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Abstract

Many music composition algorithms attempt to com-
pose music in a particular style. The resulting music is
often impressive and indistinguishable from the style of
the training data, but it tends to lack significant inno-
vation. In an effort to increase innovation in the selec-
tion of pitches and rhythms, we present a system that
discovers musical motifs by coupling machine learn-
ing techniques with an inspirational component. Unlike
many generative models, the inspirational component
allows the composition process to originate outside of
what is learned from the training data. Candidate mo-
tifs are extracted from non-musical media such as im-
ages and audio. Machine learning algorithms select and
return the motifs that most resemble the training data.
This process is validated by running it on actual mu-
sic scores and testing how closely the discovered motifs
match the expected motifs. We examine the informa-
tion content of the discovered motifs by comparing the
entropy of the discovered motifs, candidate motifs, and
training data. We measure innovation by comparing the
probability of the training data and the probability of the
discovered motifs given the model.

Introduction
Computational music composition is still in its infancy,
and while numerous achievements have already been made,
many humans still compose better than computers. Current
computational approaches tend to favor one of two compo-
sitional goals. The first goal is to produce music that mim-
ics the style of the training data. Approaches with this goal
tend to 1) learn a model from a set of training examples
and 2) probabilistically generate new music based on the
learned model. These approaches effectively produce arte-
facts that mimic classical music literature, but little thought
is directed toward expansion and transformation of the mu-
sic domain. For example, David Cope (1996) and Dubnov
et al. (2003) seek to mimic the style of other composers
in their systems. The second goal is to produce music that
is radically innovative. These approaches utilize devices
such as genetic algorithms (Burton and Vladimirova 1999;
Biles 1994) and swarms (Blackwell 2003). While these ap-
proaches can theoretically expand the music domain, they
often have little grounding in a training data set, and their
output often receives little acclaim from either music schol-

ars or average listeners. A large portion of work serves one
of these two goals, but not both.

While many computational compositions lack either in-
novation or grounding, great human composers from the pe-
riod of common practice and the early 20th century com-
posed with both goals in mind. For instance, Beethoven’s
music pushes classical boundaries into the beginnings of
romanticism. The operas of Wagner bridge the gap be-
tween tonality and atonality. Schoenberg’s twelve-tone mu-
sic pushes atonality to a theoretical maximum. Great com-
posers of this period produce highly creative work by ex-
tending the boundaries of the musical domain without com-
pletely abandoning the common ground of music literature.
We must note that some contemporary composers strive to
completely reject musico-historical precedent. While this is
an admirable cause, we do not share this endeavor. Instead,
we seek to compose music that innovates and extends the
music of the period of common practice and the early 20th
century.

Where do great composers seek inspiration in order to ex-
pand these boundaries in a musical way? They find inspira-
tion from many non-musical realms such as nature, religion,
relationships, art, and literature. Olivier Messiaen’s compo-
sitions mimic birdsong and have roots in theology (Bruhn
1997). Claude Debussy is inspired by nature, which be-
comes apparent by scanning the titles of his pieces, such as
La mer [The Ocean], Jardins sous la pluie [Gardens in the
Rain], and Les parfums de la nuit [The Scents of the Night].
Debussy’s Prélude á l’aprés-midi d’un faune [Prelude to the
Afternoon of a Faun] is a direct response to Stéphane Mal-
larmé’s poem, L’aprés-midi d’un faune [The Afternoon of
a Faun]. Franz Liszt’s programme music attempts to tell
a story that usually has little to do with music. Many pop
musicians are clearly inspired by relationships and social in-
teractions. While it is essential for a composer to be familiar
with music literature, it is apparent that inspiration extends
to non-musical sources.

We present a computational composition method that
serves both of the aforementioned goals rather than only one
of them. This method couples machine learning (ML) tech-
niques with an inspirational component, modifying and ex-
tending an algorithm introduced by Smith et al. (2012). The
ML component maintains grounding in music literature and
harnesses innovation by employing the strengths of genera-



tive models. It embraces the compositional approach found
in the period of common practice and the early 20th cen-
tury. The inspirational component introduces non-musical
ideas and enables innovation beyond the musical training
data. The combination of the ML component and the inspi-
rational component allows us to serve both compositional
goals.

