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Abstract 

Conceptual blending has been proposed as a creative 
cognitive process, but most theories focus on the 
analysis of existing blends rather than mechanisms for 
the efficient construction of novel blends. While 
conceptual blending is a powerful model for creativity, 
there are many challenges related to the computational 
application of blending. Inspired by recent theoretical 
research, we argue that contexts and context-induced 
goals provide insights into algorithm design for creative 
systems using conceptual blending. We present two 
case studies of creative systems that use goals and 
contexts to efficiently produce novel, creative artifacts 
in the domains of story generation and virtual 
characters engaged in pretend play respectively.  

 Introduction 
Conceptual blending has been proposed as a fundamental 
cognitive process, responsible for the creation of a broad 
range of creative artifacts. (Fauconnier and Turner 1998, 
2002; Grady 2000; Hutchins 2005). Fauconnier and Turner 
(1998, 2002) proposed that conceptual blending involves 
the merger of two or more input spaces into a blended 
space. A griffin, for example, may be considered as a blend 
of an eagle and a lion. Each of the input spaces contains a 
number of concepts and their inter-connections. These 
concepts are selectively merged and projected into the 
blend space. After that, additional structures may emerge 
in the blend by pattern completion and further elaboration. 
 Among artifacts created by conceptual blending, we 
distinguish two types of blends, namely semiotic 
expressions and standalone concepts. Semiotic expressions 
are used in communication to highlight certain aspects of 
or shed light on one of the input spaces. An often discussed 
semiotic expression is "this surgeon is a butcher" (cf. 
Grady, Oakley, and Coulson 1999; Brandt and Brandt 
2002; Veale and O'Donoghue 2000). The input spaces of 
the expression are the conceptual spaces of the surgeon and 
the butcher respectively. The surgeon in the blend 
possesses the brutal attitude of the butcher, forming a 
criticism of the surgeon. 
 This paper focuses on the construction of the second 
type of blend, which we call standalone concepts. An 

example is the lightsaber from Star Wars: a lightsaber 
blends together a sword and a laser emitter, but it is an 
independent concept that does not inform hearers about the 
properties of swords or laser emitters. During blend 
creation, contents are still projected from the input spaces 
into the blend, but the blend is not meant to convey 
information about the input spaces. 
 We share the belief that theories of creativity should be 
computable (Johnson-Laird 2002), yet most accounts of 
blending focus on analyses of existing blends and have not 
fully described how novel blends are constructed 
cognitively or algorithmically. In particular, three key 
procedures required for blending lack sufficient details 
necessary for efficient computation: (1) the selection of 
input spaces, (2) the selective projection of elements of 
input spaces into the blend, and (3) the stopping criteria for 
blend elaboration. Inefficiencies in these procedures can 
lead to significant difficulties in finding appropriate blends 
and elaborations. For example, a simplistic algorithm may 
produce all possible combinations of elements from all 
input spaces, resulting in a combinatorial explosion of 
possible blends.  
 We argue that these three main procedures must 
algorithmically make use of the context and goals of the 
blend being constructed. Brandt and Brandt (2002) 
proposed communication contexts and goals as the driving 
force behind the three key procedures, but their analysis is 
limited to semiotic expressions. We extend their theory to 
the construction of novel standalone concepts and provide 
computational justifications through two case studies of 
working computational systems in the domains of story 
generation and pretend play. Our systems construct blends 
in a goal-driven and context-driven manner. As integral 
aspects of the conceptual blending process, contexts and 
goals provide concrete computational benefits by pruning 
search spaces and improving average-case performance.  

The Theories of Conceptual Blending 
This section reviews the theories of conceptual blending 
described by Fauconnier and Turner (1998, 2002) and 
Brandt and Brandt (2002). We compare these two accounts 
side by side and identify some underspecified parts in the 
theories, which a working system must address. 
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 In the original blending theory (BT) by Fauconnier and 

Turner (1998, 2002), conceptual blending takes two or 

more mental spaces as inputs. Mental spaces are 

dynamically constructed during a discourse (e.g. 

conversation) to contain relevant concepts. The input space 

of the surgeon, for example, includes the surgeon and 

relevant entities, such as his scalpel, patient and so on. 

