
Computational Creativity Theory:
The FACE and IDEA Descriptive Models
Simon Colton1, John Charnley1 and Alison Pease2

1 Computational Creativity Group, Department of Computing,
Imperial College, London, UK. ccg.doc.ic.ac.uk

2 School of Informatics, University of Edinburgh, UK.

Abstract

We introduce computational creativity theory (CCT)
as an analogue in computational creativity research to
computational learning theory in machine learning. In
its current draft, CCT comprises the FACE descriptive
model of creative acts as tuples of generative acts, and
the IDEA descriptive model of the impact such creative
acts may have. To introduce these, we simplify various
assumptions about software development, background
material given to software, how creative acts are per-
formed by computer, and how audiences consume the
results. We use the two descriptive models to perform
two comparisons studies, firstly for mathematical dis-
covery software, and secondly for visual art generating
programs. We conclude by discussing possible addi-
tions, improvements and refinements to CCT.

Introduction
Machine learning is a very well established research area,
and has possibly had the greatest impact of all AI subfields,
with successful applications to classification and prediction
tasks in hundreds of areas of discourse. Machine learning
researchers asked: “What does it mean to say that a com-
puter has learned something?” In computational creativity
research, we have similarly asked: “What does it mean to
say that a computer has created something?” It is there-
fore sensible to look at how machine learning developed
to suggest future directions for computational creativity re-
search. Human learning involves many behaviours, includ-
ing memorisation, comprehension, abstraction and general-
isation. While textbooks like (Mitchell 1997) use general
terms such as “learning how to do something by observing
it being done”, in reality, machine learning researchers have
largely studied how to induce a concept definition (or set of
rules) to fit data which has been given in advance. The in-
duced definition may be a Prolog program, a decision tree,
an artificial neural network, etc., and can be used to clas-
sify new examples with respect to the concept. With careful
manipulation, many intelligent tasks can be stated as such
concept-induction problems. In particular, rules for predict-
ing attributes of unseen objects, such as the toxicity of a par-
ticular drug, can be learned and put to great practical use.

The focus on concept induction enabled a formalisation
of acts of learning to be explored within the field of com-

putational learning theory (CLT). In (Angluin 1992), Dana
Angluin states that the goals of CLT are to:

Give a rigorous, computationally detailed and
plausible account of how learning can be done.

Each word in this statement has been carefully chosen. In
particular, by requiring computational detail, Angluin high-
lights that CLT discusses actual algorithms which learn. By
requiring rigour, he stresses that the purpose of CLT is to
state and prove theorems about the nature of those learning
algorithms. Such theorems deal with learnability within the
PAC model (Valiant 1984), i.e., which types of concepts can
be induced by which methods, and with efficiency, i.e., the
extent to which certain methods must search a space. By
mentioning the plausibility of the account offered, Angluin
grounds CLT to describing machine learning in reality, i.e.,
with reasonable computational resources, background infor-
mation and interaction requirements. Finally, by softening
the account to one which describes how learning can be
done, Angluin emphasises that CLT does not aim to wholly
encompass approaches to computer learning, but rather of-
fers a particular formalism which researchers can use to as-
sess progress. The benefits of CLT have been demonstrated
via theoretical results being turned into practical application,
most notably the introduction of ensemble learning methods
such as boosting (Schapire 1990), whereby powerful predic-
tors are assembled from multiple weak ones.

We introduce here the first draft of a formalism called
computational creativity theory (CCT). In the long term, we
aim for CCT to provide a rigorous, computationally detailed
and plausible account of how creation can be done. Our first
step has been to provide two plausible descriptive models
which can be used to describe the processing and the output
of software designed to exhibit creative behaviour. We re-
strict CCT entirely to describing software, and we make no
claims about its value for describing human behaviour. We
start at the base level of creativity: the creative act, whereby
something – however trivial – has been created by computer,
and we introduce the FACE descriptive model for describing
such creative acts. We further introduce the IDEA descrip-
tive model which captures notions related to the impact of
such creative acts.