Media Inspiration
Just as humans often rely on inspiration for their creative
work, our motif discovery system relies on non-musical au-
dio files for inspiration. Non-musical audio is a natural start-
ing place for musical inspiration because audio and music
both exist in the sound medium. We also generalize one
step further by allowing our system to be inspired by other
forms of media, specifically images. A human might look at
a painting, understand its meaning, and compose a piece of
music based on the way he feels about it. He might also feel
inspired to compose a piece of music shortly after attending
a speech, listening to a bird chirp, watching a movie, or read-
ing poetry. Since computer technology has not yet matched
the full capacity of humans in understanding events in the
world, we begin with unsophisticated means for extracting
musical inspiration from media (our precise methods are de-
scribed in a later section).

Musical Motifs
We focus on the composition of motifs, the atomic level of
musical structure. We use White’s definition of motif, which
is “the smallest structural unit possessing thematic identity”
(1976). There are two reasons for focusing on the motif.
First, it is the simplest element for modeling musical struc-
ture, and we agree with Cardoso et al. (2009) that success is
more likely to be achieved when we start small. Second, it is
a natural starting place to achieve global structure based on
variations and manipulations of the same motif throughout a
composition.

Since it is beyond the scope of this research to build a
full composition system, we present a motif composer that
performs the first compositional step. The motif composer
trains an ML model with music files, it discovers candidate
motifs from non-musical media, and it returns the motifs that
are the most probable according to the ML model built from
the training music files. It will be left to future work to com-
bine these motifs into a full composition.

Related Work
A variety of machine learning models have been applied to
music composition. Many of these models successfully re-
produce credible music in a genre, while others produce mu-
sic that is radically innovative. Since the innovative compo-
nent of our algorithm is vastly different than the innovative
components of other algorithms, we only review the compo-
sition algorithms that effectively mimic musical style.

Cope extracts musical signatures, or common patterns,
from the works of a composer. These signatures are recom-
bined into a new composition in the same style (1996). This
process effectively replicates the styles of composers, but its

novelty is limited to the recombination of already existing
signatures. Aside from Cope’s work, the remaining relevant
literature is divisible into two categories: Markov models
and neural networks.

Markov Models
Markov models are perhaps the most obvious choice for rep-
resenting and generating sequential data such as melodies.
The Markov assumption allows for inference and learning to
be performed simply and quickly on large data sets. How-
ever, first-order Markov processes do not store enough in-
formation to represent longer musical contexts, while high-
order Markov processes require intractable space and time.

This issue necessitates a variable order Markov model
(VMM) in which variable length contexts are stored. Dub-
nov et al. (2003) implement a VMM for modeling music
using a prediction suffix tree (PST). A longer context is only
stored in the PST when 1) it appears frequently in the data
and 2) it differs by a significant factor from similar shorter
contexts. This allows the model to remain tractable with-
out losing significant longer contextual dependencies. Be-
gleiter et al. (2004) compare results for several variable or-
der Markov models (VMMs), including the PST. Their ex-
periments show that Context Tree Weighting (CTW) mini-
mizes log-loss on music prediction tasks better than the PST
(and all other VMMs in this experiment). Spiliopoulou and
Storkey (2012) propose the Variable-gram Topic model for
modeling melodies, which employs a Dirichlet-VMM and is
also shown to improve upon other VMMs.

Variable order Markov models are not the only extensions
explored. Lavrenko and Pickens (2003) apply Markov ran-
dom fields to polyphonic music. In these models, next-note
prediction accuracies improve when compared to a tradi-
tional high-order Markov chain. Weiland et al. (2005) apply
hierarchical hidden Markov models (HHMMs) in order to
capture long-term dependencies in music. HHMMs are used
to model both pitch and rhythm separately.

Markov models generate impressive results, but the emis-
sions rely entirely on the training data and a stochastic com-
ponent. This results in a probabilistic walk through the train-
ing space without introducing any actual novelty or inspira-
tion beyond perturbation of the training data.

Neural Networks
Recurrent neural networks (RNNs) are also effective for
learning musical structure. However, similar to Markov
models, RNNs still struggle to represent long-term depen-
dencies and global structure due to the vanishing gradient
problem (Hochreiter et al. 2001). Eck and Schmidhu-
ber (2008; 2002) address the vanishing gradient problem
for music composition by applying long short-term mem-
ory (LSTM). Chords and melodies are learned using this
approach, and realistic jazz music is produced. Smith and
Garnett (2012) explore different approaches for modeling
long-term structure using hierarchical adaptive resonance
theory neural networks. Using three hierarchical levels,
they demonstrate success in capturing medium-level musi-
cal structures.



