
Implementation of a Slogan Generator

Polona Tomašič∗
XLAB d.o.o.

Pot za Brdom 100, 1000 Ljubljana
Slovenia

polona.tomasic@xlab.si

Martin Žnidaršič∗
Jožef Stefan Institute

Jamova cesta 39, 1000 Ljubljana
Slovenia

martin.znidarsic@ijs.si

Gregor Papa∗

Jožef Stefan Institute
Jamova cesta 39, 1000 Ljubljana

Slovenia
gregor.papa@ijs.si

Abstract
Generation of slogans for companies, products or similar en-
tities is a creative task that is difficult to automate. In this
paper we describe our attempt of tackling this problem by
combining computational linguistics, semantic resources and
genetic algorithms.

Introduction
Use of computers for support or automation of tasks in cre-
ative industries is on the rise. Several such tools and meth-
ods emerged in recent years for various problems. Gener-
ation of slogans is one of the less supported problems in
this field. There are some online tools available1, which
seem to use templating and provide results of such a kind.
To the best of our knowledge, there is only one scien-
tific study dedicated particularly to slogan (and other cre-
ative sentences) generation, namely the BRAINSUP frame-
work (Özbal, Pighin, and Strapparava 2013). The BRAIN-
SUP approach emphasises user’s control of the generation
process. Namely, by user-provided keywords, domain, emo-
tions and similar properties of the slogans, the user has a lot
of control over the generation process. This is practically
very useful, as it shrinks the huge search space of slogans
and improves the quality of results. In our work, on the other
hand, we aim at a completely autonomous approach, which
is not influenced by the user in any way, apart from being
provided by a short textual description of the target entity.
In this paper, we present our current approach, which fol-
lows the BRAINSUP framework, but also deviates from it
with several modifications. At the core of our slogan gen-
eration procedure we use a genetic algorithm (GA) (Bäck
1996), which ensures good coverage of the search space, and
a collection of heuristic slogan evaluation functions.

∗Authors are affiliated also to the Jožef Stefan International
Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
This research was partly funded by the European Union, European
Social Fund, in the framework of the Operational Programme for
Human Resources Development, by the Slovene Research Agency
and supported through EC funding for the project ConCreTe (grant
number 611733) and project WHIM (grant number 611560) that
acknowledge the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework
Programme for Research of the European Commission.

1http://slogan4u.com ; http://www.sloganizer.net/en/

Resources
Our slogan generation method requires some specific re-
sources, such as a collection of frequent grammatical rela-
tions. Here we list these resources, describe their acquisition
methodology and provide some illustrative examples.

Database of existing slogans
The database of exisitng slogans serves as a basis for the
initial population generation and for comparison with gen-
erated slogans. There is a large number of known slogans
for different companies and products available online and
there are specialized Web pages that contain collections of
slogans. However, none of those sources contain all the nec-
essary information, so we constructed our own database in
which each instance consists of: slogan, company/product
name, official Web site URL and Wikipedia site URL. Cur-
rently the database contains 1041 slogans. Here is an exam-
ple instance: ["Just do it.", "Nike", "http://www.nike.com/",
"http://en.wikipedia.org/wiki/Nike"].

Database of frequent grammatical relations
Frequent grammatical relations between words in sentences
were used in some of our processes. For their acquisition we
used the Stanford Dependencies Parser (Marneffe, MacCart-
ney, and Manning 2006). Stanford dependencies are triplets
containing two words, called governor and dependent, and
the name of the relation between them. The parser also pro-
vides part-of-speech (POS) tags and phrase structure trees.

To get representatives of frequent grammatical relations
between words, we parsed 52,829 random Wikipedia pages,
sentence by sentence, and obtained 4,861,717 different de-
pendencies. Each dependency consists of: name of the rela-
tion, governor, governor’s POS tag, dependent, dependent’s
POS tag and the number of occurrences.

Database of slogan skeletons
All the gathered known slogans were parsed with the Stan-
ford Dependencies Parser. Grammatical structure of each
slogan, without the content words, was then stored in a
database. Each skeleton contains information about each
position in the sentence - its POS tag and all its dependency
relations with other words in the sentence. For example,
skeleton of the slogan "Just do it" is [[[’advmod’, ’***’,

’VB’, ’***’, ’RB’], [’2’, ’1’]], [[’dobj’, ’***’, ’VB’, ’***’,
’PRP’], [’2’, ’3’]]]. Here the first part tells us that the first
word (RB - adverb) is adverbial modifier of the second word
(VB - verb), and the second part indicates that the third word
(PRP - pronoun) is a direct object of the second word.

