(synset2)
 return {'similarity': round(s, 2)}

app.run('127.0.0.1', 8080, embedded=False)

In this case, the server runs locally. With embedded=True
it will run as a mod_wsgi process on an Apache server. An
optional parameter debug=True can be used to enable or
disable error messages.

To try it out, we can execute the source code and visit
http://127.0.0.1:8080/similarity?w1=cat&w2=dog in a web
browser. The response is {'similarity': 0.86}. The
example can be expanded with input validation and support
for different word senses and word types.

Case Study: Weaseling Web Service
The following example demonstrates how pattern.en and
pattern.server can be combined into a weaseling service for
linguistic creativity. Weasel words are used to convey an
air of meaningfulness in vague or ambiguous statements,
as in “experts have claimed that this could be …”.

The weasel() function takes a sentence and injects
modal verbs so that, for example, “is” becomes “could be”.
The given sentence is part-of-speech tagged and verbs are
transformed for common cases: non-action verbs get an
additional “might” (e.g., “want” = “might want”), other
verbs are passed to the pattern.en conjugate() function
to transform them into the present participle tense (e.g.,
“run” = “might be running”).

from pattern.en import parsetree
from pattern.en import conjugate
from pattern.server import App
from random import random

NONACTION = set((
 'appear', 'believe', 'contain', 'doubt',
 'exist', 'fear', 'feel', 'hate', 'hear',
 'hope', 'know', 'look', 'love', 'mean',
 'need', 'prefer', 'see', 'seem', 'sound',
 'think', 'understand', 'want', 'wish'
))

app = App()

@app.route('/weasel')
def weasel(s=''):
 r = []
 for sentence in parsetree(s, lemmata=True):
 for w in sentence:
 if r and w.tag.startswith('VB') \
 and random() < 0.05:
 r.append('often')
 if not w.tag.startswith('VB'):
 r.append(w.string.lower())
 elif w.lemma in ('be', 'have') \
 and w.tag not in ('VB', 'VBG', 'VBD'):
 r.append('might')
 r.append(w.lemma)
 elif w.lemma in ('be', 'have') \
 and w.tag == 'VBD':
 r.append('might')
 r.append('have')
 r.append(conjugate(w.lemma, 'VBN'))
 elif w.tag in ('VBP', 'VBZ') \
 and w.lemma in NONACTION:
 r.append('might')
 r.append(w.lemma)
 elif w.tag in ('VBP', 'VBZ'):
 r.append('might')
 r.append('be')
 r.append(conjugate(w.lemma, 'VBG'))
 else:
 r.append(w.string.lower())
 return ' '.join(r)

app.run('127.0.0.1', 8080, embedded=False)

For brevity, case sensitivity, punctuation, negation, verbs
preceded by infinitival to, and verbs in the past tense are
not handled. We can further improve the algorithm by in-
jecting adverbs such as “often” and “perhaps” in a smarter
way, transform quantifiers to vague expressions (“two” =
“many”), and so on.

To try it out, we can execute the source code and visit
http://127.0.0.1:8080/weasel?s=the+information+centre+is
+to+the+north+of+here. The response is: “the information
centre often might be to the north of here”. Similarly, “you
need a parking ticket” becomes “you might need a parking
ticket”, “this rental car runs on diesel fuel” becomes “this
rental car might be running on diesel fuel” and “your hotel
room was already paid for” becomes “your hotel room
might have been already paid for”.

The following code snippet queries our weaseling web
service (running locally) and transforms Twitter statuses
that contain a #travel hashtag:

from pattern.web import Twitter
from pattern.web import URL
from pattern.web import encode_url
from pattern.web import decode_utf8

API = 'http://127.0.0.1:8080/weasel?s='

for tweet in Twitter().search('#travel'):
 s = tweet.text
 r = URL(API + encode_url(s)).download()
 print decode_utf8(r)
 print

One tweet now states: “Miami International Airport often
might be experiencing arrival delays of up to 30 minutes”.
Then again, it might not.

Further reading

De Smedt’s doctoral dissertation3 (2013) has more in-depth
case studies of how Pattern can be used for CC.

For example, it discusses PERCOLATOR, a program that
generates visuals based on today’s news, FLOWEREWOLF,
a poetry generator, PERCEPTION, a semantic network of
commonsense, and MAD TEA PARTY, a problem solving
algorithm (e.g., to open a locked door for which you don’t
have a key, you stubbornly club it with an albatross).

Future Work
Our new pattern.server module is not documented yet.
Some examples of use are included in the latest Pattern
release. We will provide extensive documentation4 and unit
tests once all lingering bugs have been fixed. Interested
users are encouraged to contribute updates on GitHub5.

3 http://bit.ly/modeling-creativity
4 http://www.clips.ua.ac.be/pages/pattern-server
5 http://www.github.com/clips/pattern

 Pattern is not ready yet for Python 3, unfortunately.
Some preliminary steps have already been taken to make
the toolkit available for Python 3. Work will continue
along this line in the future.

Acknowledgements
The development of Pattern is supported by the Computa-
tional Linguistics Research Group at the University of
Antwerp, Belgium, and the Experimental Media Research
Group at the St Lucas University College of Art & Design,
Antwerp, Belgium.

References
De Smedt, T., and Daelemans, W. 2012. Pattern for py-
thon. The Journal of Machine Learning Research, 13(1):
2063-2067.
Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and
Lin, C. J. 2008. LIBLINEAR: A library for large linear
classification. The Journal of Machine Learning Research,
9: 1871-1874.
Bird, S., Klein, E., and Loper, E. 2009. Natural language
processing with Python. O'Reilly Media, Inc.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., et al. 2011. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Re-
search, 12: 2825-2830.
De Smedt, T., Marfia, F., Matteucci, M., Daelemans, W. In
press. Using Wiktionary to build an Italian part-of-speech
tagger. In Proceedings of NLDB 2014.
De Smedt, T. 2013. Modeling Creativity: Case Studies in
Python (doctoral thesis). University Press Antwerp. ISBN
978-90-5718-260-0.
Veale, T., Seco, N., & Hayes, J. 2004. Creative discovery
in lexical ontologies. In Proceedings of the 20th interna-
tional conference on Computational Linguistics, 1333.
Association for Computational Linguistics.
Boden, M. A. 2003. The creative mind: Myths and mecha-
nisms. Routledge.
Fellbaum, C. 1999. WordNet. Blackwell Publishing Ltd.
Lin, D. 1998. An information-theoretic definition of simi-
larity. In ICML, 98: 296-304.
Veale, T. 2013. A Service-Oriented Architecture for Com-
putational Creativity. Journal of Computing Science and
Engineering, 7(3): 159-167.