Like Markov models, neural networks can effectively cap-
ture both long-term and short-term statistical regularities in
music. This allows for music composition in any genre given
sufficient training data. However, few (if any) researchers
have incorporated inspiration in neural network composi-
tion prior to Smith et al. (2012). Thus, we propose a novel
technique to address this deficiency. Traditional ML meth-
ods can be coupled with sources of inspiration in order to
discover novel motifs that originate outside of the training
space. ML models can judge the quality of potential motifs
according to learned rules.

Methodology
An ML algorithm is employed to learn a model from a set
of music themes. Pitch detection is performed on a non-
musical audio file, and a list of candidate motifs is saved.
For our purposes, semantic content in the audio files is ig-
nored. The candidate motifs that are most probable accord-
ing to the ML model are returned. This process is tested
using different ML model classes over various audio input
files. A high-level system pipeline is shown graphically in
Figure 1.

In order to generalize the concept of motif discovery from
non-musical media, we also extend our algorithm to accept
images as inputs. With images, we replace pitch detection
with edge detection, and we iterate using a spiral pattern
through the image in order to collect notes. This process
is further explained in its own subsection.

The training data for this experiment are 9824 mono-
phonic MIDI themes retrieved from The Electronic Dictio-
nary of Musical Themes.1 The training data consists of
themes rather than motifs. We make this decision due to the
absence of a good motif data set. An assumption is made that
a motif follows the same general rules of a theme, except it
is shorter. In order to better learn statistical regularities from
the data set, themes are discarded if they contain at least one
pitch interval greater than a major ninth. This results in a fi-
nal training data set with 9383 musical themes. Themes and
motifs are represented using the Phrase class from the jMu-
sic library. We also utilize core functionality from jMusic
for reading, writing, and manipulating musical structures.2

Machine Learning Models
A total of six ML model classes are tested. These include
four VMMs, an LSTM RNN, and an HMM. These model
classes are chosen because they are general, they represent a
variety of approaches, and their performance on music data
has already been shown to be successful. The four VMMs
include Prediction by Partial Match, Context Tree Weight-
ing, Probabilistic Suffix Trees, and an improved Lempel-Ziv
algorithm named LZ-MS. Begleiter et al. provide an im-
plementation for each of these VMMs,3 an LSTM found on
Github is used,4 and the HMM implementation is found in

1http://www.multimedialibrary.com/barlow/all barlow.asp
2http://explodingart.com/jmusic
3http://www.cs.technion.ac.il/˜ronbeg/vmm/code index.html
4https://github.com/evolvingstuff/SimpleLSTM

the Jahmm library.5
Each of the learned ML models is used on both pitches

and rhythms separately. Each model contains 128 possible
pitches (0-127) and 32 possible note durations (32nd note
multiples up to a whole note). The set of inputs in the RNNs
represents which note is played, and the set of outputs repre-
sents the next note in the sequence to be played. The RNNs
train for a fixed number of iterations before halting. The
HMMs are trained using the Baum-Welch algorithm for a
fixed number of iterations. The VMMs are trained accord-
ing to the algorithms presented by Begleiter et al. (2004).

Audio Pitch Detection
Our system accepts an audio file as input. Pitch detection
is performed on the audio file using an open source com-
mand line utility called Aubio.6 More precisely, we use the
aubionotes Windows binary from version 0.4.0 of Aubio,
schmitt pitch detection, kl onset detection, and a threshold
of 0.5. Aubio combines note onset detection and pitch de-
tection in order to output a string of notes, in which each
note is comprised of a pitch and duration. The string of de-
tected notes is processed in order to make the sequence more
manageable: given a tempo of 120 beats per minute, note du-
rations are quantized to a 32nd note value; and note pitches
are restricted to MIDI note values in the range [55, 85] by
adding or subtracting octaves until each pitch is in range.

Image Edge Detection
Images are also used as inspirational inputs for the motif
discovery system. We perform edge detection on an im-
age using a Canny edge detector implementation,7 which
returns a new image comprised of black and white pixels.
The white pixels (0 value) represent detected edges, and the
black pixels (255 value) represent non-edges. We also con-
vert the original image to a greyscale image and divide each
pixel value by two, which changes the range from [0, 255]
to [0, 127]. We simultaneously iterate through the edge-
detected image and the greyscale image one pixel at a time
using a spiral pattern starting from the outside and working
its way inward. For each sequence of b contiguous black pix-
els (delimited by white pixels) in the edge-detected image,
we create one note. The pitch of the note is the average in-
tensity of the corresponding b pixels in the greyscale image,
and the duration of the note is b 32nd notes. The pitches
are restricted to MIDI note values in the range [55, 85] as
they were for pitch-detected sequences. Quantization is not
performed for edge-detected sequences, since all of the note
durations are already multiples of 32nd notes.