Elements in one input space are then mapped to their 

counterparts in another input space, using mapping rules 

such as identity or analogy. In the surgeon-as-butcher 

example, the cleaver of the butcher is mapped to the 

scalpel of the surgeon; the dead animal is mapped to the 

patient, and so forth. Elements from input spaces are 

selectively projected into a blend space. The generic space 

captures the structural similarities between input spaces. In 

addition to elements projected from input spaces, the blend 

space can also contain emergent structures created by 

pattern completion or elaboration. This four-space 

formulation is shown in Figure 1, where big circles denote 

mental spaces, black dots represent elements in the spaces, 

solid lines are the mappings between inputs, and dashed 

lines denote correspondences among the elements in the 

four spaces. Hollow dots denote emergent structures in the 

blend. 

 Fauconnier and Turner, however, did not specify how 

elements from these input spaces could be chosen during 

the selective projection. Although eight optimality 

principles—human scale, topology, pattern completion, 

integration, vital relations, unpacking, web, and 

relevance—were proposed as quality measures, they can 

only evaluate the quality of a complete blend after it is 

constructed. This suggests a computational approach where 

all possible blends have to be generated and tested 

individually, called a neo-Darwinian algorithm by 

Johnson-Laird (2002). A neo-Darwinian algorithm could 

lead to a combinational explosion of options and is 

infeasible for large input spaces. In contrast, what Johnson-

Laird calls a neo-Lamarckian approach generates only 

valuable products by applying quality constraints on the 

search space. To do so in blending requires a mechanism 

that selects elements from input spaces effectively during 

the generation process. Note that projection occurs after 

inter-space mappings are built, so the complexity of 

analogy making should not be conflated with the 

complexity of projection. 

 Moreover, BT does not provide detailed procedures for 

the effective retrieval of input spaces, nor for the 

elaboration of blends. A full computational implementation 

of the blending theory should select input spaces by itself, 

rather than assume them as given. To create a powerful 

criticism of the surgeon, a system should decide to blend it 

with a butcher, rather than a driver or a school teacher. A 

creative system may possess a huge amount of knowledge, 

so an efficient selection procedure for input spaces is 

necessary for it to operate within reasonable time limits. 

The same argument goes for elaboration. Neither a human 

nor a computational system should elaborate a blend 

endlessly. We usually do not wish to simulate the entire 

world’s reaction to an irresponsible surgeon, which will 

require excessive computational power or time.  

 In summary, the original blending theory left much 

ambiguity in three key procedures: (1) the selection of 

input spaces, (2) the selection of elements for projection, 

and (3) the stopping criterion for blend elaboration. 

However, a complete working implementation of BT must 

contain these procedures.  

Context-Dependent Blending 
Brandt and Brandt (2002) pointed out that blends used in 

communication do not have fixed meanings. Rather, they 

are real-world phenomena that can only be analyzed in the 

context of the discourse during which they were uttered. 

Under different circumstances, the same utterance “this 

surgeon is a butcher” can mean different things. For 

example, if a soldier referred to a battlefield medic as a 

butcher, he may be highlighting the fact that he has to 

perform an astonishing number of amputations. This 

 

Figure 1. The four-space blending theory, adapted from 

Fauconnier & Turner (2002). 