Slogan generation
In this section we describe our slogan generation approach
in terms of its inputs, outputs and algorithmic steps.
INPUT consists of two items: (1) a textual description of
a company or a product, and (2) the algorithm parameters:
evaluation function weights, mutation and crossover proba-
bilities, size of the initial population and maximal number
of genetic algorithm iterations.
OUTPUT is a set of generated slogans.
ALGORITHMIC STEPS are the following:

1. Parse the input text for keywords and the main entity.
2. Generate the initial population from random skeletons.
3. Evaluate the slogans and select parents for reproduction.
4. Produce a new generation using crossover and mutations.
5. Repeat steps 3. and 4. until predetermined quality of slo-

gans or maximal number of iterations is achieved.

Extraction of keywords and the main entity
This first step is achieved using the Nodebox English Lin-
guistics library2. The main entity is obtained by select-
ing the most frequent entity in the whole text using nltk li-
brary (Bird, Klein, and Loper 2009).

Example of the keywords and the entity, extracted from
the Coca Cola Wikipedia page:
keywords = [’win’, ’produce’, ’celebrate’, ’using’, ’market-
ing’, ’north’, ’likely’, ’drink’, ’century’, ’diet’, ’production’,
’root’, ’product’, ’beverage’, ’water’, ’image’, ’sugar’,... ’]
entity = ‘Coke’

Generation of the initial population of slogans
The procedure of generating the initial population of slogans
is based on the BRAINSUP framework (Özbal, Pighin, and
Strapparava 2013), with some modifications and additions.
It follows these steps:

1. Select a random slogan skeleton from the database.
2. Choose an empty position, which has the largest number

of dependency relations in the sentence. Find the set of all
possible fillers for that position. Fillers are words from the
database of all grammatical relations between words and
must satisfy all predefined dependencies and POS tags.

3. Find the intersection between the set of all possible fillers
and the set of keywords. If the obtained set is not empty,
choose a random word from it and fill the empty posi-
tion. In case of an empty intersection, choose random
word from the 20% of most frequent possible fillers, and
fill the empty position.

4. Repeat steps 2 and 3 until all the empty spots are filled.
5. Check if the generated slogan contains any entities. If it

does, replace them with the company entity.
6. Repeat steps from 1 to 5 until the initial population of the

predetermined size is built.
2http://nodebox.net/code/index.php/Linguistics

Evaluation of slogans
To order the slogans by their quality, an aggregated evalua-
tion function was constructed. It is composed of 10 different
sub functions, each assessing a particular feature of a slogan
with scores in the interval [0,1]. Parameter of the aggre-
gation function is a list of 10 weights that sum to 1. They
define the proportions of sub functions in the overall score.

2-gram function In order to work with 2-grams, we ob-
tained the data set of 1,000,000 most frequent 2-grams
and 5000 most frequent words in Corpus of Contemporary
American English 3(COCA). The 2-gram evaluation score
should to some degree represent the relatedness between
words in slogan. We assume that slogans containing many
frequent 2-grams, are more likely to make sense. The 2-
gram evaluation score is computed in the following manner:

1. Assign a score to every 2-gram in the slogan:
• if 2-gram is among most frequent 2-grams: score = 1,
• else if one word is an entity and the other is among

5000 most frequent words: score = 0.75,
• else if one word is among 5000 most frequent words

and the other is not: score = 0.5,
• else score 0

2. Sum the scores of all 2-grams and divide it by the number
of all 2-grams in the slogan.

length function This function assigns score 1 to slogans
with less than 8 words, and score 0 to longer ones.

diversity function The diversity function evaluates a slo-
gan by counting the number of repeated words. The highest
score goes to a slogan with no repeated words. If a slogan
contains identical consecutive words, it receives score 0.

entity function It returns 1, if slogan contains the main
entity, and 0, if it doesn’t.

keywords function If one up to half words in a slogan
belong to the set of keywords, the keywords function returns
1. If a slogan doesn’t contain any keyword, the score is 0. If
more than half of the words in the slogan are keywords, the
score is 0.75.

word frequency function This function prefers slogans
with many frequent words, as we assume that slogans which
contain a lot of infrequent words are not good. The score is
obtained by dividing the number of frequent words by the
number of all words in the slogan. Word is considered to be
frequent, if it is among 5000 most frequent words in COCA.

polarity and subjectivity functions To calculate the po-
larity and subjectivity scores based on the adjectives in the
slogan, we used the sentiment function from pattern package
for Python (De Smedt and Daelemans 2012). We also in-
tegrated the weight score from SentiWordNet (Baccianella,
Esuli, and Sebastiani 2010), which assigns to each word
three sentiment scores: positivity, negativity, objectivity.