Motif Discovery
After the string of notes are detected and processed, we ex-
tract candidate motifs of various sizes (see Algorithm 1). We
define the minimum motif length as l min and the maxi-
mum motif length as l max. All contiguous motifs of length

5http://www.run.montefiore.ulg.ac.be/˜francois/software/jahmm/
6http://www.aubio.org
7http://www.tomgibara.com/computer-vision/canny-edge-

detector
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Figure 1: A high-level system pipeline for motif discovery. An ML model is trained on pre-processed music themes. Pitch
detection is performed on an audio file or edge detection is performed on an image file in order to extract a sequence of notes.
The sequence of notes is segmented into a set of candidate motifs, and only the most probable motifs according to the ML
model are selected.

greater than or equal to l min and less than or equal to
l max are stored. For our experiments, the variables l min
and l max are set to 4 and 7 respectively.

After the candidate motifs are gathered, the motifs with
the highest probability according to the model of the training
data are selected (see Algorithm 2). The probabilities are
computed in different ways according to which ML model
is used. For the HMM, the probability is computed using
the forward algorithm. For the VMMs, the probability is
computed by multiplying all the transitional probabilities of
the notes in the motif. For the RNN, the activation value of
the correct output note is used to derive a pseudo-probability
for each motif.

Pitches and rhythms are learned separately, weighted, and
combined to form a single probability. The weightings are
necessary in order to give equal consideration to both pitches
and rhythms. In our system, a particular pitch is generally
less likely than a particular rhythm because there are more
pitches to choose from. Thus, the combined probability is
defined as

Pp+r(m) = Pr(mp)Np
|m| + Pr(mr)Nr

|m| (1)

where m is a motif, mp is the motif pitch sequence, mr is
the motif rhythm sequence, Np and Nr are constants, and
Np > Nr. In this paper we set Np = 60 and Nr = 4.
The resulting value is not a true probability because it can
be greater than 1.0, but this is not significant because we are
only interested in the relative probability of motifs. For con-
venience, in what follows, we will use the simpler notation
Pr(m) as a short hand for Pp+r(m) as well as the condi-
tional notation Pr(m|M) as a shorthand for Pp+r(m|M),
where Pp+r(m|M) is computed as in Eq. 1, replacing the
independent probabilities with their respective conditional
counterparts.

Since shorter motifs are naturally more probable than
longer motifs, an additional normalization step is taken in
Algorithm 2. We would like each motif length to have equal
probability:

Algorithm 1 extract candidate motifs
1: Input: notes, l min, l max
2: candidate motifs← {}
3: for l min ≤ l ≤ l max do
4: for 0 ≤ i ≤ |notes| − l do
5: motif ← (notesi, notesi+1, ..., notesi+l−1)
6: candidate motifs← candidate motifs ∪ motif
7: return candidate motifs

Algorithm 2 discover best motifs
1: Input: notes, model, num motifs, l min, l max
2: C ← extract candidate motifs(notes, l min, l max)
3: best motifs← {}
4: while |best motifs| < num motifs do
5: m∗ ← argmax

m∈C
[norm(|m|)Pr(m|model)]

6: best motifs← best motifs ∪m∗

7: return best motifs

Pequal =
1

(l max− l min+ 1)
(2)

Since the probability of a generative model emitting a motif
of length l is

P (l) =
∑

m∈C,|m|=l

Pr(m|model) (3)

we introduce a length-dependent normalization term that
equalizes the probability of selecting motifs of various
lengths.

norm(l) =
Pequal

P (l)
(4)

This normalization term is used in step 5 of Algorithm 2.



Validation and Results
We perform three stages of validation for this system. First,
we compare the entropy of pitch-detected and edge-detected
music sequences to comparable random sequences as a base-
line sanity check to see if images and audio are better
sources of inspiration than are random processes. Second,
we run our motif discovery system on real music scores in-
stead of media, and we validate the motif discovery pro-
cess by comparing the discovered motifs to hand annotated
themes for the piece of music. Third, we evaluate the struc-
tural value of the motifs. This is done by comparing the en-
tropy of the discovered motifs, candidate motifs, and themes
in the training set. We also measure the amount of innova-
tion in the motifs by measuring the probability of the se-
lected motifs against the probability of the training themes
according to the learned ML model.