Figure 2. The context-dependent blending theory, adapted from 

Brandt and Brandt (2002). 
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interpretation is vastly different than the ethical judgment 
about a surgeon’s skills after a failed surgery.  
 To account for this plurality of meanings, blend 
construction must not be based solely on the attributes of 
the input domains, but on the context. Hence, Brandt and 
Brandt abandoned the context-free generic space and 
proposed a context-driven blend construction process. A 
simplified version of Brandt and Brandt’s theory is shown 
in Figure 2, where the dashed arrow indicates that the 
situational relevance prompts the retrieval of the two input 
spaces in order and solid arrows represent selective 
projection. First, the communicative situation (context) 
retrieves the input spaces in order. The situation implies a 
first input space, the reference space based in the actual 
real-world situation. For example, if we are talking about a 
particular surgery, the input space of the surgeon becomes 
available. Based on the goal of communication (e.g. 
conveying that the surgeon is irresponsible), a presentation 
space including the figurative entities (e.g. a butcher) is 
then retrieved and mapped to the reference space. Second, 
the goal of communication, captured through the 
situational relevance, determines what elements from the 
two spaces are projected into the blend. If we want to 
accuse the surgeon of being irresponsible, we should 
project the careless attitude of the butcher into the blend. 
Third, elaboration of blends also depends on the context 
and the goal, fleshing out a blended space until sufficient 
detail is achieved for the guiding goal. In summary, the 
sequential retrieval of input spaces, the selection of 
projected elements, and the stopping criteria are all driven 
by contexts and goals.  

Blending Novel Concepts 
In addition to metaphorical expressions, blending also 
yields novel concepts independent of the input spaces, such 
as the lightsaber. We believe the two cases differ in the 
relationship between the inputs spaces and the blend.  
 Blends used in communication are usually meant to 
underscore certain aspects of, or to attach new properties to 
an input space. In our example, the surgeon who possesses 
a butcher’s attitude in the blend space becomes a criticism 
of the surgeon in the input. The linkage between the blend 
and the input spaces is essential for understanding.  
 In contrast, standalone concepts are blends that are not 
meant to convey meaning about their input spaces. For 
example, the birth stork is a blend of the metaphor birth-is-
arrival, air travel, and the stork (Fauconnier and Turner 
2002, ch. 14), but it does not tell us much about air travel 
or storks in general. As another example, the lightsaber in 
Star Wars is clearly a blend of a sword and a laser emitter, 
but it is not meant to tell us anything about swords or laser, 
even though understanding laser and swords can help us 
understand lightsabers. There are links going from the 
input spaces to the blend spaces, but not vice versa. 
 Standalone concepts created from blending are 
commonly seen in stories and story-related activities. 
Dragons, for example, possess features of snakes, large 
cats and birds of prey, and the instinctive fear of the three 

is postulated to be its origin (Jones 2002). Many other 
mythical creatures are combinations of common animals. 
Novel concepts created from blending also appear in 
modern science fiction. The popular Japanese sci-fi manga 
Doraemon (Fujio 1974-1996) contains several gadgets 
made this way, such as a toy telephone that can transmit flu 
instead of voice. 
 The idea of an independent concept does not contradict 
the notion of contextualized meaning. The meaning of a 
novel concept, when used as a semiotic sign, can still 
change depending on the context. One may say “my new 
kitchen knife is a lightsaber” to emphasize its sharpness. In 
Brandt and Brandt’s framework, this meaning is created 
from the blend of the kitchen knife and the lightsaber, 
which is a different blend than the lightsaber itself. The 
concept lightsaber, on the other hand, is as independent as 
the concept butcher. For another example, the birth stork is 
now often a humorous symbol for baby births rather than 
used to explain births. The contexts and meanings vary, but 
the concepts remain relatively constant. 
 We extend Brandt and Brandt’s contextualized blending 
theory to the construction of novel concepts. Below we 
present two computational systems that generate novel 
concepts in fictions and pretend play. While Brandt and 
Brandt’s (2002) theory initially was not meant to explain 
such blends, we show that a goal and context driven 
approach can account for their generation and bring 
computational benefits.  

