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Abstract 

Early studies of creative ideation showed that individu-
als brainstorming in isolation tend to generate more and 
better ideas than groups. But recent studies depict a 
more complex picture, reinforcing the need to better 
understand individual and group ideation. Studying 
group influence is one way to address the complex in-
terplay between ideas in different brainstorming scenar-
ios. We define group influence as the degree to which 
individuals are influenced by ideas coming from other 
team members. This paper presents results from a mul-
ti-agent simulation of the role of group influence in 
brainstorming groups. The results from the simulations 
indicate that the findings from previous laboratory stud-
ies tend to be misinterpreted, and that both isolation and 
teamwork present opportunities and challenges for crea-
tivity.   

Introduction 
Is it better to generate new ideas in solitude or in teams? 
Creativity research has shown that this distinction is not 
trivial. Early studies showed that individuals working in 
privacy tend to generate superior results along three crite-
ria: total number of ideas, number of unique ideas, and 
quality of ideas [1]. But a more complex picture is por-
trayed by subsequent studies, reinforcing the need to better 
understand the interplay between individual and group 
ideation as well as the importance of facilitation dynamics 
[2].  
The   term   ‘brainstorming’   refers   to   the  method  of  prob-

lem solving based on timed sessions where participants are 
instructed to address a problem by freely generating a large 
number of ideas irrespective of their apparent value [3]. 
The aim of brainstorming sessions is to generate as many 
different alternative solutions to a given problem as possi-
ble. Whilst many variants of brainstorming have been pro-
posed, the basic premises are: a) to maximize the number 
and the originality of ideas, b) to combine or improve ideas 
suggested, and c) to avoid critical evaluation of ideas [4].  

Individual brainstorming consists of engaging subjects 
in idea generation sessions isolated from others. Group or 
team brainstorming refers to the more typical scenario 
where individuals interact to generate and evaluate possi-
ble solutions to a common problem. Following the litera-
ture, we use the term nominal group to refer to the former 
and interactive group to refer to the latter condition [2]. 

Recent studies of idea fluency in brainstorming show 
that nominal groups outperform non-facilitated interactive 
groups both in gross and net fluency of ideas; but are con-
siderably outperformed by facilitated interactive groups 
[2]. As with other factors related to team dynamics, such as 
diversity and leadership, group influence as a construct and 
its effects on creative ideation are yet to be fully under-
stood. This is a relevant topic in the still incipient research 
stream on multi-level approaches to team creativity [5]. 

The general process by which individuals in isolation 
consistently surpass group creativity has been explained as 
‘ideational  productivity   loss’   and  appears   to  have  a   series  
of likely cognitive and group-level causes [6]. Cognitive 
factors that may interfere with ideational productivity in-
clude production blocking, interruptions, forgetting ideas, 
and distraction by task-irrelevant processes. A higher cog-
nitive load is also often cited as a source of ideational loss, 
typically caused by attending to  other’s  ideas.   

Group factors that may account for productivity loss in-
clude team structure and diversity, turn-taking, awareness 
of   public   evaluation,   disposition   to   converge  with   others’  
judgments, lower motivation due to shared responsibility, 
and a tendency to free-ride [7]. Multi-level approaches are 
required to understand, for instance, what is the appropriate 
degree  of  accessibility  to  others’  ideas  when  brainstorming  
in teams in order to ensure that individuals are able to both 
build upon their own ideas as well as upon the ideas of 
their teammates.  

Teamwork in creativity enables the important process of 
sharing ideas; however this freedom may have two differ-
ent effects on creative ideation: one possibility is that 
teammates generate a wide range of diverging ideas thus 
obstructing the connection and refinement of coherent 
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‘trains   of   thought’.   The   noise   generated   in   this   imagined  
scenario would more likely produce incomplete and in-
compatible ideas of low quality not to mention dissatisfac-
tion from the participants. A second possibility is that 
teammates rapidly converge in agreement around one or 
just a few dominant ideas without exploring other alterna-
tives.  

