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Abstract

Conceptual blending has been employed very success-
fully to understand the process of concept invention,
studied particularly within cognitive psychology and
linguistics. However, despite this influential research,
within computational creativity little effort has been
devoted to fully formalise these ideas and to make
them amenable to computational techniques. We here
present the basic formalisation of conceptual blending,
as sketched by the late Joseph Goguen, and show how
the Distributed Ontology Language DOL can be used to
declaratively specify blending diagrams. Moreover, we
discuss in detail how the workflow and creative act of
generating and evaluating a new, blended concept can
be managed and computationally supported within On-
tohub, a DOL-enabled theory repository with support
for a large number of logical languages and formal link-
ing constructs.

Concept Invention via Blending
In the general methodology of conceptual blending intro-
duced by Fauconnier and Turner (2003), the blending of two
thematically rather different conceptual spaces yields a new
conceptual space with emergent structure, selectively com-
bining parts of the given spaces whilst respecting common
structural properties.1 The ‘imaginative’ aspect of blending
is summarised as follows in Turner (2007):

[. . . ] the two inputs have different (and often clash-
ing) organising frames, and the blend has an organis-
ing frame that receives projections from each of those
organising frames. The blend also has emergent struc-
ture on its own that cannot be found in any of the in-
puts. Sharp differences between the organising frames
of the inputs offer the possibility of rich clashes. Far
from blocking the construction of the network, such
clashes offer challenges to the imagination. The result-
ing blends can turn out to be highly imaginative.

A classic example for this is the blending of the concepts
house and boat, yielding as most straightforward blends the

1The usage of the term ‘conceptual space’ in blending theory
is not to be confused with the usage established by Gärdenfors
(2000).

concepts of a houseboat and a boathouse, but also an am-
phibious vehicle (Goguen and Harrell, 2009).

In the almost unlimited space of possibilities for combining
existing ontologies to create new ontologies with emergent
structure, conceptual blending can be built on to provide a
structural and logic-based approach to ‘creative’ ontological
engineering. This endeavour primarily raises the following
two challenges: (1) when combining the terminologies of
two ontologies, the shared semantic structure is of particular
importance to steer possible combinations. This shared se-
mantic structure leads to the notion of base ontology, which
is closely related to the notion of ‘tertium comparationis’
found in the classic rhetoric and poetic theories, but also in
more recent cognitive theories of metaphor (see, e.g., Jaszc-
zolt (2003)); (2) having established a shared semantic struc-
ture, there is typically still a huge number of possibilities
that can capitalise on this information in the combination
process: here, structural optimality principles as well as on-
tology evaluation techniques take on a central role in select-
ing interesting blends.

We believe that the principles governing ontological blend-
ing are quite distinct from the rather informal principles em-
ployed in blending phenomena in language or poetry, or the
rather strict principles ruling blending in mathematics, in
particular in the way formal inconsistencies are dealt with.
For instance, whilst blending in poetry might be particularly
inventive or imaginative when the structure of the basic cat-
egories found in the input spaces is almost completely ig-
nored, and whilst the opposite, i.e., rather strict adherence
to sort structure, is important in areas such as mathematics
in order to generate meaningful blends2, ontological blend-
ing is situated somewhere in the middle: re-arrangement and
new combination of basic categories can be rather interest-
ing, but has to be finely controlled through corresponding
interfaces, often regulated by or related to choices found in
foundational or upper ontologies.

2For instance when creating the theory of transfinite cardinals
by blending the perfective aspect of counting up to any fixed finite
number with the imperfective aspect of ‘endless counting’ (Núñez,
2005).



The core contributions of the paper can be summarised as
follows.3 We:
• sketch the logical analysis of conceptual blending in terms

of blending diagrams and colimits, as originally proposed
by Joseph Goguen, and give an abstract definition of on-
tological blendoids capturing the basic intuitions of con-
ceptual blending in the ontological setting;

• provide a formal language for declaratively specifying
blending diagrams by employing the OWL4 fragment of
the distributed ontology language DOL for blending. This
provides a structured approach to ontology languages
and combines the simplicity and good tool support for
OWL with the more complex blending facilities of OBJ3
(Goguen and Malcolm, 1996) or Haskell (Kuhn, 2002);

• discuss the capabilities of the Ontohub/Hets ecosystem
with regard to collaboratively managing, creating, and
evaluating blended concepts and theories; this includes
an investigation of the evaluation problem in blending, to-
gether with a discussion of structural optimality principles
and current automated reasoning support.
We close with a detailed discussion of open problems and

future work.