Previous Implementations 
Most previous work on computational algorithms for 
conceptual blending are based on the theories of 
Fauconnier and Turner and thus do not fully account for 
input space selection, selective projection, or blend 
elaboration. It is common for computational blending 
algorithms to ignore one or more of these stages. The 
Alloy blending engine, as part of the Griot poem generator 
(Goguen and Harrell 2004), is the earliest implementation 
of BT that we are aware of. Input spaces are manually 
coded as symbolic expressions. Projection into the blend is 
based on a structural mapping between input spaces. 
Without the guidance of goals, any element from the input 
spaces may be projected. The authors found the number of 
possible blends is exponential to the number of relations in 
the input spaces, but did not discuss methods to prune 
these spaces. Hervás et al. (2006) proposed a process that 
enriches texts of stories which can be considered as 
conceptual blends. They proposed that readers’ familarity 
with input spaces, as part of the communication context, is 
important in selecting input spaces and elements for 
projection without specifying an algorithm. 
 Martinez et al. (2011) proposed a blending algorithm 
where input spaces are sets of axioms. Compatible axioms 
are selected for projection. The system does not consider 
goals to directly build blends that meet specific purposes. 
Rather, it "enumerates alternatives ranked by the 
complexity of the underlying mappings". Yamada et al. 
(2011) generate motion of dancing characters by 
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representing motion as wavelet equations and blending is a 
weighted summation of wavelet coefficients. The process 
does not involve any of the three key procedures 
mentioned earlier. Thagard and Steward (2011) proposed 
an implementation of blending at the neural level, which 
also does not consider goals.  
 The Divago system (Pereira 2007) is noteworthy in that 
it considers goals, but only uses them indirectly during 
construction of standalone concepts. Note that the input 
spaces are given to—rather than selected by—Divago. In 
Divago, goals do not directly participate in the selection of 
elements being projected. If an element a is mapped to b, 
one of 4 things can be projected into the blend: a, b, a/b, or 
nothing. This leads to a combinatorial explosion of 
possible blends regardless of the complexity of finding an 
inter-space analogical mapping. To effectively search an 
exponentially growing space, Divago utilizes a genetic 
algorithm (GA) that stochastically samples the space of 
possible blends. From a population of blends, Divago first 
selects those with high scores as computed by an 
evaluation function, consisting of the weighted sum of the 
eight optimality criteria introduced earlier. One of the 
criteria, relevance, is interpreted as goal satisfaction. After 
evaluation, highly ranked blends are randomly modified to 
create the next population. Imitating biological evolution, 
this process repeats in the hope of finding a near-optimal 
blend after sufficient number of iterations. Note however 
that a high score does not guarantee goal satisfaction 
because the evaluation function contains several, possibly 
competing criteria.  
 To elaborate a blend, Divago fires any production rules 
whose premises are true to add content into the blend. 
Divago also supplements details to the blend based on its 
similarity with other frames. For example, if a blend is 
similar enough to the bird frame, Divago will grant it the 
ability to fly. However, given enough rules and frames, 
rule firing and pattern matching can potentially go on 
indefinitely, as it does not specify any explicit stopping 
criteria for elaboration based on the notions of 
meaningfulness or necessity.  
 In the light of the above analysis, it is clear that goals 
and context can guide a computational conceptual blending 
process for the purpose of creating novel, standalone 
concepts. However, context and goals must be used 
directly to ensure successful blends and to focus search 
efficiently. In the next section, we study two creative 
systems that utilize contexts and goals to effectively realize 
the three procedures in conceptual blending. 

Two Case Studies 
This section presents two systems that implement blending 
theory in a goal and context driven manner. We describe 
these systems through the lens of the context-driven 
blending theory. The first system builds fictional gadgets 
in computer-generated stories. The second system 
constructs objects used in pretend play that combine 
features of a desired fantasy-world object with a real-world 
object at hand. The two systems address the three 

aforementioned problems—input space selection, selective 
projection, and elaboration—in a neo-Lamarckian manner 
by employing constraints introduced by the domain of 
application and the specific goal to be achieved. The first 
case study focuses on selective projection and elaboration. 
The second case study focuses on input space selection. 