Preliminary Evaluation of Inspirational Sources
Although pitch detection is intended primarily for mono-
phonic music signals, interesting results are still obtained on
non-musical audio signals. Additionally, interesting musi-
cal inspiration can be obtained from image files. We per-
formed some preliminary work on fifteen audio files and
fifteen image files and found that these pitch-detected and
edge-detected sequences were better inspirational sources
than random processes. This evaluation was performed as
a sanity check, and we did not select motifs or use machine
learning at this stage. Instead, we compared the entropy
(see Equation 5) of pitch-detected and edge-detected se-
quences against comparable random sequences and found
that there was more rhythm and pitch regularity in the pitch-
detected and edge-detected sequences. In our data, the sam-
ple space of the random variable X is either a set of pitches
or a set of rhythms, so Pr(xi) is the probability of observing
a particular pitch or a rhythm.

H(X) = −
n∑

i=1

Pr(xi) logb Pr(xi) (5)

More precisely, for one of these sequences we found the
sequence length, the minimum pitch, maximum pitch, min-
imum note duration, and maximum note duration. Then we
created a sequence of notes from two uniform random dis-
tributions (one for pitch and one for rhythm) with the same
length, minimum pitch, maximum pitch, minimum note du-
ration, and maximum note duration. The average pitch and
rhythm entropy measures were lower for pitch-detected and
edge-detected sequences. A homoscedastic, two-tailed Stu-
dent’s t-test on the data shows statistical significance with
p-values of 1× 10−5 for pitches from images, 1× 10−23 for
rhythms from images, and 0.0003 for rhythms from audio
files. In addition, although the p-value for pitches from au-
dio files is not statistically significant (0.175), it is still fairly
low. This suggests that there is potential for interesting mu-
sical content (Wiggins, Pearce, and Müllensiefen 2009) in
the pitch-detected and edge-detected sequences even though
the sequences originate from non-musical sources.

Figure 2: An example of a motif inside the theme and a motif
outside the theme for a piece of music. The average normal-
ized probability of the motifs inside the theme are compared
to the average normalized probability of the motifs outside
the theme.

Evaluation of Motif Discovery Process

A test set consists of 15 full music scores with one or more
hand annotated themes for each score. The full scores are
fetched from KernScores,8 and the corresponding themes
are removed from the training data set (taken from the afore-
mentioned Electronic Dictionary of Musical Themes). Each
theme effectively serves as a hand annotated characteristic
theme from a full score of music. This process is done man-
ually due to the incongruence of KernScores and The Elec-
tronic Dictionary of Musical Themes. In order to ensure an
accurate mapping, full scores and themes are matched up
according to careful inspection of their titles and contents.
We attempt to choose a variety of different styles and time
periods in order to adequately represent the training data.

For each score in the test set, candidate motifs are gath-
ered into a set C by iterating through the full score, one part
at a time, using a sliding window from size l min to l max.
This is the same process used to gather candidate motifs
from audio and image files. C is then split into two disjoint
sets, where Ct contains all the motifs that are subsequences
of the matching theme(s) for the score, and C−t contains
the remaining motifs. See Figure 2 for a visual example of
motifs that are found inside and outside of the theme.

A statistic Q is computed which represents the mean nor-
malized probability of the motifs in a set S given a model
M :

8http://kern.ccarh.org/



Algorithm 3 evaluate discovery process
T is the set of all 9383 themes, V and S are sets of scores. Each
r ∈ V contains a set of themes {t1...tn}, ti ∈ T and each s ∈ S
contains a set of themes {u1...uk}, ui ∈ T . V ∩S = ∅ and ∀s ∈ S
and ∀r ∈ V , s ∩ r = ∅
.

1: Input: T , V , S
2: for each ML model classM do
3: best = −∞
4: for each setting p ofM’s hyperparameters do
5: ave = 0
6: for each score s ∈ V do
7: learn Mp using T − s as training data
8: ave = ave+ U(s|Mp)
9: ave = ave/|V |

10: if ave > best then
11: best = ave
12: pbest = p
13: p∗M = pbest
14: for each ML model classM do
15: for each score r ∈ R do
16: learn Mp∗M

using T − r as training data
17: results← U(r|Mp∗M

)
18: return results

Q(S|M) =

∑
m∈S

norm(|m|)Pr(m|M)

|S|
(6)

Q(Ct|M) informs us about the probability of thematic
motifs being extracted by the motif discovery system.
Q(C−t|M) informs us about the probability of non-thematic
motifs being discovered. A metric U is computed in order to
measure the ability of the motif discovery system to discover
desirable motifs.