Blending Computationalised
Goguen has created the field of algebraic semiotics which
logically formalises the structural aspects of semiotic signs,
sign systems, and their mappings (Goguen, 1999). In
Goguen and Harrell (2009), algebraic semiotics has been
applied to user interface design and blending. Algebraic
semiotics does not claim to provide a comprehensive for-
mal theory of blending—indeed, Goguen and Harrell admit
that many aspects of blending, in particular concerning the
meaning of the involved notions, as well as the optimality
principles for blending, cannot be captured formally. How-
ever, the structural aspects can be formalised and provide
insights into the space of possible blends.

Goguen defines semiotic systems to be algebraic theories
that can be formulated by using the algebraic specification
language OBJ (Goguen and Malcolm, 1996). Moreover, a
special case of a semiotic system is a conceptual space: it
consists only of constants and relations, one sort, and axioms
that define that certain relations hold on certain instances.

As we focus on standard ontology languages, namely
OWL and first-order logic, we here replace the logical lan-
guage OBJ. As structural aspects in the ontology language
are necessary for blending, we augment these languages
with structuring mechanisms known from algebraic speci-
fication theory (Kutz et al., 2008). This allows to translate
most parts of Goguen’s theory to these ontology languages.
Goguen’s main insight has been that semiotic systems and
conceptual spaces can be related via morphisms, and that
blending is comparable to colimit computation, a construc-
tion that abstracts the operation of disjoint unions modulo

3This paper elaborates on ideas first introduced in Hois et al.
(2010); detailed technical definitions are given in Kutz et al. (2012).

4With ‘OWL’ we refer to OWL 2 DL, see http://www.w3.
org/TR/owl2-overview/
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Figure 1: The basic integration network for blending: con-
cepts in the base ontology are first refined to concepts in
the input ontologies and then selectively blended into the
blendoid.

the identification of certain parts, explained in more detail
below. In particular, the blending of two concepts is often a
pushout (also called a blendoid in this context).

Some basic definitions:5 Non-logical symbols are
grouped into signatures, which for our purposes can be
regarded as collections of kinded symbols (e.g. concept
names, relation names). Signature morphisms are maps
between signatures that preserve (at least) kinds of symbols
(i.e. map concept names to concept names, relations to rela-
tions, etc.). A theory or ontology pairs a signature with a set
of sentences over that signature, and an theory morphism
(or interpretation) between two theories is just a signature
morphism between the underlying signatures that preserves
logical consequence, that is, ρ : T1 → T2 is a theory mor-
phism if T2 |= ρ(T1), i.e. all the translations of sentences of
T1 along ρ follow from T2. This construction is completely
logic independent.

Signature/theory morphisms are an essential ingredient
for describing conceptual blending in a logical way.

We now give a general definition of ontological blending
capturing the basic intuition that a blend of input ontologies
shall partially preserve the structure imposed by base on-
tologies, but otherwise be an almost arbitrary extension or
fragment of the disjoint union of the input ontologies with
appropriately identified base space terms.

For the following definition, which we first introduced in
Kutz et al. (2012), a diagram consists of a set of ontolo-
gies and a set of morphisms between them. The colimit
of a diagram is similar to a disjoint union of its ontologies,
with some identifications of shared parts as specified by the
morphisms in the diagram. We refrain from presenting the
category-theoretic definition here (which can be found in

5Note that these definitions apply to OWL, but also to many
other logics. Indeed, they apply to any logic formalised as an insti-
tution (Goguen and Burstall, 1992).



Adámek, Herrlich, and Strecker (1990)), but explain the col-
imit operation using the examples below.