Generating Gadgets in Fictions  
As a vibrant research field, artificial intelligence (AI) story 
generation aspires to create intelligent systems that can 
create and tell novel stories. Most current approaches to 
story generation are restricted to generating stories for 
static, hand-authored micro-worlds, manipulating given 
characters and objects to produce stories (e.g. Cavazza, 
Charles, and Mead 2002; Gervás et al. 2005; Riedl and 
Young 2010; Ontañón and Zhu 2010). These systems can 
be likened to jigsaw puzzle solvers who play only with 
given pieces and never dream of inventing a new piece. 
These story generation systems are not able to tell stories 
with novel objects or gadgets; they cannot tell Star Wars if 
the idea of lightsaber is not supplied ahead of time.  
 The aim of the gadget generation algorithm (Li and 
Riedl 2011a, 2011b) is to break out of these static world 
configurations and create new types of objects previously 
unknown to the system. Our approach was initially 
presented as a combination of partial-order planning (Weld 
1994) and analogical reasoning. Here we point out its 
connection to conceptual blending. The algorithm blends 
existing concepts to generate novel standalone concepts as 
unforeseen gadgets in support of a goal derived from a 
story context. 
 To generate a gadget, the algorithm reasons about how 
the gadget should be used in the context of a story, 
including events that happen immediately before and after 
its usage. These events are captured as the behavior of the 
gadget, represented as a temporally ordered sequence of 
actions. Given a goal derived from a story (e.g., a character 
must become infected by a flu virus), the algorithm 
iteratively constructs the gadget’s behavior by working 
backward from the goal using actions and entities from 
various input spaces. Goals are first-order logic predicates 
such as infected-by(bob, virus). An action is an 
operator that requires certain predicates as preconditions 
and asserts some predicates as effects. The gadget 
generator works with a conventional story generator, which 
supplies goals considered appropriate for a gadget to 
achieve. The final behavior of the gadget must achieve 
these goals. 
 Goals are first used to identify the input spaces. The 
reference space includes objects in the goal predicates and 
relevant concepts.  For example, the reference space 
implied by the goal infected-by(bob, virus) includes 
concepts such as flu viruses, a character named Bob, and 
actions such as coughing and curing. In fact, the reference 
space exists only conceptually and is not separated from 
the rest of the knowledge in the system. It highlights that 
knowledge structures closely related to the goal play more 
important roles in projection than the rest. The system 
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creates the second input space by retrieving an object from 

its knowledge base of many known objects that achieve 

predicates analogous to the specified goals. This object is 

called the prototype for the gadget. At this time, the list of 

known potential prototypes is small, and we go down the 

list from the best guess. In the long term, a robust 

mechanism to find the best prototype is needed (e.g. 

Wolverton 1994). The second input space, the prototype 

space, includes the prototype object, its behavior, as well 

as actions used and entities referred to in the behavior. For 

example, the behavior of a toy phone object refers to the 

entity voice, which becomes part of the space.  

 The behavior of the gadget, or the blend space, is built 

by projecting actions from the two input spaces selectively. 

This projection is driven by goals in a backward-chaining, 

iterative process. Following the partial-order planning 

representation, actions have causal requirements—

predicates that must be true in the micro-world for the 

action to be performed (also called preconditions). When 

an action is brought in the blend space to solve one goal, 

its own causal requirements are added to the set of goals. 

Actions continue to be projected to satisfy goals until all 

goals are satisfied or determined to be fundamental 

properties of the gadget itself. Note that when there are 

multiple possible ways to achieve a goal, the algorithm 

tries the best first and backtracks when mistakes are made. 

The selective projection process is thus completely goal-

driven. Due to space constraints, we refer interested reader 

to (Li and Riedl 2011b) for details of the algorithm. 

 There are several methods to project actions from the 

input spaces into the blend space. First, the algorithm can 

project an action from the prototype space without any 

changes. Second, an action from either space can be 

projected with arguments from both spaces, constituting a 

form of blending. Figure 3(a) shows the action Cough-
Into being projected with arguments from both input 

spaces. This action is mapped with the action Speak-Into 

in the prototype space because of identified analogical 

similarities. The analogical reasoning engine Sapper 

(Veale and O'Donoghue 2000) is used to establish 

analogical mapping across input spaces. Third, a special 

case of blending occurs when an action from the prototype 

space is combined with illegal arguments from the 

reference space to create a new action previously not 

allowed. As illustrated in Figure 3(b), the Transmit action 

of a toy phone is now allowed to transmit virus instead of 

voice, which otherwise would not have been a legal 

assignment of parameters. The algorithm ignores the rules 

of the micro-world to achieve goals of an imaginary gadget 

phone that can transmit flu virus from one person to 

another. This allows a generated gadget to achieve the 

impossible, producing an object not conceived before. 