In the spirit of Angluin’s mission statement above, we do
not aim for CCT to describe every way in which software

Proceedings of the Second International Conference on Computational Creativity 90

could be creative, but rather a plausible way in which cre-
ation by software could occur. We therefore make some
simplifying assumptions that may exclude some types of
creative acts. Having said this, we believe the models are
sufficiently flexible to describe in general terms the output
and processing of the artefact generation systems that have
been discussed in computational creativity circles in recent
years. How the FACE and IDEA models are employed to
compare and contrast creative acts is in part generic, and in
part domain-specific. To highlight the potential for describ-
ing creative acts by computer and their impact, in the penul-
timate section, we use the models in comparison studies of
generative mathematics and generative art systems. We con-
clude by highlighting areas where computational creativity
theory could be expanded or refined.

Related Work
The formalisms presented below draw heavily from exist-
ing formalisms of creative systems. While CCT does not
yet capture all aspects of these existing formalisms, we have
tried to include various notions which are commonly agreed
upon to be important in computational creativity research.
In particular, CCT has been motivated by notions of ex-
ploratory and transformational search described in (Boden
2003) and (Wiggins 2006). We have also tried to capture
notions of meta-level reasoning, as described in (Buchanan
2001) and (Colton 2009), in addition to the usage of in-
put/output for assessment of creative activity put forward
in (Ritchie 2007). We have similarly tried to capture the
important notion of surprise described in (Macedo and Car-
doso 2002), and notions of how audience expectation and
the perception of creativity must be handled, as described
in (Colton 2008). We have also drawn from the history of
the field of computational creativity, as given in (Cardoso,
Veale, and Wiggins 2009). Our motivation for the descrip-
tive models also came from writings on human creativity
within the philosophy and psychological literature, such as
(Sloman 1978), who sets out criteria which can be used to
judge theories; (Thagard 1993), where criteria for evaluating
explanatory theories are also set out; and (Uzzi and Spiro
2005) who describe societal influences on creativity. Due to
lack of space here, we have placed CCT into such contexts
in a sister paper (Pease and Colton 2011a).

The FACE Descriptive Model of
Creative Acts Performed by Software

We aim to capture some basic types of creative act per-
formed by computer. It is clear that such acts can occur at the
ground level, whereby generative systems produce new arte-
facts such as theorems, pictures, compositions, poems, etc.
However, it is also clear that creative acts can occur at the
process level, where new ways to generate and assess arte-
facts are invented. We define a creative act as a non-empty
tuple of generative acts. Each tuple contains exactly zero or
one instance of eight types of individual generative act. The
different types of generative act are denoted by the follow-
ing letters with g or p superscripts, representing generative
acts which produce:

Eg: an expression of a concept
Ep: a method for generating expressions of a concept
Cg: a concept
Cp: a method for generating concepts
Ag: an aesthetic measure
Ap: a method for generating aesthetic measures
F g: an item of framing information
F p: a method for generating framing information

By the word concept, we mean an executable program (or
something which can be interpreted as such), which is ca-
pable of taking input and producing output. By the phrase
expression of a concept, we mean an instance of an (input,
output) pair produced when the concept’s program is exe-
cuted. By the term aesthetic measure, we mean a function
which takes as input a (concept, expression) pair – one of
which can possibly be null – and outputs a real value be-
tween 0 and infinity. By an item of framing information, we
mean a piece of natural language text that is comprehensible
by people, which refers to a non-empty subset of generative
acts in the tuple. Such framing information may be domain-
specific, and adds value to the generative acts, possibly by
(a) putting them into some cultural or historical context, or
(b) describing the processes underlying the generative acts,
or (c) providing calculations about the concepts/expressions
with respect to the aesthetic measures, or (d) obfuscating
the creative process and/or the output produced, in order to
increase the amount of interpretation required by audience
members. By allowing exactly one or zero of each type of
generative act, the above definition of a creative act includes
singular generative acts. Such acts include those performed
by machine learning systems which generate a single clas-
sifying concept: 〈Cg〉, and those performed by constraint
solvers, where a single expression (the solution) of a concept
(the constraint satisfaction problem) is produced: 〈Eg〉.