3Davies, Mark. (2011) N-grams data from the Corpus of
Contemporary American English (COCA). Downloaded from
http://www.ngrams.info on April 15, 2014.

semantic relatedness function This function computes
the relatedness between all pairs of content words in the slo-
gan. Stop words are not taken into account. Each pair of
words gets a score based on the path distance between corre-
sponding synsets in WordNet (Miller 1995). The final score
is the sum of all pairs’ scores divided by the number of all
pairs.

structure function During the crossover and mutation
phase slogans get deformed and can violate grammatical re-
lations requirements. To avoid unusual grammatical struc-
tures in slogans, we parse each new slogan with the Stanford
Parser and count the number of infrequent POS tags of word
phrases in the parse tree. E.g., the POS tag SBAR (subordi-
nating conjunction), represents only around 3% of all word
phrases in English texts. If the number of these POS tags is
high, the structure score is low.

Production of a new generation of slogans
A list of all generated slogans is ordered descending with
regard to the evaluation score. The best 10% of them are all
chosen for reproduction. The other 90% of parent slogans
are selected uniformly at random.

A new generation is built by pairing parents and perform-
ing the crossover function followed by the mutation function
which occur with probabilities pcrossover and pmutation re-
spectively. Offspring are then evaluated and compared to
the parents, in order to remove very similar ones. Remain-
ing slogans proceed to the next generation. These steps are
repeated until a generation of slogans reaches the predefined
quality score, or the predefined maximal number of itera-
tions is achieved.

Crossover There are two types of crossover functions, the
big and the small one. Both inspect POS tags of the words in
both parents, and build a set of possible crossover locations.
Each element in the set is a pair of numbers. The first one
provides a position of crossover in the first parent and the
second one in the second parent. The corresponding words
must have the same POS tag. Let the chosen random pair
from the set be (p, r). Using the big crossover, the part of the
first parent, from the pth position forward, is switched with
the part of the second parent, from the rth position forward.
For small crossover only the pth word in the first parent and
the rth word in the second parent are switched. Examples
for big and small crossover are in Figure 1.

Mutation Two types of mutations are possible. Possible
big mutations are: deletion of a random word; addition of
an adjective in front of a noun word; addition of an adverb
in front of a verb word; replacement of a random word with
new random word with the same POS tag.

Small mutations are replacements of a word with its
synonym, antonym, meronym, holonym, hypernym or hy-
ponym. Functions for obtaining such replacements are em-
bedded into the Nodebox English Linguistics library and are
based on the WordNet lexical database (Miller 1995).

Deletion of similar slogans Every generated slogan is
compared to all its siblings and to all the evaluated slogans
from the previous generation. If a new child is equal to any

We [PRP] bring [VBP] good [JJ] things [NNS] to [DT] life [NN].
Fly [VB] the [DT] friendly [JJ] skies [NNS].

We bring friendly skies.
Fly the good things to life.

Just [RB] do [VB] it [PRP].
Drink [VB]more [JJR] milk [NN].

Just drink it.
Do more milk.

big:

small:

Figure 1: Examples for a big and a small crossover.

other slogan, it gets removed. If more than half of child’s
words are in another slogan, the two slogans are considered
similar. Their evaluation scores are being compared and the
one with the higher rate remains while the other one is re-
moved. The child is also removed, if it contains only one
word or if it is longer than 10 words. Deletion of similar
slogans is our addition to the basic genetic algorithm. It pre-
vents the generated slogans to converge to the initial ones.

Experiments
We made a preliminary assessment of the generator with ex-
periments as described in the following.

Experimental setting

In presented experiments and results we use a case of Italian
luxury car manufacturer Ferrari. The input text was obtained
from Wikipedia4.

First, we tried to find the optimal weights for the evalua-
tion function. We tested different combinations of weights
on a set of manually evaluated slogans. The comparison
of the computed and the manually assigned scores showed
that the highest matching was achieved with the following
weights: [2-gram: 0.2, length: 0.04, diversity: 0.05, en-
tity: 0.08, keywords: 0.2, frequent words: 0.07, polarity:
0.08, subjectivity: 0.08, semantic relatedness: 0.05, struc-
ture: 0.15].

The probabilities for crossover and mutation functions
had to be high so that new generations would not be to sim-
ilar to previous ones. Probabilities used in our experiments
were p_big_crossover = 0.6, p_small_crossover = 0.9,
p_big_mutation = 0.8, p_small_mutation = 0.6. These
control parameters were set according to the results of test-
ing on a given input text, as their combination empirically
leads to convergence.

Due to the high computational complexity of our method,
the maximal number of iterations and the maximal size of
initial population were 50 and 20. We performed 20 runs for
the same input parameters.

4http://en.wikipedia.org/wiki/Ferrari on April 29, 2014.