 Figure 4 shows the behavior of a gadget phone 

generated by the algorithm, which one can use to give her 

flu to someone else and free herself from it. The goal 

predicates it achieves are infected-by (bob, virus) and 

not(infected-by (alice, virus)). Each box 

represents one action. Solid arrows denote temporal 

precedence and dotted arrows denote closure actions. This 

gadget appeared in the Doraemon manga. Li and Riedl 

(2011a) also describes an example not from the manga. 

 Elaboration in the blend space is simulated with the use 

of closure actions. Closure actions are not necessary for the 

gadget’s goal, but restore some goal-irrelevant aspects of 

the story world to an ordinary state. For example, in Figure 

4, the actions where people put down the phone after use 

(the Let-Gos) are closure actions. Closure actions are 

manually labeled in prototype behaviors and projected into 

the blend space. Their use is motivated by the desire to 

restore an ordinary state after using the gadget, which 

creates a sense of denouement in the story. Although the 

elaboration is not directly driven by goals, it is motivated 

by the domain of storytelling. 

 Finally, the gadget is verified by incorporating the 

gadget behaviors into the story from which the goals were 

originally derived. If any necessary conditions of the 

gadget’s behavior cannot be achieved in the story, the 

gadget does not work and has to be modified further by 

going through additional rounds of blending. When this 

happens, a second prototype is retrieved as yet another 

input space and blended with the current gadget to make it 

even more powerful. The algorithm cannot create two 

gadgets simultaneously. 

 

Figure 4. The behavior of the flu-transmitting gadget phone  

Figure 3. Two projections involved in the generation of the flu-

transmitting gadget phone. 
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 By using means-ends search guided by goals, the search 
space of possible actions to be added to the behavior of the 
gadget is pruned, resulting in improved average-case 
efficiency of the algorithm. Each iteration of the algorithm 
tries to satisfy a goal in the blend space, and will thus only 
consider actions that can achieve that goal. While the total 
number of actions in both input spaces may be large, 
usually only a small fraction of them can be projected to 
achieve any given goal. In contrast, a naïve selective 
projection algorithm will attempt to project all actions in 
any input space using all possible projection methods. 
Although the goal-driven best-first search in the worst case 
has to consider all possibilities in the search space, in an 
average case it only considers a small portion of the total 
possibilities (Weld 1994). A goal-driven blending 
algorithm also has the added benefit of ensuring that any 
result of the algorithm is guaranteed to meet all of the 
acceptability requirements.  
 In summary, the gadget generation system implements a 
goal-driven model of blending, including relatively 
efficient selective projection (due to pruning of the search 
space) and elaboration procedures. These procedures are 
driven by the gadget’s goal, the particular story that serves 
as the context, and the general domain of storytelling. 
However, this system has not fully investigated the 
selection of input spaces, which will be illustrated in the 
next case study. 

A Virtual Character for Pretend Play 
Our second case study illustrates the use of goals in 
blending with a specific focus on the selection of 
appropriate input spaces. In this case, a real-world object is 
selected to represent an object from a fantasy world, as 
required in children’s pretend play. A goal specifies means 
to appropriately prune potential input spaces and select one 
option based on contextual constraints of similarity. Below 
we describe how our pretend play system can be viewed 
through the lens of conceptual blending; full details on the 
system are presented in (Zook, Riedl, and Magerko 2011). 
 In pretend play, children construct and enact story 
scripts and roles with real-life objects (Nourot 1998). 
Examples of pretend play include lightsaber duels with 
cardboard tubes, holding pretend tea parties with stuffed 
animal guests and acting as a group of pirates sailing on a 
couch. When enacting these scripts, pretenders have goals 
of using particular objects from a fictional world, but are 
limited to using the real-world objects that are ready at 
hand. Pretend players imaginatively overlay the fictional 
object onto the real-world object to create a blend, i.e. a 
pretend object existing in both the fictional world and the 
real world. Pretend play research has found children 
project traits of the fictional object on the real object. As an 
example, children engaged in a lightsaber duel with 
cardboard tubes may make buzzing noises when they 
swing the tube. In general, the pretending process involves 
identifying real-world objects as stand-ins for the fictional 
object, and selectively projecting traits of the fictional 
object onto the real object. The objects are input spaces to 