In writing 〈F g, Ag, Cg, Eg〉, we denote a creative act
comprising a 4-tuple of generative acts. This explicitly im-
plies that Eg produced an expression of the concept pro-
duced by Cg; that the output from the pair of generative
acts (Cg, Eg) can be taken as input by the aesthetic measure
generated by Ag; and that F g generated an item of framing
information which further explains or justifies the whole cre-
ative act. A creative act can be probed for information about
both the generative processes it contains and the output from
these processes. To simplify matters, we use lower-case no-
tation to denote the output from the generative acts. Hence
we might describe the creative act 〈F g, Ag, Cg, Eg〉 as pro-
ducing framing information fg which justifies the creation
of aesthetic measure ag by which the concept/expression
pair (cg, eg) can be assessed – noting that eg is an expression
of cg , and both were generated during this creative act. In or-
der to describe creative acts in the context of software devel-
opment and deployment, where a programmer, user and/or
an audience member may contribute to a creative act, we
use a bar notation to highlight generative acts undertaken
by a third party. For instance, the tuple 〈Ag, Cg, Eg〉 might
represent the creative act 〈Eg〉 performed by the software
whereby an expression of user-given concept cg was gener-
ated and assessed by user-given aesthetic measure ag .

Proceedings of the Second International Conference on Computational Creativity 91

Note that creative acts need only contain a single trivial
generative act, e.g., 〈Eg〉 might represent multiplying two
numbers together, which we include as a creative act. Also,
in tuples which include matching generative acts with both g
and p superscripts (indicating ground and process-level acts
respectively), the implication is that the process level gener-
ative act produced a method employed by the ground level
generative act. For instance, we might use 〈Cp, Cg, Eg〉
to denote a creative act whereby a software system under-
took a process level generative act, Cp, which invented a
new method for generating concepts, cp, and then used that
method in a concept-generating act, Cg , which produced a
concept, cg , which was in turn used in an expression gener-
ating act, Eg , to produce the eg expression of cg .

The FACE model could be used in a quantitative way,
with sheer volume of creative acts used to compare creative
systems. It might be more informative, however, to use it in a
cumulative way, where a creative act is seen as strictly more
creative than another if strictly more types of generative acts
occurred. For example, if creative act CA1, invents a con-
cept and an expression of that concept, it should be seen
as less creative than creative act CA2 which also invents
an aesthetic against which the same concept and expression
could be assessed. Here, using the > and < symbols to
represent ‘more creative than’ and ‘less creative than’, we
could write: CA1 = 〈Cg, Eg〉 < CA2 = 〈Ag, Cg, Eg〉.
The FACE model could also be used in a comparative way,
where undertaking one type of generative act is seen as
more creative than another. Hence, some orderings could
be agreed upon, like: 〈Cp〉 > 〈Ag〉 > 〈Cg〉 > 〈Eg〉. More-
over, it could be used in a process-based way, with individ-
ual generative acts compared, e.g., random generation might
be seen as less creative than an inductive method, etc.

Finally, the FACE model could be used in a qualitative
way, where the values from aesthetic functions are used
to compare creative acts. Suppose that we want to com-
pare sessions during which an existing aesthetic measure
ag is given, and the software successively produces con-
cept/expression pairs (cg1, e

g
1), . . . , (c

g
n, e

g
n), which can be

assessed by ag . Suppose further that a threshold t for min-
imum acceptable aesthetic level is given, below which con-
cepts/expressions will be deemed as too low quality. The
following measures could be used to assess software S dur-
ing such a session of creative acts:

average(S) = 1
n

∑n
i=1 a

g(cgi , e
g
i)

best ever(S) = maxni=1 (a
g(cgi , e

g
i))

worst ever(S) = minni=1 (a
g(cgi , e

g
i))

precision(S) = 1
n |{(c

g
i , e

g
i) : 1 ≤ i ≤ n∧ ag(c

g
i , e

g
i) > t}|

reliability(S) = best ever(S)− worst ever(S)
Measures similar to the first three are regularly used in the
development and usage of creative systems. Precision might
be a valuable measure for comparing systems in domains
where the yield of concepts/expressions of an acceptably
high standard is low. The range between the best and worst
outputs of a session, as assessed by the reliability measure,
might be used while developing software, i.e., in order to in-
crease the trust the programmer/user has in the ability of the
software to deliver consistent results.