Group influence can be one way to address this interplay 
between ideas in brainstorming. We define group influence 
in this paper as the degree to which individuals are influ-
enced by ideas coming from other team members. Here, 
group influence is a group-level rather than an individual 
construct. Groups with high influence levels are those 
where all ideas by all participants are always available to 
every group member. Groups with low influence levels are 
those where individuals are only exposed to their own ide-
as. Between these extremes, group influence indicates the 
ratio of ideas available to brainstormers.  

In this paper we present results from a multi-agent simu-
lation of the role of group influence in brainstorming 
groups. Our aim here is to model the interactions between 
agents engaged in a simple task of divergent reasoning in 
order to inspect the beneficial and detrimental effects of 
different team structures in idea generation. In defining this 
model, we follow the distinctions between ideas, agents 
and societal factors of the IAS framework for the computa-
tional modeling of creativity and innovation as explained 
below [5]. The rest of this paper is organized as follows: 
the next section presents precedent work on the computa-
tional modeling of group brainstorming, the following sec-
tion introduces our own modeling approach to group influ-
ence in brainstorming, then the simulations results are pre-
sented and the paper concludes with a discussion of the 
results and their implications in computational creativity 
research. 

Models of Group Brainstorming 
This paper presents an approach to the study of creativity 
using computational social science [7] in order to inspect 
the mechanisms behind the apparent paradox of ideational 
productivity loss in brainstorming groups. Computational 
social science utilizes multi-agent simulations that are use-
ful to explore hypotheses, test assumptions and understand 
fundamental issues in complex social systems. These sys-
tems are also useful to generate predictions for future la-
boratory experiments or case studies.  

Semantic and Social Models 
Iyer et al [8] propose a connectionist framework of idea 
generation in order to inspect experimental data from la-
boratory studies on ideation and idea priming. In particular 
they   explore   the   interaction   between   ‘irrelevant   primes’  
and context familiarity; irrelevant cues are defined as sets 
of ideas of which only a fraction are related to the task at 
hand, while context familiarity is given by the pre-existing 
classification of ideas defined in the system.  

With this model, the researchers emulate the laboratory 
results and provide hypotheses as to why even irrelevant 
primes can increase idea quality and fluency. By manipu-
lating the degree of familiarity between contexts, they 
show that when irrelevant primes are used between two 
completely unfamiliar contexts, there is no benefit, whilst 
irrelevant priming is useful only when partial information 
about semantic relationships is shared between search con-
texts. In this vein, the authors suggest future experimental 
studies  on  the  creative  capacity  to  create  ‘short-cut linkag-
es’  between features, concepts or semantic categories that 
are typically not related.  

In an extension of this work, Paulus et al propose an ap-
proach to modeling group creativity by vertically integrat-
ing neural and social networks [9]. They define agents as 
simplified versions of the connectionist model described 
above, and account for individual differences in semantic 
contexts, idea association, domains, cognitive strategies 
and responses to cues. Through what they define as a pa-
rameterized interaction protocol (PIP), their proposed 
model accounts for turn-taking between agents and, more 
relevant to our approach, the accessibility of ideas by either 
the entire group or a selected few. With this model still 
under development and testing, the authors aim to address 
a range of research questions, including the efficiency of 
certain interaction structures and scheduling protocols for 
group ideation.  

Group Influence in a Design Task 
From the perspective of computational social science, crea-
tive systems are modeled by multiple generators and eval-
uators of ideas linked in a social system. In such systems, 
creativity is explained as an emergent outcome, i.e. a glob-
al   effect   that   ‘grows’   from   simple local interactions [10]. 
The model presented here is defined using the channels of 
interactions specified in the IAS framework (ideas, agents, 
society) [10]. Agents (A) engage in a simple designing task 
that constitutes the agent-idea channel (Ai) where the re-
sulting designs belong to the set of Ideas (I); social struc-
tures (S) determine the availability of ideas (Si); ideas are 
used by agents (Ia) to build design concepts (Aa) that are 
further applied in the design of new ideas (Ai’).  