the blend. The construction process must account for how 
input spaces relate to a larger context of a target pretend 
play activity, pruning the options considered.  
 Building computational systems that can engage in 
pretend requires the capacity to construct the objects used 
in these scripts (Zook, Riedl, and Magerko 2011). To 
formalize the problem, the play activity (lightsaber duel) 
provides a structuring situation such that a pretender—
human or agent—selects a real world object (cardboard 
tube) as a presentation space for a given reference space of 
a fictional object (lightsaber). That is, the goal is to find a 
presentation input space that most closely matches the 
reference input space. Once the input spaces are selected, 
the blending process takes the most relevant aspects of the 
fictional object for the activity (buzzing), which are 
imposed onto the real object in the blend space for use in 
play (swinging a cardboard tube while buzzing). This 
process starts with a situation in the fictional world and a 
specific fictional object (the lightsaber I am using in the 
duel), and seeks a presentation object in the real world to 
effectively manifest the fictional object. 
 To reason about numerous objects in the fictional world 
and the real world, we need a computational representation 
of objects and their attributes. Lakoff and Johnson (1980) 
proposed that the salient perceptual, motor-activity, and 
purposive features of objects affect how humans interact 
with them. We model objects in both the fictional and real 
domains using selected attributes in these categories. 
Following prototype theory (Rosch 1978), these attributes 
are assigned fuzzy values to represent a real-valued ([0, 1]) 
range of degree of membership (DOM). As an example, a 
lightsaber may have a 0.8 DOM value for the perceptual 
feature of being blue (very blue, except for the handle), 0.9 
DOM value for the motor-activity feature of ease of 
handling (very easy to hold and swing), and 0.1 DOM 
value for the purpose of supporting weights (unsuitable for 
propping up heavy objects).  
 Iconic attributes are salient attributes of an object that 
distinguish it from similar objects within the same 
category. These attributes help to resolve the potential 
ambiguity of which fictional object is being represented by 
a given real world object. For example, if a pretender grabs 
an object and begins making buzzing noises, it may be 
unclear if they are signaling that they are holding a buzzing 
lightsaber or shooting a laser pistol. An iconic posture of 
handling, however, makes this difference clear. Iconic 
attributes help participants in pretend play interpret other 
players’ behaviors and intentions. 
 The computational play system algorithm has three steps 
for context and goal driven blending: (1) select a real-
world object based on the pretending goal and context;  
(2) select the set of fictional object attributes to project; 
and (3) project these attribute values into the blend. The 
first step is the selection of the input space—the real-world 
object—to be blended with the fictional object. 
 Selecting an input space uses the pretending goal to first 
prune impossible input spaces and then search for the 
optimal input space among those that remain. Conceptually 
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this process is similar to the surface-level filtering process 
used in the MAC/FAC system (Forbus, Gentner and Law 
1995) with the modification of using fuzzy attributes rather 
than predicates. The filtering quickly removes from 
consideration all real-world objects that differ too 
significantly from the desired fictional object on a single 
attribute. The goal specifies attributes that are important to 
the pretend play object and the extent to which they must 
be preserved. Thus, when seeking a lightsaber, all real 
objects that are too difficult to handle would be ignored, as 
they cannot serve as useful lightsabers during the play. 
Computationally, all real objects are compared to the 
desired fictional object on the set of relevant attributes, and 
those that differ by a specified threshold are pruned. For 
example, when considering ease of handling, a cardboard 
tube would be kept as a candidate real object for a 
lightsaber, while a wooden log would be discarded. 
 After filtering, the remaining real-world objects are 
searched for the single real-world object with minimum 
difference from the desired fictional object. 
Computationally, the pretend play system exhaustively 
searches all available real-world objects and calculates the 
Euclidean distances between the attributes of each 
candidate real object and the fictional object. The real-
world object with the minimal distance from the fictional 
object is then selected. In this domain, pruning appears to 
sufficiently constrain the set of potential input spaces to 
enable subsequent exhaustive search, although alternative 
search techniques are likely applicable.  
 Once the input spaces are selected, the second step is to 
bridge the remaining distance between the real-world 
object and the fictional object by determining the set of 
iconic attributes that capture characteristic attributes of the 
fictional object. These will then be mapped back to the 
real-world object so that the agent can play with the real-
world object as a placeholder for the fictional object. 
Iconic attributes of an object are those attributes that are 
most different from other objects under consideration; they 
capture which features are relevant to the pretend goal. The 
level of iconicity of an attribute for the desired pretend 
object is calculated as the sum of Euclidean distances 
between that attribute and the same attribute of all other 
objects in the fictional world. Iconicity values are 
normalized within categories of objects and an attribute is 
considered iconic for an object if it falls in the proximity of 
the maximum value.  
 In the third stage, blending occurs by projecting iconic 
values of the desired fictional object onto the selected real 
object. By default, the blend space contains all attributes of 
the real object. All iconic attributes of the pretend object 
are projected into the real object, replacing the original 
values. This process captures the notion that most action 
and reasoning should treat the real world as the base with 
the pretend domain layered onto this base. 
 In the pretend play algorithm, context and goals are 
utilized to filter the set of possible input spaces to only 
those that are most crucial for the use of a real-world 
object for pretend play. By pruning the set of possible 