The IDEA Descriptive Model for the Impact of
Creative Acts Performed by Software

In problem solving applications of AI techniques, such as
theorem proving or constraint solving, an aesthetic mea-
sure is usually given which effectively measures the value
of the results of the creative acts (the proposed problem so-
lutions) in terms of how well they solve the problem. Al-
ternatively, when simulating human intelligence is the aim,
Turing-style aesthetics may be used, where the measure of
the creative output (e.g., human-computer dialogues) is in
terms of how much audiences are fooled into projecting hu-
manity onto computer output. In such applications, there
are fairly concrete notions of right and wrong, and hence
the value of software for solving/simulation can be objec-
tively assessed. However, in more creative applications of
AI techniques, the invention of aesthetic measures may be
part of the task, hence there is no a-priori notion of right or
wrong (as discussed at length in (Pease and Colton 2011)).
For this reason, we replace the usual notion of value of solu-
tions in the AI problem solving paradigm with the notion of
impact of creations in the AI artefact generation paradigm.

Software is not developed in a vacuum, so we must fac-
tor out the input of the programmer/user/audience when we
assess the impact of the creative acts performed by soft-
ware. To do so, we assume an (I)terative (D)evelopment-
(E)xecution-(A)ppreciation cycle within which software is
engineered and its behaviour is exposed to an audience. For
this IDEA model, we wish to capture the notion that the fine-
tuning of software has an effect on the impact of its creative
acts, as discussed in (Colton, Pease, and Ritchie 2001) and
(Ritchie 2007). We also wish to capture the notion that the
novelty of the results of a creative act can affect people’s ap-
preciation of those results (Macedo and Cardoso 2002). In
particular, positive appreciation tends to peak as novelty in-
creases, but as the results of a creative act become too novel,
it becomes difficult to put them into context, and overall ap-
preciation of them drops (Wundt 1874). We make three sim-
plifying assumptions about the development/deployment of
a software system S, as follows:
• An ideal development process. S will eventually perform
creative acts such as those describable by the FACE model.
It is programmed by someone with knowledge/experience of
the kinds of creative acts that S will perform, as described
by the ideal background knowledge information assump-
tions below. S is designed to surprise the programmer, by
performing creative acts and producing outputs which were
not predicted in advance. During the development stage,
the programmer repeatedly executes S, assesses its perfor-
mance, and makes improvements accordingly. Once fully
programmed, S is executed by either the programmer and/or
a third party user and performs creative acts, the results of
which are assessed by an ideal audience, as described below.
• Ideal background knowledge information. When develop-
ing S, the programmer is aware of three sets of knowledge,
namely α: all the relevant knowledge known to the world;
β: the subset of α given explicitly or implicitly to S at de-
sign and/or run time; and κ: the knowledge produced by S
(some of which may overlap with α). Each knowledge set is

Proceedings of the Second International Conference on Computational Creativity 92

represented as a set of FACE creative act tuples and the out-
puts from the tuples. In addition, there is available a distance
measure, denoted d(t1, t2), which can take into account the
processes behind and the output from two creative act tuples
t1 and t2, and estimate how similar they are.
• An ideal audience. Judgement/appreciation of an act of
creativity, A, performed by S is undertaken by an audience
of idealised people, each able to give two ratings for A.
For audience member m, they first give a well-being rat-
ing, wbm(A), between -1 and +1, with -1 indicating a strong
dislike for A, +1 indicating a strong liking for A, and 0 in-
dicating no strong opinion. Secondly, they give a cognitive
effort rating, cem(A) between 0 and 1, with 0 indicating that
they were prepared to spend no time attempting to under-
stand A, and 1 indicating that they were prepared to spend
a long time attempting to understand A. With these ratings,
we avoid circularity by not expecting audience members to
evaluate creativity directly, and we attempt to capture tem-
poral aspects of evaluation, as introduced below.