Definition 1 (Ontological Base Diagram) An ontological
base diagram is a diagram D for which the minimal nodes
(Bi)i∈Dmin⊆|D| are called base ontologies, the maximal
nodes (Ij)j∈Dmax⊆|D| called input ontologies, and where
the theory morphisms µij : Bi → Ij are called the base
morphisms. If there are exactly two inputs I1, I2, and one
base B, the diagram D is called classical and has the shape
of a V. In this case, B is also called the tertium comparatio-
nis.

Fig. 1 illustrates the basic, classical case of an ontological
blending diagram. The lower part of the diagram shows the
base space (tertium), i.e. the common generalisation of the
two input spaces, which is connected to these via total (the-
ory) morphisms, the base morphisms. The newly invented
concept is at the top of this diagram, and is computed from
the base diagram via a colimit. More precisely, any consis-
tent subset of the colimit of the base diagram may be seen as
a newly invented concept, a blendoid (a more precise defini-
tion of this notion is given in Kutz et al. (2012)). Note that,
in general, ontological blending can deal with more than one
base and two input ontologies.

Computing the Tertium Comparationis
To find candidates for base ontologies that could serve for
the generation of ontological blendoids, much more shared
semantic structure is required than the surface similarities
that alignment approaches rely on. The common structural
properties of the input ontologies that are encoded in the
base ontology are typically of a more abstract nature. The
standard example here relies on image schemata, such as the
notion of a container (see e.g. Kuhn (2002)). Thus, in partic-
ular, foundational ontologies can support such selections. In
analogical reasoning, ‘structure’ is (partially) mapped from
a source domain to a target domain (Forbus, Falkenhainer,
and Gentner, 1989; Schwering et al., 2009). Therefore, intu-
itively the operation of computing a base ontology can thus
be seen as a bi-directional search for analogy or general-
isation into a base ontology together with the correspond-
ing mappings. Providing efficient means for finding a num-
ber of suitable such candidate generalisations is essential to
making the entire blending process computationally feasi-
ble. Consider the example of blending ‘house’ with ‘boat’
discussed below in detail: even after fixing the base ontology
itself, guessing the right mappings into the input ontologies
means guessing within a space of approximately 1.4 Billion
signature morphisms. Three promising candidates for find-
ing generalisations are:

(1) Ontology intersection: Normann (2008) has studied
the automatisation of theory interpretation search for for-
malised mathematics, implemented as part of the Hetero-
geneous Tool Set (HETS, see below). Kutz and Normann
(2009) applied these ideas to ontologies by using the ontolo-
gies’ axiomatisations for finding their shared structure. Ac-
cidental naming of concept and role names is deliberately
ignored and such names are treated as arbitrary symbols

(i.e., any concept may be matched with any other). By com-
puting mutual theory interpretations between the inputs, the
method allows to compute a base ontology as an intersection
of the input ontologies together with corresponding theory
morphisms. While this approach can be efficiently applied
to ontologies with non-trivial axiomatisations, lightweight
ontologies are less applicable, e.g., ‘intersecting’ a smaller
taxonomy with a larger one clearly results in a huge number
of possible taxonomy matches (Kutz and Normann, 2009).
In this case, the following techniques are more appropriate.

(2) Structure-based ontology matching: matching and
alignment approaches are often restricted to find simple cor-
respondences between atomic entities of the ontology vo-
cabulary. In contrast, work such as (Ritze et al., 2009; Wal-
she, 2012) focuses on defining a number of complex corre-
spondence patterns that can be used together with standard
alignments in order to relate complex expressions between
two input ontologies. For instance, the ‘Class by Attribute
Type Pattern’ may be employed to claim the equivalence of
the atomic concept PositiveReviewedPaper in ontology O1

with the complex concept ∃hasEvaluation.Positive of O2.
Such an equivalence can be taken as an axiom of the base
ontology; note, however, that it could typically not be found
by intersecting the input ontologies. Giving such a library
of design patterns may be seen as a variation of the idea of
using image schemata.