objects according to their relevance to a goal, the process 
avoids the naïve consideration of all possible combinations 
of spaces to use for blending. Selective projection of 
attributes is achieved by searching for the most iconic 
attributes of the presentation input space (the fictional 
object) to be blended with attributes of the reference input 
space (the real-world object). While this search is 
performed in a brute-force manner, the number of 
attributes that cross the acceptability threshold for iconicity 
are relatively limited.  

Discussion and Conclusions 
As a powerful mechanism for creativity, conceptual 
blending is capable of synthesizing known concepts into 
new concepts. Much existing theoretical work focuses on 
the blending phenomenon and identifying the input spaces 
and the blend without a mechanism for blending. This 
paper presents our first efforts at building a complete 
computational outline for conceptual blending systems. We 
identify three major procedures in conceptual blending: (1) 
the selection of input spaces, (2) the mechanism for 
selective projection of input space attributes into the blend 
space, and (3) the sufficiency condition for pattern 
completion and elaboration. These components play vital 
roles in conceptual blending and have significant 
implications for the efficiency of computation. In our 
analysis of computational implementations of blending 
theory, we found few systems fully account for all three 
processes.  
 Brandt and Brandt (2002) argued that the construction of 
semiotic expressions as blends are cued by communication 
contexts and guided by the specific communicative goal. 
We argue that context and goals can provide the basis for 
rigorous and efficient computational algorithms for the 
three main processes described above. We present two 
computational systems that utilize goals and context to 
guide generation of standalone conceptual blends. The 
gadget generation algorithm mainly demonstrates 
procedures (2) and (3) by utilizing goals to select concepts 
from the input spaces and elaborating them. The pretend 
play work likewise uses context to determine which input 
spaces to select and which concepts from the input spaces 
to project into the blend, illustrating procedures (1) and (2). 
 These two case studies suggest the three main 
procedures can be implemented efficiently by employing 
constraints introduced by their respective domain of 
application, the contexts of the solutions, and the specific 
goals the solutions must achieve. Our analysis shows that 
goals can be used to prune the search space and improve 
average-case performance. Although our implementations 
are deterministic, we believe determinism and goals are not 
a bundled package. A goal-driven procedure may not be 
completely deterministic or even optimal. Future work is 
needed to reduce the effort required to author the 
knowledge representations used by our systems (e.g. with 
crowdsourcing (Li et al. 2012)). 
 Boden (2004) raised the questions of whether computers 
can appear to be creative, and whether computational 
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systems can help us understand creativity. By 
implementing theories of creativity, we are forced to 
consider procedural details which theories sometimes do 
not cover. We believe a computational approach can help 
expose underspecified components or flaws in existing 
theories, hint at their solution, or even lead to their remedy. 
A computational approach to creativity will strengthen our 
confidence in answering yes to both of Boden’s questions. 
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