It is likely that less creativity will be attributed to the
software, if the creative acts it undertakes are too similar
to known ones, especially if known to the programmer. If
less creativity is attributed to the software, then it is likely to
have less impact. With this in mind, we suppose that there
is a threshold, l, on the distance measure d such that any
creative act is deemed too similar to a known creative act
(possibly undertaken by the programmer) if the distance be-
tween the two creative acts is less than l. For instance, if
the programmer wrote a production rule which was able to
create a new concept from a specific given concept, then we
might argue that the creative act of inventing this production
rule, A = 〈Cp〉, is too similar to the act of applying the rule
to generate a concept, A = 〈Cg〉, i.e., d(A,A) < l. Note
here that we have compared two distinct types of creative
acts, one producing a method for generating concepts, and
one actually producing concepts. We similarly suppose there
is an upper threshold, u, for the distance between a known
creative act and one undertaken by the software, such that if
the distance between the two creative acts is greater than u,
then there is no context within which they can be compared.
Using such upper and lower bound thresholds, we can sug-
gest the following engineering stages for software S:
• Developmental stage: where all the creative acts under-
taken by S are based on inspiring examples (c.f. (Ritchie
2007)), i.e., ∀K ∈ κ, (∃B ∈ β s.t. d(K,B) = 0).
• Fine tuned stage: where the creative acts performed by
S are abstracted away from inspiring examples, but are still
too close to have an impact as novel inventions, i.e., ∀K ∈
κ, (∃B ∈ β s.t. d(K,B) < l).
• Re-invention stage: where S performs creative acts sim-
ilar to ones which are known, but which were not explic-
itly provided by the programmer, i.e., ∃K ∈ κ s.t. (∃A ∈
α s.t. (d(K,A) < l ∧A /∈ β)).
• Discovery stage: where S performs creative acts suffi-
ciently dissimilar to known ones to have an impact due to
novelty, but sufficiently similar to be assessed within cur-
rent contexts, i.e., ∃K ∈ κ s.t. ((@A ∈ α s.t. d(K,A) < l)
∧ (∃A′ ∈ α s.t. d(K,A′) < u)).
• Disruption stage: where S performs some creative acts

which are too dissimilar to those known to the world to be
assessed in current contexts, hence new contexts have to be
invented, i.e., ∃K ∈ κ s.t. (@A ∈ α s.t. d(K,A) < u).
• Disorientation stage: where all the creative acts per-
formed by S are too dissimilar to known ones that there is
no context within which to judge any of its activities, i.e.,
∀K ∈ κ, (@A ∈ α s.t. d(K,A) < u).
To use these stages of software development in an impact
model, we note that it is unlikely that software in any stage
other than the discovery or disruption stage will have much
impact. This is because in the earlier stages, S acts too much
like an avatar for the programmer, while in the disorientation
stage, its behaviour is too strange for it to be taken seriously.

Turning next to the possibilities for using the effect on an
ideal audience in judging impact, we assume an audience of
n idealised people passing judgement on a creative act A,
whereby full disclosure of the act itself and the results of
the act are provided to each audience member. We denote
the mean value of the well-being rating over the n people as
m(A), and we propose the following measures which could
be used in impact assessment exercises:

dis(A) = disgust(A) = 1
2n

∑n
i=1 (1− wbi(A))

div(A) = divisiveness(A) = 1
n

∑n
i=1 |wbi(A)−m(A)|

ind(A) = indifference(A) = 1− 1
n

∑n
i=1 |wbi(A)|

pop(A) = popularity(A) = 1
2n

∑n
i=1 (1 + wbi(A))

prov(A) = provocation(A) = 1
n

∑n
i=1 (cei(A))

Each measure returns a value between 0 and 1. We see
that disgust and popularity measure the average distance
from the extremes of the well-being measure, i.e., how much
people dislike and like the creative act (and its output) on
average, respectively. Moreover, the divisiveness measure is
maximised when half the audience thoroughly dislike A and
the other half thoroughly like A, which captures some no-
tion of divisiveness; indifference is maximised when people
have no strong well-being opinion about A; and provoca-
tion records how much thought the audience members are
prepared to put into understanding A. By compounding the
provocation measure with the others, we can attempt to cap-
ture some kinds of impact that creative acts might have:

acquired taste(A) = (pop(A) + prov(A)) /2
instant appeal(A) = (1 + pop(A)− prov(A)) /2
opinion splitting(A) = (1 + div(A)− prov(A)) /2
opinion forming(A) = (div(A) + prov(A)) /2

shock(A) = (1 + dis(A)− prov(A)) /2
subversion(A) = (dis(A) + prov(A)) /2
triviality(A) = (1 + ind(a)− prov(A)) /2

Again, each of these measures returns a value between 0 and
1. It is possible to argue that – with the exception of triviality
– ifA reaches a score towards 1 for any of these measures, it
has had some impact. In particular, there are instant impacts,
modeled by the instant appeal, shock and opinion splitting
measures, which increase as the provocation level decreases.
There are also more considered impacts, modeled by the
acquired taste, opinion forming and subversion measures,
which increase as the provocation level increases. Finally,
triviality measures the situation whereby people come to an
instant indifferent opinion about A.