(3) Analogical Reasoning: Heuristic-driven theory pro-
jection is a logic-based technique for analogical reasoning
that can be employed for the task of computing a common
generalisation of input theories. Schwering et al. (2009) es-
tablish an analogical relation between a source theory and a
target theory (both first-order) by computing a common gen-
eralisation (called ‘structural description’). They implement
this by using anti-unification (Plotkin, 1970). A typical ex-
ample is to find a generalisation (base ontology) formalising
the structural commonalities between the Rutherford atomic
model and a model of the solar system. This process may
be assisted by a background knowledge base (in the onto-
logical setting, a related domain or foundational ontology).
Indeed, this idea has been further developed in Martinez et
al. (2011).

Selecting the Blendoids: Optimality Principles
Having a common base ontology (computed or given), there
is typically a large number of possible blendoids. For ex-
ample, even in the rather simple case of combining House
and Boat, allowing for blendoids which only partially main-
tain structure (called non-primary blendoids in Goguen and
Harrell (2009)), i.e., where any subset of the axioms may be
propagated to the resulting blendoid, the number of possi-
ble blendoids is in the magnitude of 1000. Clearly, from an
ontological viewpoint, the overwhelming majority of these
candidates is rather meaningless. A ranking therefore needs
to be applied on the basis of specific ontological princi-
ples. In conceptual blending theory, a number of optimality
principles are given in an informal and heuristic style (Fau-
connier and Turner, 1998, 2003). While they provide use-
ful guidelines for evaluating natural language blends, they
do not suggest a direct algorithmic implementation, as also



analysed in Goguen and Harrell (2009). However, the im-
portance of designing computational versions of optimal-
ity principles has been realised early on, and one such at-
tempt may be found in the work of Pereira and Cardoso
(2003), who proposed an implementation of the eight opti-
mality principles presented in Fauconnier and Turner (1998)
based on quantitative metrics for their more lightweight log-
ical formalisation of blending. Such metrics, though, are
not directly applicable to more expressive languages such
as OWL or first-order logic. Moreover, the standard blend-
ing theory of Fauconnier and Turner (2003) does not as-
sign types, which might make sense in the case of linguistic
blends where type information is often ignored. A typical
example of a type mismatch in language is the operation of
personification, e.g., turning a boat into an ‘inhabitant’ of
the ‘boathouse’. However, in the case of blending in math-
ematics or ontology, this loss of information is often rather
unacceptable: on contrary, a fine-grained control of type or
sort information may be of the utmost importance.

Optimality principles for ontological blending are of two
kinds.

(1) purely structural/logical principles: these extend and
refine the criteria as given in Goguen and Harrell (2009),
namely degree of commutativity of the blend diagram, type
casting (preservation of taxonomical structure), degree of
partiality (of signature morphisms), and degree of axiom
preservation. In the context of OWL, typing needs to be
replaced with preservation of specific axioms encoding the
taxonomy.

(2) heuristic principles: these include introducing prefer-
ence orders on morphisms (an idea that Goguen labelled 3/2
pushouts (Goguen, 1999)) reflecting their ‘quality’ e.g. mea-
sured in terms of degree of type violation; specific ontologi-
cal principles, e.g. adherence to the OntoClean methodology
(Guarino and Welty, 2002), or general ontology evaluation
techniques such as competency questions, further discussed
below. Another set of heuristics is quantitative, statistical
metrics, similar in style to those proposed in Pereira and
Cardoso (2003).

The Distributed Ontology Language DOL
The distributed ontology language DOL is an ideal formal
language for specifying both ontologies, base diagrams, and
their blends. DOL is a metalanguage in the sense that it
enables the reuse of existing ontologies (written in some on-
tology language like OWL or Common Logic) as building
blocks for new ontologies and, further, allows to specify
intended relationships between ontologies. One important
feature of DOL is the ability to combine ontologies that are
written in different languages without changing their seman-
tics. DOL is going to be submitted as response to the Object
Management Group’s (OMG) Ontology, Model and Speci-
fication Integration and Interoperability (OntoIOp) Request
For Proposal.6

6http://www.omg.org/cgi-bin/doc?ad/
2013-12-02

In this section, we introduce DOL only informally. A for-
mal specification of the language and its model theoretic se-
mantics can be found in Mossakowski et al. (2013).