Table 1: Statistics of slogan scores for 10 best final slogans
for all 20 runs. (F = Final, IP = Initial Population)

min max average median st. deviation

1 0.785 0.888 0.848 0.85 0.032
2 0.817 0.905 0.849 0.847 0.022
3 0.786 0.896 0.832 0.826 0.034
4 0.780 0.895 0.825 0.809 0.040
5 0.777 0.884 0.837 0.837 0.036
6 0.795 0.937 0.830 0.818 0.039
7 0.773 0.884 0.822 0.812 0.037
8 0.795 0.908 0.833 0.815 0.038
9 0.809 0.894 0.842 0.837 0.029

10 0.789 0.917 0.821 0.816 0.035
11 0.796 0.902 0.844 0.840 0.031
12 0.738 0.902 0.817 0.802 0.051
13 0.761 0.904 0.810 0.772 0.045
14 0.759 0.834 0.789 0.782 0.025
15 0.761 0.901 0.816 0.802 0.042
16 0.816 0.900 0.859 0.861 0.028
17 0.779 0.891 0.831 0.829 0.031
18 0.785 0.888 0.844 0.854 0.035
19 0.739 0.883 0.801 0.787 0.054
20 0.792 0.892 0.834 0.819 0.035

avg. F 0.782 0.895 0.829 0.821 0.036
avg. IP 0.6 0.75 0.66 0.65 0.048

Results and discussion
All 20 runs of the algorithm on the same input data had sim-
ilar statistical results. Statistics of slogan scores of 10 best
final slogans for each run are gathered in Table 1. The score
average of slogans increased with each iteration. Table 2
shows its progress.

Table 2: The average increase of the average slogan scores
after 10, 20, 30, 40 and 50 iterations.

10 20 30 40 50

21.5% 31.5% 34.7% 37.1% 39.3%

The numbers in both tables show that our method ensures
higher slogan scores with each new iteration of genetic algo-
rithm, for a given experimental case. Examples of slogans
for one specific run of the algorithm are listed in the follow-
ing two lists. The first one contains 10 best rated initial slo-
gans and the second one contains 10 best rated final slogans.
Evaluation scores are in the brackets.

Initial population:
1. Ferrari is body without substance (0.706)
2. The development of Ferrari (0.696)
3. She swam to make They pay (0.695)
4. increasing production to their output (0.686)
5. allow you with stockings (0.678)
6. causing a Ferrari Saturday (0.676)
7. He wins a role and takes on role (0.66)
8. A successful business to wish (0.631)
9. A success for every artist (0.622)

10. Ferrari uses In his Ferrari (0.599)

Final slogans:
1. make The great meaning of Ferrari (0.905)
2. Ferrari is valuable role with every successful closer (0.865)
3. make you these red Ferrari (0.852)
4. Ferrari is in your largest entertainment more (0.85)
5. only allow you we and Ferrari Saturday (0.848)
6. only make it without its Ferrari (0.847)
7. get The largest being more (0.842)
8. Ferrari is worthy substance closer (0.838)
9. a bright Ferrari Saturday (0.832)

10. They takes The turning more (0.817)

The analysis of initial populations and final slogans in all
runs shows that the majority of slogans have grammatical
mistakes. This is due to the big crossover and the big mu-
tation functions. Our system currently lacks an evaluation
function for detection or correction of these mistakes.

Some seemingly good slogans can be found already in the
initial populations. The evaluation function seems not yet
aligned well with human evaluation, as such slogans often
do not make it to the final round.

Conclusion
The proposed slogan generation method works and could be
potentially useful for brainstorming. The genetic algorithm
ensures that new generations of slogan candidates have
higher evaluation scores. The critical part of the method
is the evaluation function, which is inherently hard to for-
malize and needs further improvement. We believe that the
refinement of semantic and sentiment evaluation functions
would increase the quality of slogans, not only their scores.

There are also many other ideas for the future work that
would improve the quality of slogans. One is checking for
grammatical errors and correcting them if possible. In mu-
tation phase there is a possibility of replacing one word with
a whole new word phrase. New weights could be also com-
puted periodically with semi-supervised learning on manu-
ally assessed slogans.

References
Baccianella, S.; Esuli, A.; and Sebastiani, F. 2010. Sen-
tiwordnet 3.0: An enhanced lexical resource for sentiment
analysis and opinion mining. In Proc. of LREC 2010.
Bäck, T. 1996. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming, ge-
netic algorithms. Oxford university press.
Bird, S.; Klein, E.; and Loper, E. 2009. Natural language
processing with Python. O’Reilly Media.
De Smedt, T., and Daelemans, W. 2012. Pattern for Python.
Journal of Machine Learning Research 13:2063–2067.
Marneffe, M. D.; MacCartney, B.; and Manning, C. 2006.
Generating typed dependency parses from phrase structure
parses. In Proceedings of LREC 2006.
Miller, G. A. 1995. Wordnet: A lexical database for english.
COMMUNICATIONS OF THE ACM 38:39–41.
Özbal, G.; Pighin, D.; and Strapparava, C. 2013. BRAIN-
SUP: Brainstorming Support for Creative Sentence Genera-
tion. In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, 1446–1455.