Proceedings of the Second International Conference on Computational Creativity 93

Comparison Studies
Generative mathematics systems include automated reason-
ing systems such as model generators and theorem provers,
which perform singular creative acts of the form 〈Eg〉 and
〈Cg〉 respectively (if we note that a proof can be interpreted
as an executable program, for instance by proof check-
ers). The most studied mathematics software from a com-
putational creativity perspective have been theory forma-
tion systems, which perform concept formation, conjecture
making, proving/disproving, etc. The first these was AM
(Lenat 1982), which performed theory formation in set the-
ory and number theory. Later, the notions of production
rules, heuristics and concepts, which were conflated in AM,
were identified, extracted and clarified in the theory forma-
tion performed by the HR system (Colton 2002).

AM and HR both perform creative acts of the
form 〈Ag, Cg, Eg〉, where concepts/conjectures are in-
vented/discovered and expressions calculated, with the def-
initions/expressions being used to determine value against
user given aesthetics (known as measures of interestingness,
which drive a heuristic search). In addition, HR performs
theorem proving acts 〈Cg〉 and model generation acts 〈Eg〉,
using third party systems. Under the FACE model, using
a cumulative approach, HR and AM are equally creative as
both generate concepts and expressions. Using a process-
based approach, HR performs more creative acts (proving
and disproving), hence is more creative. Using a qualita-
tive approach, the precision of AM was higher than HR, i.e.,
in theory formation sessions, AM produced higher yields of
interesting concepts/conjectures than HR. However, AM has
been heavily criticised by a number of different authors. In
particular, as discussed in (Colton, Pease, and Ritchie 2001),
with more production rules than concepts formed in any ses-
sion, AM was fine-tuned to produce certain results. This al-
most certainly accounts for the high precision AM enjoyed.
Moreover, while Lenat claimed the invention of novel, inter-
esting mathematical concepts, this was not the case. In con-
trast, HR produces thousands of concepts in a session using
only a handful of production rules, and has contributed to
the mathematical literature in number theory and algebraic
domains. Under the IDEA model, it seems fair to say that
AM never reached the discovery stage, whereas HR has.

In (Colton 2001), HR was used to form theories about
how concepts are formed and assessed, using previously
formed theories as background knowledge. The kinds of
creative acts it undertook were of the form 〈Cp, Cg, Eg〉
and 〈Ag, Cg, Eg〉, which resulted in a new measure of in-
terestingness being added to HR’s core functionality. Us-
ing the cumulative approach within the FACE model, this
version of HR was more creative than the standard one.
Also, in (Pease 2007), Lakatos-style concept refinement
techniques were added to the theory formation routine in
HR, enabling more sophisticated concept formation which
would be seen as more creative under a process-based FACE
analysis. This led to the TM system described in (Colton
and Pease 2005), which produced provably-true variations
of given non-theorems. This therefore creatively extended
model generation from performing a single 〈Eg〉 creative
act to performing multiple 〈Cg, Eg〉 acts.

Generative art systems include those which turn math-
ematical equations such as fractals into abstract art, and
those which apply image filters to a given digital photo-
graph, both of which perform singular creative acts of the
form 〈Eg〉. Most studied within computational creativity
research are automated painter systems and evolutionary
art software. The AARON system (McCorduck 1991) is
the most well-known automated painter system, which has
been used by Harold Cohen to produce valued artworks for
around 40 years. In recent years, The Painting Fool sys-
tem (www.thepaintingfool.com) has also been developed to
automate aspects of the painting process. Both systems per-
form creative acts of the form 〈Cg, Eg〉, with concept for-
mation being the invention of scenes to paint, and concept
expressions being the rendering of those scenes.