For the purpose of ontology blending the following fea-
tures of DOL are relevant:

• DOL library. A DOL library consists of basic and struc-
tured ontologies and ontology interpretations. A basic on-
tology is an ontology written in some ontology language
(e.g., OWL or Common Logic). A structured ontology
builds on basic ontologies with the help of ontology trans-
lations, ontology unions, and symbol hiding.

• ontology translation (written O1 with σ). A translation
takes an ontology O1 and a renaming function (techni-
cally, signature morphism) σ. The result of a translation is
an ontology O2, which differs from the ontology O1 only
by substituting the symbols as specified by the renaming
function.

• ontology union (written O1 and O2). The union of two
ontologies O1 and O2 is a new ontology O3, which com-
bines the axioms of both ontologies.

• symbol hiding (written O1 hide {s1, ..., sn}). A sym-
bol hiding takes an ontology O1 and a set of symbols
s1, ..., sn . The result of the hiding is a new ontology O2,
which is the result of ‘removing’ the symbols s1, ..., sn
from the signature of ontology O1. Nevertheless, O2

keeps all semantic constraints from O1.7

• ontology interpretation (written interpretation
INT_NAME : O1 to O2 = σ). An ontology inter-
pretation is a claim about the relationship between two
ontologies O1 and O2, giving some renaming function
σ. It states that all the constraints that are the result of
translating O1 with σ can be proven by O2.

Some additional features that are necessary for blending
will be introduced in the next section.

Formalising Blending in DOL
The novelty proposed by DOL is that the user can specify
the base diagram of the blendoid. This is a crucial task, as
the resulting blendoid depends on the dependencies between
symbols that are stored in the diagram. Ontohub, our web
platform and repository engine for managing distributed het-
erogeneous ontologies and discussed in more detail below,
is able to use the specification of a base diagram to auto-
matically generate the colimit-blendoid. In this section, we
illustrate the specification of base diagrams in DOL and the
resulting blendoids by blending house and boat to houseboat
and boathouse.

The main inputs for the blendings consist of two ontolo-
gies, one for HOUSE and the other for BOAT. We adapted
them from Goguen and Harrell (2009) but gave a stronger
axiomatisation, making them more realistic. The purpose
of this exercise is to show, using this classic blend, that our

7By approximation, one could consider O2 as the ontology that
is the result of existentially quantifying s1, ..., sn in O1.



framework allows to blend in a generic way complex onto-
logical theories, thus not being restricted theoretically to any
particular domain or even logical language.

Fig. 2 shows the ontology for HOUSE in OWL Manchester
Syntax.8

Class: Artifact

Class: Capability

ObjectProperty: has_function

Range: Capability

ObjectProperty: executes

Range: Capability

ObjectProperty: is_located_on

Class: Person

Class: Plot

ObjectProperty: is_inhabited_by

Domain: House

Range: Person

Class: ServeAsResidence

SubClassOf: Capability

Class: ArtifactThatExecutesResidenceFunction

EquivalentTo: Artifact that executes

some ServeAsResidence

SubClassOf: is_inhabited_by some Person

Class: House

SubClassOf: Artifact

that is_located_on some Plot

and has_function some

ServeAsResidence

Figure 2: Ontology House

As discussed above, finding candidate base ontologies
and base morphisms is a non-trivial task. For the purpose
of this example, we created them manually. The base on-
tologies are both quite simple, they mostly introduce shared
concepts and contain only weak axiomatisations. The sec-
ond base ontology only differs from the first by replacing
the class Agent by Person and two additional classes,
namely Object and Site.

ontology base1 =

Class: Artifact [...] Class: Agent

end

ontology base2 =

Class: Artifact [...] Class: Person

Class: Object Class: Site

end

The blending of boat and house to boathouse is achieved
by turning the boat into a habitat and moving the house
from a plot of land to a body of water. This can be rep-
resented by two interpretations boat_habitable and
house_floating.