In this model, Ai is implemented as a shape search pro-
cess starting from an initial set of polygons and affine 
transformations, I is the set of final shape representations 
produced by the agents, S is the arrangement of agents in 
groups, Si is the experimental variable of group influence, 
Ia is a transmission mechanism of ideas to agents, and Aa 
is modeled as an inference process of design concepts. At 
the moment, this model is limited to only four of the nine 
channels of interaction in the IAS framework, namely: Ai, 
Si, Ia and Aa. In the future, we plan to integrate and exam-
ine more IAS processes in this model including leadership 
styles (As), compliance to group majority (Sa), group 
agreement to adjust idea influence (Is), etc.  

A description of the simplified design task implemented 
in this system can be formulated as: “within   a   fixed   time  
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period, generate as many different shape compositions as 
possible by combining a set of initial shapes”.  Shape  com-
positions are defined as arrangements of n final shapes 
created from the combination of less than n initial shapes. 
New shapes are created by the superposition of existing 
shapes which lead to the identification of new vertices in 
the intersections of line segments. This enables the emer-
gence of new shapes as the set of paths {LM} from be-
tween the start and end points of figures L and M that lead 
through each intersection point, traversing each segment no 
more than once [11]. This shape arithmetic task provides a 
relative quantitative measure to compare two or more sets 
of results. A quality criterion is defined for this task as a 
function of the total number of new shapes created and 
their number of sides.  

Figure 1 illustrates one composition created by this gen-
erative program. Further details on the complexity of this 
type of tasks are found elsewhere [13]. This two-
dimensional shape representation is used to model diver-
gent visual reasoning and is similar to those typically used 
in brainstorming research [6]. Whilst this design task is 
fairly straightforward to implement in a computer system, 
the results are varied enough to capture some of the key 
properties of design situations such as open-ended problem 
formulations with many appropriate solutions, and incre-
mental development of solutions. A measure of task diffi-
culty is defined by the number of initial shapes and the 
number of sides of these initial shapes. In this paper we 
present results using two initial shapes of three sides each. 

Figure 1 A random composition of 2 initial shapes where over-
lapping triangles are detected forming 3 emergent subshapes of 3, 
4 and 5 sides, respectively. Shape compositions with more sub-

shapes and subshapes with more sides are ranked higher. 

The task is used to study group brainstorming by im-
plementing a multi-agent system where agents are auto-
mated shape generators that search for new solutions, de-
rive design concepts and interact in this process over a 
fixed time period. Agent behavior in this simplified model 
of brainstorming consists of the following behaviors: ex-
ploration function (random shape drawing and transfor-
mation), evaluation function (concept formation from to-
pology relationships of shapes), and exploitation function 
(shape drawing and transformation by application of 
learned concepts).  

Shape exploration in this program can be considered po-
tentially creative inasmuch as emergent shape semantics 
“exists  only  implicitly  in  the  relationships  of  shapes,  and  is  
never explicitly input and is not represented at input  time”  
[12].  

A design concept is defined here as a topology relation-
ship between the initial shapes associated to the fitness of 
the final shape composition. More details are provided 
below. After a designer agent has generated one or more 
concepts, it can use them to generate new shapes. Exploita-
tion strategies consist of random variations to existing de-
sign concepts. New compositions can then be obtained as a 
result of applying the modified rule and evaluating whether 
its outcome yields a new shape composition. 

The following pseudo-code shows the algorithm to gen-
erate initial shapes and new emergent subshapes in this 
task (exploration function):  

 
for(initialShapes) { 
   select n random (x,y) points 
   connect all pairs of points with lines 
   build a polygon with resulting lines 
} 
for(every polygon) { 
      for(every line i of every polygon) { 
           find intersection point(linei-linen) 
           store all vertex in a set 
        } 
} 
for(all vertex in set) { 
  build all subshapes via graph search (dijkstra) 
  store new subshape in a set  
} 
eliminate duplicate subshapes 
 

 
The following pseudo-code shows the algorithm to as-

sign a qualitative measure to shape compositions (first part 
of evaluation function):  

 
for(finalShapes) { 
  fitness += (sides of subshape * finalShapes) 
} 

 
The following pseudo-code shows the algorithm to build 

design concepts in this task (second part of evaluation 
function):  

 
for(all initialShapes s) { 
   s.insideVertex += (vertex is within boundaries of shape s+1) 
   s.outsideVertex += (!vertex is within boundaries of shape s+1) 
   s.inLine += (vertex intersects line of shape s+1) 
  s.coincidentVertex += (vertex is coincident with vertex of shape 
s+1 } 
 designConcept = { {insideVertex, outsideVertex, inLine,  
       coincidentVertex} , fitness} 
 store designConcept in a set 
 