U(C|M) =
Q(Ct|M)−Q(C−t|M)

min{Q(Ct|M), Q(C−t|M)}
(7)

U is larger than zero if the discovery process successfully
identifies motifs that have motivic or thematic qualities ac-
cording to the hand-labeled themes.

Given our collected set T of 9383 themes, we use leave-
one-out cross validation on a set V of music scores and their
hand-labeled themes in order to fine-tune the ML model
class hyperparameters to maximize U , as shown in Algo-
rithm 3. For each score s ∈ V , we learn an ML model
M from the model class M using T − s as training data
(line 7), and using the learned model we calculate the av-
erage U value for the set V (lines 8-9). We perform this
validation under various hyperparameter configurations for
all s ∈ V for each ML model class (lines 2-6). After this is
done, we select the hyperparameter configuration that results
in the highest average value for U (lines 10-13). Finally, af-
ter these hyperparameters are tuned, we calculate U over a
separate test set S of scores and themes (disjoint from V )
for each model class (lines 14-17). The results are shown in
Table 1.

Algorithm 4 evaluate motif quality
T is the set of all 9383 themes, F is a non-musical (inspirational)
media file, Mp∗M

is a learned model
.

1: Input: T , F , Mp∗M
2: allmotifs← extract candidate motifs from T
3: Hm = average entropy(allmotifs)
4: candidates←extract candidate motifs from F
5: Hc = average entropy(candidates)
6: best ←discover best motifs from candidates using

model Mp∗M
7: Hb = average entropy(best)
8: results← R(T, best|Mp∗M

)
9: return Hm, Hc, Hb, results

Given the data in the table, a case can be made that certain
ML model classes can effectively discover thematic motifs
with a higher probability than other motif candidates. Four
of the six ML model classes have an average U value above
zero. This means that an average theme is more likely to be
discovered than an average non-theme for these four classes.
PPM and CTW have the highest average U values over the
test set. LSTM has the worst average, but this is largely due
to one outlier of -91.960. Additionally, PST performs poorly
mostly due to two outliers of -24.363 and -31.614. Except
for LSTM and PST, all of the models are fairly robust by
keeping negative U values to a minimum.

Evaluation of Structural Quality of Motifs
We also evaluate both the information content and the level
of innovation of the discovered motifs, as shown in Algo-
rithm 4. First, we measure the information content by com-
puting entropy as we did before. We compare the entropy
of the discovered motifs (lines 6-7) to the entropy of the
candidate motifs (lines 4-5). We also segment the actual
music themes from the training set into a set of motifs us-
ing Algorithm 1, and we add the entropy of these motifs to
the comparison (lines 2-3). In order to ensure a fair com-
parison, we perform a sampling procedure which requires
each set of samples to contain the same proportions of mo-
tif lengths, so that our entropy calculation is not biased by
the length of the motifs sampled. The results for two im-
age input files and two audio input files are displayed in
Table 2, with each column for each input file the result
of running Algorithm 4 twice, once for pitch and once for
rhythm. The images and audio files are chosen for their
textural and aural variety, and their statistics are represen-
tative of other files we tested. Bioplazm2.jpg is a computer-
generated fractal while Landscape.jpg is a photograph, and
Lightsabers.wav is a sound effect from the movie Star Wars
while GalwayKinnell-Neverland.wav is a recording of a per-
son reading poetry.