8In the examples, note that concepts such as ‘ArtifactThatExe-
cutesResidenceFunction’ are auxiliary symbols that are needed be-
cause of limitation of the Manchester Syntax being used, which
does not allow to use complex concepts on the left-hand side
of subsumption statements. The ontology for BOAT is axiom-
atized similarly, it can be found at http://www.ontohub.
org/repositories/conceptportal.

interpretation boat_habitable : base2 to Boat =

Object |-> Boat,

Site |-> BodyOfWater

interpretation house_floating : base2 to House =

Object |-> House,

Site |-> Plot

The base ontologies and the interpretations above provide
the necessary ingredients for a blending of BOAT and HOUSE
to BOATHOUSE. The syntax of combinations is

combine O1, . . . , Om, M1, . . . ,Mn

where the Oi are ontologies, and Mi are morphism names.
The semantics of combinations is the colimit of the gen-
erated diagram. A colimit involves both pasting together
(technically: disjoint union) and identification of shared
parts (technically: a quotient).

In our example, houseboat can be defined by the colimit
based on the interpretations. To make the result easier to
read, some of the classes are renamed:

ontology house_boat =

combine boat_habitable, house_floating

with Object |-> HouseBoat, Site |-> BodyOfWater

Ontohub is able to compute the colimit, which combines
both the boat and house ontologies along the morphism. The
colimit inherits most of the axioms of the ontologies and the
base. Here we just show the declaration of the blended class
Houseboat:

Class: HouseBoat

SubClassOf: Artifact

and has_function some MeansOfTransportation

and has_function some Floating

and is_navigated_by some Agent

SubClassOf: Artifact

and is_located_on some BodyOfWater

and has_function some ServeAsResidence

In the case of blending of BOAT and HOUSE to
BOATHOUSE, the crucial part in this blend is to view a boat
as a kind of “person” that lives in a house. The two ontolo-
gies House and Boat presented above can be blended by
selecting a base, which here provides (among others) a class
Agent, and two interpretations, mapping Agent to Boat
and Person, respectively. In this way, we let a boat play
the role of a person (that inhabits a house).

interpretation boat_personification :

base1 to Boat =

Agent |-> Boat

interpretation house_import :

base1 to House =

Agent |-> Person

ontology boat_house =

combine boat_personification, house_import

with Agent 7→ Boat, House 7→ BoatHouse

As before, Ontohub is able to compute the colimit. As
above, we present here only the relevant declarations of the
blended concept.



Class: BoatHouse

SubClassOf: Artifact

and is_located_on some Plot

and has_function some ServeAsResidence

Class: ArtifactThatExecutesResidenceFunction

EquivalentTo: Artifact

and executes some ServeAsResidence

SubClassOf: is_inhabited_by some Boat

Of course, the possibilities for blending the two concepts
do not stop here. For example, we could map the agent in
the base ontology to person in the boat ontology. This can
be achieved by first defining an additional interpretation and
by blending all three interpretations.

interpretation boat_import :

base1 to Boat =

Agent |-> Person

ontology boat_house =

combine boat_personification, house_import,

boat_import

with Agent 7→ Boat, House 7→ BoatHouse

The resulting blendoid is consistent, but it contains some
strange consequences. For example, in the blendoid boats
are driven by boats. However, if we are interested both in
hosting boats and a hub for autonomous vehicles, this would
count as an interesting result. In general, whether such more
creative aspects of blendoids are desirable or not will depend
on the context of the blending. We will address this issue in
the section on evaluation below.

Blending in the Hub
Representation and Computation
Indeed, combinations and colimits can be computed by our
web platform Ontohub. Ontohub is a repository engine for
managing distributed heterogeneous ontologies. Ontohub
supports a wide range of formal logical and ontology lan-
guages and allows for complex inter-theory (concept) map-
pings and relationships with formal semantics, as well as on-
tology alignments and blending. Ontohub understands vari-
ous input languages, among them OWL and DOL.

We describe the basic design and features of Ontohub in
general, and outline the extended feature-set that we pursue
for conceptportal.org - a specialised repository within the
distributed ontohub architecture.

The back-end of Ontohub is the Heterogeneous Tool Set
HETS, which is used by Ontohub for parsing, static analysis
and proof management of ontologies. HETS can also com-
pute colimits of OWL diagrams and even approximations of
colimits in the case where the input ontologies live in differ-
ent ontology languages (Codescu and Mossakowski, 2008).