 

The exploration and exploitation mechanisms used here are 
inspired   in   the  classic  notions  of  divergent  or   ‘horizontal’  
and  convergent  or  ‘vertical’  thinking  processes  [3]. During 
brainstorming sessions, one may assume that exploration 
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enables the discovery of new types of solutions, whilst 
exploitation allows for the generation of alternatives or 
new instances –a kind of tradeoff in a multi-armed bandit 
problem.  
 In this system, designer agents start with exploration and 
transition to exploitation given a variable defined by the 
experimenter. The following pseudo-code shows the algo-
rithm for selecting between exploration and exploitation: 
 

for(designerAgents) { 
  if (timeStep < exploreLength) strategy = “exploration” 
  else { 
     strategy  =  “exploitation” 
     select a random designConcept  from set of concepts 
     switch (designConcept) { 
        case (insideVertex): initialShapes(insideVertex) 
        case (outsideVertex): initialShapes(outsideVertex) 
        case (inLine): initialShapes(insideVertex) 
        case (coincidentVertex): initialShapes(coincidentVertex) 
    }  
  } 
} 

 
Group influence γ is defined as a sharing ratio of con-

cepts: in the extreme case where γ = 0, agents have no ac-
cess to the concepts generated by other agents; for cases γ 
> 0, agents have access to a fraction of the concepts gener-
ated by other agents up to γ = 1, where all agents have 
access to all concepts generated in the group. This experi-
mental variable γ enables the modeling of both nominal 
and interactive groups in the brainstorming research litera-
ture, as well as scenarios similar to computer-mediated 
brainstorming where the researcher can control the level of 
interaction between participants [2].  

Group influence γ is implemented in two sections of the 
code. First, agents store new design concepts in a shared 
team pool of concepts with a probability γ. Second, γ is 
also used in turn-taking on each simulation step. This is to 
account for the differential conditions in which nominal 
and interactive teams operate: when individuals work alone 
there is a type of allocation of turns in parallel, while 
teammates work in sequential turns. In this paper we in-
spect four γ scenarios: γ = 0, 0.33, 0.66 and 1.0. 

Exploration length ε is defined as a ratio of total simula-
tion time during which agents activate exploration behav-
ior. This variable is used to model the timing at which 
brainstorming participants switch from exploration to ex-
ploitation behaviors. Although we acknowledge that such 
transition may take more complex patterns in real brain-
storming sessions, in this paper we adopt a parsimonious 
approach as a foundation for future models. Exploration 
lengths ε = 0.2 to 1.0 are inspected in this paper in 0.2 in-
crements. 

In this paper we present and discuss results of four and 
sixteen-member groups where both group influence γ and 
exploration length ε are the experimental variables and 
both quantity and quality of generated ideas is the depend-
ent variable. Gross fluency refers to the total number of 

design concepts generated during a simulation, while net 
fluency refers to the number of original or unique design 
concepts produced.  

The impact of varying the level of group influence in 
idea fluency at different stages of a brainstorming session 
is likely to provide a possible explanation of the mecha-
nisms behind the well-documented yet poorly understood 
phenomenon of ‘ideational   productivity   loss’ in group 
brainstorming.  

Results 
All results are mean values of 30 runs for every experi-
mental condition. Control random-generator seeds are used 
in order to compare the effects of the independent varia-
bles. The trend is clear: as the scope of influence of ideas 
increases, fluency decreases across all exploration lengths. 
Table 1 shows the results for all 20 experimental condi-
tions in gross and net fluency in four-member teams. When 
γ = 1, agents are activating the exploration strategy during 
100% of the simulation; therefore no advantage from ex-
ploitation behavior is possible. 

 
Table 1. Results in gross and net fluency from varying group 

influence γ in teams of 4 agents across a range of exploration 
lengths ε.  