The results are generally as one would expect. The av-
erage pitch entropy is always lowest on the training theme
motifs, it is higher for the discovered motifs, and higher
again for the candidate motifs. With the exception of Land-
scape.jpg, the average rhythm entropy follows the same pat-
tern as pitch entropy for each input. One surprising ob-



Score File Name CTW HMM LSTM LZMS PPM PST
BachBook1Fugue15.krn 4.405 4.015 3.047 2.896 11.657 4.951
BachInvention12.krn -2.585 -5.609 26.699 1.078 0.534 13.191
BeethovenSonata13-2.krn 1.065 -0.145 7.769 8.876 4.973 9.182
BeethovenSonata6-3.krn -0.715 -5.320 2.874 0.832 1.283 4.801
ChopinMazurka41-1.krn 6.902 0.808 -7.690 3.057 18.965 -24.363
Corelli5-8-2.krn -6.398 -1.270 -0.692 -2.395 -1.166 1.690
Grieg43-2.krn 2.366 1.991 -2.622 0.857 8.800 -7.740
Haydn33-3-4.krn 14.370 2.370 1.189 6.155 8.475 0.841
Haydn64-6-2.krn 1.266 2.560 -1.092 0.855 1.809 -0.133
LisztBallade2.krn -0.763 -0.610 -1.754 -0.046 1.226 0.895
MozartK331-3.krn 0.838 0.912 3.829 0.756 3.222 5.413
MozartK387-4.krn -4.227 -0.082 -91.960 -2.127 -3.453 -31.614
SchubertImpromptuGFlat.krn 49.132 3.169 0.790 8.985 59.336 1.122
SchumannSymphony3-4.krn 0.666 2.825 -2.154 0.289 1.560 -6.830
Vivaldi3-6-1.krn 7.034 2.905 0.555 7.055 9.633 -0.367
Average 4.890 0.568 -4.081 2.475 8.457 -1.931

Table 1: U values for various score inputs and ML model classes. Positive U values show that the average normalized proba-
bility of motifs inside themes is higher than the same probability for motifs outside themes. Positive U values suggest that the
motif discovery system is able to detect differences between thematic motifs and non-thematic motifs.

servation is that the rhythm entropy for some of the ML
model classes is sometimes higher for the discovered motifs
than it is for the candidate motifs. This suggests that the-
matic rhythms are often less predictable than non-thematic
rhythms. However, the pitch entropy almost always tends to
be lower for the discovered motifs than the candidate mo-
tifs. This suggests that thematic pitches tend to be more pre-
dictable.

Next, we measure the level of innovation of the best mo-
tifs discovered (line 8). We do this by taking a metric R
(similar to U ) using two Q statistics (see equation 6), where
A is the set of 9383 themes from the training database and
E is the set of discovered motifs.

R(A,E|M) =
Q(A|M)−Q(E|M)

min{Q(A|M), Q(E|M)}
(8)

When R is greater than zero, A is more likely than E
given the ML model M . In this case, we assume that there
is a different model that would better represent E. If there is
a better model for E, then E must be novel to some degree
when compared to A. Thus, If R is greater than zero, we in-
fer that E innovates from A. The R results for the same four
input files are shown along with the entropy statistics in Ta-
ble 2. Except for PPM, all of the ML model classes produce
R values greater than zero for each of the four inputs.

While statistical metrics provide some useful evaluation
in computationally creative systems, listening to the motif
outputs and viewing their musical notation will also pro-
vide valuable insights for this system. We include six mu-
sical notations of motifs discovered by this system in Fig-
ure 3, and we invite the reader to listen to sample outputs at
http://axon.cs.byu.edu/motif-discovery.

Conclusion and Future Work
The motif discovery system in this paper composes musical
motifs that demonstrate both innovation and value. We show

that our system innovates from the training data by extract-
ing candidate motifs from an inspirational source without
generating data from a probabilistic model. This assump-
tion is validated by observing high R values.

Additionally, the motif discovery system maintains com-
positional value by grounding it in a training data set. The
motif discovery process is tested by running it on actual
music scores instead of audio and image files. The results
show that motifs found inside of themes are on average more
likely to be discovered than motifs found outside of themes.

Improvements and modifications can be made in the anal-
ysis and methodology of our system. We are currently
preparing another manuscript which evaluates the difference
between motifs discovered by our system and comparable
random motifs. The results show that using (non-musical)
media as inspiration for the motif discovery process is more
efficient at producing “musical” motifs than is randomly
generating “reasonable” motifs.

The discovered motifs are the contribution of this sys-
tem. While work presented here is a proof-of-concept for
the use of non-musical media sources as inspiration in cre-
ating musical motifs, more sophisticated techniques should
be explored. In the future, we plan to utilize machine vision
to extract meaning from images; we plan to study saccades
from human subjects on various images in order to train the
computer to see them in a more human, natural way; and we
plan to incorporate digital signal analysis on audio files in
order to hear audio more like a human would hear it. (While
it is certainly not necessary for a computer to be inspired in
the same way as a human might be, if the goal is to com-
pose music that people can appreciate, it seems worthwhile
to explore human-centric models of musical inspiration.)