In (Krzeczkowska et al. 2010), The Painting Fool was
given the ability to turn news articles into collages via text
extraction and image retrieval. It is possible to argue that this
is a creative extension, because it enabled The Painting Fool
to perform creative acts of the form 〈Ag, Cg, Eg〉, with a lo-
cal aesthetic – namely for the collage to properly illustrate
the theme of the news article – being generated alongside
a concept (a spatial organisation of retrieved images) and an
expression (painting) of that concept. Note that The Painting
Fool does not actually apply the aesthetic measure to the col-
lages it generates. In contrast, in (Colton 2008a), The Paint-
ing Fool explicitly generated mathematical fitness functions
as aesthetic measures, using the HR system, and applied
these measures to evolve scenes (cityscapes and flower ar-
rangements), which were rendered to produce paintings.
Hence, the results from the creative acts here could be de-
scribed as: 〈ag, cg, eg〉 = 〈 fitness function, scene, render 〉.

The NEvAr evolutionary art system (Machado and Car-
doso 2000) can be driven by a person expressing their aes-
thetics considerations while choosing between generated
images. However, NEvAr can also appeal to programmed-
in measures of aesthetic value based on information theo-
retic routines, amongst others. Using such measures, it can
drive its own search for images. We can compare NEvAr to
the Avera evolutionary system described in (Hull and Colton
2007), which has no such aesthetic measures built in, hence
is entirely driven by user choices. Under the FACE model,
NEvAr and Avera both perform creative acts of the form
〈Cg, Eg〉, with the concepts they invent being crossed-over
and mutated genomes which are expressed as images. The
more autonomous nature of NEvAr means that it should be
assessed as more creative under a progress-based assess-
ment, and its usage of aesthetic measures will increase its
precision, hence it should be seen as more creative under a
qualitative assessment.

Neither of the above comparison studies is particularly
comprehensive or acute. In fact, we have not used many of
the tools available from the FACE or IDEA models. How-
ever, it is interesting to note that the systems which are usu-
ally not considered within the computational creativity remit
perform singular generative acts, whereas more creative sys-
tem produce larger tuples of size two or three. In future, we
will produce longer and more precise accounts of creative
software in these and other application domains.

Proceedings of the Second International Conference on Computational Creativity 94

Conclusions and Future Work
We have presented the first draft of computational creativity
theory (CCT), which comprises two descriptive models: (i)
the FACE model for describing creative acts performed by
software in terms of tuples of generative acts, and (ii) the
IDEA model of how such creative acts can have an impact.
We showed how these models could be used to compare both
mathematical invention software and visual art producing
programs. Our main contribution has been to introduce a
formal notion of the creative act, and to make this the centre
of the theory. This has allowed us to generalise various long
held practices in computational creativity research. For in-
stance, rather than comparing just the output of systems, we
propose to compare entire creative acts (which include de-
tails of the output and the processes). Rather than assessing
the value of artefacts produced with respect to given aes-
thetic measures, we propose to assess the impact of creative
acts, where aesthetic measures may be invented. Rather than
describing/assessing individual generative acts, we propose
to study tuples of generative acts comprising creative acts.

There are numerous extensions and refinements to CCT
which we plan for future drafts. For instance, the IDEA
model doesn’t yet capture how creative acts can have im-
pact by changing people’s opinions, for instance by intro-
ducing them to new aesthetics. It also doesn’t model how
people’s opinions change through group discussion, and it
would be a more powerful tool if group dynamics and causal
elements were included. We are also planning a third de-
scriptive model which covers the notion of obfuscation, i.e.,
ways in which software could actively disguise its creative
acts, to manage how much audience members must interpret
them. We also plan to add more formal detail to the notion of
framing information; the process-based way of comparing
creative acts; and the way in which the similarity of creative
acts can be estimated. By being inclusive about creative acts,
we can say that most AI software performs such acts (but
may not be assessed as particularly creative by the FACE
or IDEA models). Hence, we can build on formalisms for
other AI subfields. In particular, we could consider extend-
ing computational learning theory (CLT) with more aspects
of the creative process. The two major aesthetics in CLT are
predictive accuracy of classifiers and their parsimony with
respect to certain algorithmic complexity measures. CLT
could therefore be generalised to using arbitrary aesthetic
measures, and further extended to include the invention of
such aesthetics within the machine learning method.