 
Exploration length ε Group γ Gross fluency Net fluency 

ε  =  0.2 
 

γ  =  0 40.9 19.63 

γ  =  0.33 53.86 19.46 

γ  =  0.66 41.23 16.9 

γ  =  1 18.4 9.2 

ε = 0.4 

γ  =  0 48.46 22.76 

γ  =  0.33 63.46 23.4 

γ  =  0.66 47.66 19.23 

γ = 1 23.26 11.63 

ε = 0.6 

γ  =  0 56.96 25.9 

γ  =  0.33 69.46 25.43 

γ  =  0.66 47.16 19.6 

γ = 1 29.13 14.56 

ε = 0.8 

γ  =  0 57.56 25.03 

γ  =  0.33 64.86 23.03 

γ  =  0.66 44.9 18.26 

γ = 1 27.6 13.8 

ε = 1.0 

γ  =  0 44.36 14.93 

γ  =  0.33 44.43 14.13 

γ  =  0.66 33.9 13 

γ  =  1 22.06 11.03 
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Figure 2. Group influence γ has a negative effect on net fluency 
across all exploration lengths ε. The differential effects of γ are 

higher when ε is low, and net fluency is higher across all γ when ε 
is medium. With high ε, the effects of γ are less significant. 

Group influence γ has a clear effect on the generation of 
unique design concepts or net fluency, Figure 2. In this 
model, agents brainstorming in isolation do produce more 
original ideas than the same agents brainstorming in teams. 
These results are consistent across different team sizes 
from 4 to 16 members in our model, Figure 3.  

 
Figure 3. In large teams (N = 16), group influence γ has a more 
significant effect on net fluency across all exploration lengths ε.  

When group influence is zero, agents contribute no solu-
tions to the common pool of team concepts, and they only 
store and have access to their own concept pool. Gross 
fluency is the total sum of individual concepts, while net 
fluency is the count of original concepts in this set. Con-
sistently across different team sizes, when group influence 
is zero, net fluency is highest indicating that agents in iso-
lation generate more unique solutions than when they share 
solutions with others. 

Although this outcome is consistent with the brainstorm-
ing literature, it still seems counter-intuitive; how can 
teams of agents in this model be less efficient than same-
size groups of separate individuals? This result may seem 
paradoxical particularly when we consider the amplifying 
effects that the exploitation strategy has in this model, as 
evidenced by scenarios where agents explore the entire 
simulation time span (ε = 1.0). If exploitation is so produc-
tive (particularly when balanced with similar rates of ex-
ploration in this model), where does the advantage of iso-

lated agents come from despite the fact that they have ac-
cess to smaller solution sets during exploitation? In other 
words, one could expect that teams of agents in this model 
would be more productive given that each individual agent 
has access to a larger pool of concepts from which it can 
retrieve a higher diversity of solutions in order to build 
more concepts. In contrast, we observe that as group influ-
ence increases and agents contribute more and have more 
access to a larger pool of solutions, both gross and net flu-
ency decrease. The gap between net fluency of nominal 
and interactive groups varies in this model as a function of 
exploration length, i.e., how early or late is exploitation 
activated during the simulated brainstorming session.  

In larger groups the effects of group influence are more 
significant. Agents in large teams appear rather inefficient 
in high group influence conditions: their net fluency is 
equivalent to that of teams four times smaller. In this re-
spect, it would be tempting to conclude that working in 
isolation is more efficient for creative ideation.  

However, there is a fundamental distinction that is made 
clear in this model, which has largely remained implicit 
across studies that compare the performance of nominal 
versus interactive teams: the total output of these two types 
of groups is incommensurable. The key is turn-taking; the 
comparison is inadequate when measured in number of 
turns rather than in minutes or hours. The difference is that 
in isolation, although in theory the same number of indi-
viduals are generating and recording ideas, in fact the 
number of turns is n times higher than in interactive groups 
since turn-taking occurs in parallel. In principle, no idle 
time exists for individuals in nominal groups. In contrast, 
teams follow some type of sequential order (skewed or not) 
by which all team members except one are idle at every 
turn or intervention. Therefore, this  natural  ‘bottleneck’  in  
team interaction (production blocking) is a sufficient cause 
for the relative poor performance of teams when compared 
to the aggregate results of individuals in isolation.  