In addition to improving the motif creation process, fu-
ture work will investigate combining these motifs, adding
harmonization, and creating full compositions. This work is
simply the first step in a novel composition system. While
there are a number of directions to take with this system as



Bioplazm2.jpg CTW HMM LSTM LZMS PPM PST Average
pitch entropy training motifs 1.894 1.979 1.818 1.816 1.711 1.536 1.793
pitch entropy discovered motifs 2.393 2.426 1.944 1.731 2.057 1.759 2.052
pitch entropy candidate motifs 2.217 2.328 2.097 2.104 1.958 1.784 2.081
rhythm entropy training motifs 1.009 1.051 0.976 0.970 0.927 0.822 0.959
rhythm entropy discovered motifs 2.110 2.295 1.789 2.212 0.684 1.515 1.767
rhythm entropy candidate motifs 2.387 2.466 2.310 2.309 2.132 1.934 2.256
R 7.567 13.296 20.667 4.603 -0.276 7.643 8.917

Landscape.jpg CTW HMM LSTM LZMS PPM PST Average
pitch entropy training motifs 1.894 1.979 1.818 1.816 1.711 1.536 1.793
pitch entropy discovered motifs 1.974 2.074 2.143 1.833 2.027 1.675 1.954
pitch entropy candidate motifs 2.429 2.531 2.598 2.341 2.271 2.028 2.367
rhythm entropy training motifs 1.009 1.051 0.976 0.970 0.927 0.822 0.959
rhythm entropy discovered motifs 1.984 1.863 2.175 1.983 0.727 1.455 1.698
rhythm entropy candidate motifs 1.549 1.712 1.810 1.509 1.396 1.329 1.551
R 0.805 0.236 1.601 0.429 4.624 1.283 1.496

Lightsabers.wav CTW HMM LSTM LZMS PPM PST Average
pitch entropy training motifs 1.894 1.979 1.818 1.816 1.711 1.536 1.793
pitch entropy discovered motifs 2.076 1.884 1.881 1.652 2.024 1.586 1.850
pitch entropy candidate motifs 2.225 2.097 2.217 1.876 2.115 1.755 2.048
rhythm entropy training motifs 1.009 1.051 0.976 0.970 0.927 0.822 0.959
rhythm entropy discovered motifs 1.534 1.309 2.024 1.623 0.860 1.225 1.429
rhythm entropy candidate motifs 1.540 1.524 1.541 1.502 1.548 1.276 1.489
R 5.637 0.793 27.227 4.812 6.768 7.540 8.796

GalwayKinnell-Neverland.wav CTW HMM LSTM LZMS PPM PST Average
pitch entropy training motifs 1.894 1.979 1.818 1.816 1.711 1.536 1.793
pitch entropy discovered motifs 1.823 2.480 2.132 1.773 1.997 1.701 1.984
pitch entropy candidate motifs 2.153 2.248 2.250 2.141 2.242 1.839 2.146
rhythm entropy training motifs 1.009 1.051 0.976 0.970 0.927 0.822 0.959
rhythm entropy discovered motifs 1.550 1.587 1.560 1.779 0.289 1.128 1.315
rhythm entropy candidate motifs 1.472 1.469 1.471 1.477 1.469 1.226 1.431
R 1.520 10.163 24.968 4.283 0.257 6.865 8.010

Table 2: Entropy and R values for various inputs. We measure the pitch and rhythm entropy of motifs extracted from the
training set, the best motifs discovered, and all of the candidate motifs extracted. On average, the entropy increases from the
training motifs to the discovered motifs, and it increases again from the discovered motifs to the candidate motifs. The R values
are positive when the training motifs are more probable according to the model than the discovered motifs. Higher R values
represent higher amounts of innovation from the training data.

a starting point, we are inclined to compose from the bot-
tom up. Longer themes can be constructed by combining
the motifs from this system using evolutionary or other ap-
proaches. Once a set of themes is created, then phrases,
sections, and multiple voices can be composed in a similar
manner. Contrastingly, another system could compose from
the top down, composing the higher level features first and
using the motifs from this system as the lower level build-
ing blocks. This system could also be extended by including
additional modes of inspirational input such as text or video.
Our intent is for this system to be the starting point for an in-
novative, high quality, well-structured system that composes
pieces which a human observer could call creative.
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