Computation of colimits in HETS is based on HETS’ gen-
eral colimit algorithm for diagrams of sets and functions
(note that signatures in most cases are structured sets, and
signature morphisms structure preserving functions). Such
a colimit of sets and functions is computed by taking the dis-
joint union of all sets, and quotienting it by the equivalence
relation generated by the diagram, which more precisely is
obtained by the rule that given any element x of an involved

set, any images of x under the involved functions are identi-
fied. The quotient is computed by selecting a representative
of each equivalence class.

A difficulty that arises is that we have to make a choice
of these representatives, and therefore of names for the sym-
bols in the colimit, as a symbol may be not always iden-
tically mapped in the base diagram of the blendoid. The
convention in HETS is that in case of ambiguity, the name
of the symbol is chosen to be the most frequently occurring
one. This gives the user control over the namespace, such
that the symbols of the colimit can be later renamed. We
can see this for our boathouse example above, where Agent
appears most often in the diagram and therefore the symbol
has been explicitly renamed.

Evaluating the Blending Space
Optimality principles, in particular structural ones, can be
used to rank candidate blendoids on-the-fly during the on-
tology blending process. However, even if they improve on
existing logical and heuristic methods, optimality principles
will only narrow down the potential candidates and not tell
us whether the result is a ‘successful’ blend of the ontolo-
gies. For example, assume that we had optimality princi-
ples that would show that from the roughly 1000 candidate
blendoids of House and Boat that Goguen computed, only
two candidates Bhb and Bbh are optimal. Is either Bhb or
Bbh any good? And, if so, which of them should we use?
To answer these question, it seems natural to apply ontology
evaluation techniques.

Ontologies are human-intelligible and machine-
interpretable representations of some portions and aspects
of a domain that are used as part of information systems.
To be more specific, ontology is a logical theory written
in some knowledge representation language, which is
associated with some intended interpretation. The intended
interpretation is partially captured in the choice of symbols
and natural language text (often in the form of annotations
or comments). The evaluation of an ontology covers
both the logical theory and the intended interpretation,
their relationship to each other, and how they relate to
the requirements that are derived from the intended use
within a given information system. Therefore, ontology
evaluation is concerned not only with formal properties of
logical theories (e.g., logical consistency), but, among other
aspects, with the fidelity of an ontology; that is whether the
formal theory accurately represents the intended domain
(Neuhaus et al., 2013). For example, if Bhb is an excellent
representation of the concept houseboat, then Bhb provides
a poor representation of the concept boathouses. Thus, any
evaluation of the blend Bhb depends on what domain Bhb

is intended to represent.
The lesson is that the evaluation of the results of ontol-

ogy blending is dependent on the intended goal and, more
generally, on the requirements that one expects the outcome
of the blending process to meet. One way to capture these
requirement is similar to competency questions, which are
widely used in ontology engineering (Grüninger and Fox,
1995). Competency questions are usually initially captured
in natural language, they specify examples for questions that



Figure 3: Blendoid representation and colimit computation via Hets/Ontohub: the screenshot of Ontohub shows the hetero-
geneous ontology house+boat.dol, hosted in the Conceptportal repository. The entire double-blend of house and boat into
boathouse and houseboat is shown in the Graph to the left. The red arrows denote the interpretations of the shared ontologies
into the blend. The concept boat_house is selected and shown on the right: its theory can be inspected by following the link to
the respective ontology specification.

an ontology needs to be able to answer in a given scenario.
By formalising the competency questions one can use au-
tomatic theorem provers to evaluate whether the ontology
meets the intended interpretation.

The requirements that are used to select between the dif-
ferent blends fall, roughly, into two categories. ontological
constraints and consequence requirements. Ontological con-
straints prevent the blends from becoming ‘too creative’ by
narrowing the space for conceptual blending. E.g., it may
be desirable to ensure that the is_inhabited_by rela-
tionship is asymmetric and that is_navigated_by is ir-
reflexive. To achieve that any blendoid can be checked for
logical consistency with the following ontology:

ontology OntologicalConstraints =

ObjectProperty: is_inhabited_by

Characteristics: Asymmetric

ObjectProperty: is_navigated_by

Characteristics: Irreflexive

Given these requirements, any blendoid that involves a
house that lives in itself, or any boat navigated by itself (see
the blendoid boat_house1 above) would be discarded.