It is our hope that computational creativity theory will be
adopted for practical purposes when building software, i.e.,
to demonstrate progress from one version of a creative sys-
tem to another, and to compare and contrast different soft-
ware systems for similar creative purposes. In the long term,
we hope that CCT could underpin predictive models for es-
timating in advance how creative a software system will be.

Acknowledgements
We wish to thank the anonymous reviewers for their helpful
and encouraging comments, and members of the computa-
tional creativity steering group for their valuable input.

References
Angluin, D. 1992. Computational learning theory: Survey and
selected bibliography. Proc. 24th ACM symp. on Theory of Comp..
Boden, M. 2003. The Creative Mind: Myths and Mechanisms
(second edition). Routledge.
Buchanan, B. 2001. Creativity at the meta-level. AI Mag. 22(3).
Cardoso, A.; Veale, T.; and Wiggins, G. 2009. Converging on
the divergent: The history (and future) of the international joint
workshops in computational creativity. AI Magazine 30(3).
Colton, S., and Pease, A. 2005. The TM system for repairing
non-theorems. ENTCS, 125(3).
Colton, S.; Pease, A.; and Ritchie, G. 2001. The effect of input
knowledge on creativity. Proc. ICCBR’01 Wshop on Creat. Syst..
Colton, S. 2001. Experiments in meta-theory formation. In Proc. of
the AISB’01 Symposium on AI and Creativity in Arts and Science.
Colton, S. 2002. Auto. Theory Formation in Pure Maths. Springer.
Colton, S. 2008a. Automatic invention of fitness functions, with
application to scene generation. In Proc. of the EvoMusArt Wshop.
Colton, S. 2008. Creativity vs the perception of creativity in com-
putational systems. Proc. AAAI Spring Symp. on Creative Systems.
Colton, S. 2009. Seven catchy phrases for computational creativity
research. In Proceedings of the Dagstuhl Seminar: Computational
Creativity: An Interdisciplinary Approach.
Hull, M., and Colton, S. 2007. Towards a general framework for
program generation in creative domains. In Proceedings of the 4th
International Joint Workshop on Computational Creativity.
Krzeczkowska, A.; El-Hage, J.; Colton, S.; and Clark, S. 2010.
Automated collage generation - with intent. In Proceedings of the
1st International Conference on Computational Creativity.
Lenat, D. 1982. AM: Discovery in mathematics as heuristic search.
In Knowledge-Based Systems in AI. McGraw-Hill.
Macedo, L., and Cardoso, A. 2002. Assessing creativity: the im-
portance of unexpected novelty. Proc. ECAI Wshop on Creat. Syst..
Machado, P., and Cardoso, A. 2000. NEvAr – the assessment of an
evolutionary art tool. In Proc. of the AISB Symp. on Creative and
Cultural Aspects and Applications of AI and Cognitive Science.
McCorduck, P. 1991. AARON’s Code: Meta-Art, Artificial Intelli-
gence, and the Work of Harold Cohen. W.H. Freeman and Co.
Mitchell, T. 1997. Machine Learning. McGraw Hill.
Pease, A. 2007. A Computational Model of Lakatos-style Reason-
ing. Ph.D., School of Informatics, University of Edinburgh.
Pease, A., and Colton, S. 2011a. CCT: Inspirations behind the
FACE and IDEA models In Proc. of the Int. Conf. on Comp. Creat.
Pease, A., and Colton, S. 2011. On impact and evaluation in com-
putational creativity In Proc. of the AISB symp. on AI and Philos.
Ritchie, G. 2007. Some empirical criteria for attributing creativity
to a computer program. Minds and Machines 17.
Schapire, R. 1990. Strength of weak learnability. Mach. Learn. 5.
Sloman, A. 1978. The Computer Revolution in Philosophy. The
Harvester Press.
Thagard, P. 1993. Comp. Philosophy of Science. MIT Press.
Uzzi, B., and Spiro, J. 2005. Collaboration and creativity: The
small world problem. Am. Journal of Sociology 111(2).
Valiant, L. 1984. A theory of the learnable. Comm. ACM 27(11).
Wiggins, G. 2006. Searching for computational creativity. New
Generation Computing 24(3).
Wundt, W. 1874. Grundzuge der Phvsiologischen Psychologie.
Engelmann.

Proceedings of the Second International Conference on Computational Creativity 95