In order to account for this inequality, turn adscription is 
manipulated in our model to ensure that all agents in nomi-
nal and interactive groups have access to an equal number 
of turns over the simulated time. The result is an increase 
in gross fluency as group influence increases, Figure 4.  

 
Figure 4. Teams outperform same-number of individuals in gross 

fluency as group influence γ increases (ε = 0.2). 
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Discussion 
Is it better to generate ideas in solitude or in teams? The 
work presented in this paper suggests that each condition 
may present certain advantages and judging performance 
merely by measuring output is a limited approach. Alt-
hough no definite answer can be expected from this simple 
model of brainstorming, it does capture interesting obser-
vations related to one of the key causes associated to idea-
tional productivity loss, i.e. production blocking in groups. 
Within its limitations, this model supports a number of 
insightful hypotheses to consider: 

- The balance between divergent and convergent think-
ing in a brainstorming session is important, and the time at 
which ideation is switched between these two modes of 
thinking is likely to have important an effect in the produc-
tivity of brainstorming groups. 

- Individuals brainstorming in isolation are more produc-
tive than teams over similar time periods as a result of their 
increased intensity of participation. Teams  present   a   ‘bot-
tleneck’ in the form of sequential turn-taking, which is 
avoided by individuals in isolation who are –in principle– 
constantly active in generating new ideas and building up 
on previous ideas. 

- The increased fluency of isolated brainstormers over 
teams may be a feature of easy tasks. It is possible that in 
difficult tasks, group diversity is more advantageous than 
individual ideational intensity. If this is the case, then 
transformative creativity may be more appropriate for 
brainstorming in solitude, whilst combinatorial creativity 
may be a more suitable objective of teams. 

- Turn allocation can be optimized via facilitation tech-
niques or technological means so that an adequate balance 
exists  between  having  access  to  others’  ideas  and  avoiding  
interruptions. This balance may turn out to be a key factor 
in the performance of brainstorming groups.  

The work presented here focuses on the effect of influ-
ence over ideas; it is natural to expect a more complex pic-
ture that includes individual diversity and other situational 
conditions. Nonetheless, our results can be cautiously 
compared to those from laboratory studies. For instance, a 
widely-cited study of 4-person groups in the same two as-
sessment conditions shows a productivity gain of around 
60% from interactive to nominal groups [14]. On the other 
hand, another study where the total number of ideas is con-
sidered in 4-people groups but in a simpler task, reports a 
mean difference of 38% between nominal and interactive 
groups [15]. In our system these differences range between 
40% and 100% depending on certain task factors. 

Nevertheless, the aim of this system is not to replicate a 
particular task or set of results, but rather to demonstrate 
the nature and effects of production blocking in teams or 
interactive groups. In addition, these findings provide a 
possible explanation as to why people may enjoy more 
working in groups than in isolation [16, 17]. Apart from a 
number of social reasons, in terms of idea generation, our 
experiments suggest that individuals find it easier to oper-
ate in groups as they have access to a large number of ideas 

generated by others. Namely, significantly less individual 
effort is required to generate solutions.  

If the results of this experiment were able to be general-
ized, then facilitators of brainstorming sessions should 
consider the aim of the session in relation to the type of 
demands imposed over the search of solutions, the degree 
of transformative or combinatorial creativity required, the 
social influence of the group (as a sum of paired influences 
between team members), and the resulting hierarchical 
interactions between brainstormers.  
Brainstorming   has   been   treated   in   general   as   a   ‘black  

box’  method  of  problem  solving.  People  are  allocated  into  
teams and they are expected to come up with solutions in a 
period of time with the general rule that they generate ideas 
without constraints. The importance of these simple com-
putational experiments is that they show that the results of 
brainstorming sessions can be qualitatively different be-
tween independent individuals and groups, and also be-
tween different types of groups. Further modeling will be 
necessary in order to formulate and evaluate research-
based instructions for adequate brainstorming sessions 
[18]. Future work with this model will account for individ-
ual agent diversity.  
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