Consequence requirements specify the kind of character-
istics the blendoid is supposed to have. E.g., assume the pur-
pose of the conceptual blending is to find alternative housing
arrangements, because high land prices make newly build
houses unaffordable. In this case, the requirement could be

‘a residence that is not located on a plot of land’, which can
be expressed in OWL as follows:

ontology ConsequenceRequirements =

[...]

Class PlotFreeResidence

EquivalentTo: Residence

and (is_located_on only (not (Plot)))

Ontohub allows to use ontological constraints and conse-
quence requirements to evaluate blended concepts automat-
ically. The requirements are managed as DOL files, which
allow to express that a given blendoid is logically consis-
tent with a set of ontological constraints or that it entails
some consequence requirements. The requirements them-
selves may be stored as regular ontology files (e.g., in OWL
Manchester syntax). Ontohub executes the DOL files with
the help of integrated automatic theorem provers, and is able
to detect whether a blendoid meets the specified require-
ments.

At this time, the evaluation of blendoids for ontological
constraints and consequence requirements depends on the
use of DOL files. We are planning to integrate this function-
ality into the GUI of Ontohub to make it more convenient
for the user.

Another way to evaluate a blendoid is to analyse its struc-
ture for typical ontological errors. For this purpose, On-
tohub has integrated OOPS!. OOPS! automatically analy-



ses ontologies for common pitfalls, which is developed by
the Ontology Engineering Group at the Technical University
of Madrid (Poveda-Villalón, Suárez-Figueroa, and Gómez-
Pérez, 2012). We are planning to add additional evaluation
tools to Ontohub in the future.

Outlook
Our work in this paper follows a research line in which
blending processes are primarily controlled through map-
pings and their properties (Gentner, 1983; Forbus, Falken-
hainer, and Gentner, 1989; Veale, 1997; Pereira, 2007). By
introducing blending techniques to ontology languages, we
have provided a method which allows us to combine two
thematically different ontologies into a newly created on-
tology, the blendoid, describing a novel concept or domain.
The blendoid creatively mixes information from both input
ontologies on the basis of structural commonalities of the
inputs and combines their axiomatisations.

We have illustrated that the tool HETS and the DOL lan-
guage (Mossakowski et al., 2013) provide an excellent start-
ing point for developing the theory and practice of ontol-
ogy blending further. They: (1) support various ontol-
ogy language and their heterogeneous integration (Kutz et
al., 2008); (2) allow to specify theory interpretations and
other morphisms between ontologies (Kutz, Mossakowski,
and Lücke, 2010); (3) support the computation of colim-
its as well as the approximation of colimits in the hetero-
geneous case (Codescu and Mossakowski, 2008); (4) pro-
vide (first) solutions for automatically computing a base on-
tology through ontology intersection (Kutz and Normann,
2009) and blendoid evaluation using requirements or tools
such as OOPS!.

In particular, we have shown that the blending of ontolo-
gies can be declaratively encoded in a DOL ontology repre-
senting the respective blending diagram—here, employing
the homogeneous fragment of DOL just using OWL ontolo-
gies. Blendoid ontologies, as well as their components, i.e.
input and base ontologies, can be stored, formally related,
and checked for consistency within Conceptportal, a reposi-
tory node within Ontohub dedicated to blending experiments
carried out in the European FP7 Project COINVENT. Onto-
hub moreover gives access to thousands of ontologies from
a large number of different scientific and common sense do-
mains. They are searchable via rich metadata annotation,
logics used, formality level, and other dimensions, to pro-
vide not only a rich pool of ontologies for blending experi-
ments, but also for the evaluation of newly created concepts.
Ontohub also supports a growing set of collaborative fea-
tures, including online editing of ontologies, commenting,
version control, and group and permission management.

To make concept invention via ontological blending fea-
sible in practice from within Ontohub, a number of further
plugins into the architecture are planned covering in partic-
ular the automatic creation of base ontologies together with
their mappings, the implementation of filtering blendoids
by structural optimality principles and preference orders on
morphisms, as well as the addition of more ontologically
motivated evaluation techniques as discussed above.
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