
Multiobjective Optimization for Meaningful Metrical Poetry

Fahrurrozi Rahman and Ruli Manurung
Faculty of Computer Science

Universitas Indonesia
Depok 16424, Indonesia

rahman10@ui.ac.id, maruli@cs.ui.ac.id

Abstract
This paper reports our experiments to properly handle
the multiobjective optimization nature of poetry gener-
ation — as defined in Manurung (2003) — as a stochas-
tic search that seeks to produce a text that simultane-
ously satisfies the properties of grammaticality, mean-
ingfulness, and poeticness. In particular, we employ
the SPEA2 Algorithm (Zitzler, Laumanns, and Thiele
2001). Various results show that it consistently outper-
forms our previous system in its ability to generate a
meaningful metrical text according to given semantic
and metre specifications, and in some cases is able to
generate the intended text, whereas our previous system
fails to do so. However, it is still unable to reach the
goal of generating an entire poem. We conclude with
suggestions for further work to address this shortcom-
ing.

Introduction
Manurung (2003) presents a model of poetry generation as
a stochastic search process that seeks to produce a text that
simultaneously satisfies various properties, as well as MCG-
ONAGALL, an implementation of the model. It lays out
the representational framework, and defines evaluation func-
tions that independently assess the ability of a text to (i)
convey a given semantics whilst (ii) conforming to a given
rhythmic pattern. However, it fails to account for the multi-
objective optimization nature of this model of poetry genera-
tion: form and function in poetry are highly interdependent,
and as such, it is incorrect to optimize for both by optimiz-
ing a simple linear combination of the separate evaluation
functions.

In this paper we report our efforts to properly handle
the multiobjective optimization nature of poetry as stochas-
tic search. In particular, the Strength Pareto Evolutionary
Algorithm (Zitzler, Laumanns, and Thiele 2001), one of
the top-performing multiobjective optimization algorithms,
is used. We start by introducing the model of poetry as a
text that embodies meaningfulness, grammaticality, and po-
eticness, and a model of its generation as a multiobjective
optimization stochastic search process. We then describe
MCGONAGALL, an implemented system that adopts this
model and uses genetic algorithms (Mitchell 1996) to gener-
ate texts that are syntactically well-formed, meet certain pre-
specified patterns of metre, and broadly convey some given

meaning. Finally, we present results of some experiments
we conducted given various inputs.

Poetry writing as multiobjective optimization
Despite the vast number of different definitions of poetry,
one can argue that a common characteristic is the presence
of a strong interaction, or unity, between the form and con-
tent of a poem. The diction and grammatical construction of
a poem affects the message that it conveys to the reader over
and above its obvious denotative meaning (Levin 1962).
As such, Manurung (2003) argues that poetry generation is
much harder than conventional NLG (natural language gen-
eration), which typically operates on the assumption that a
text serves as a medium for conveying its semantic content.

To account for all this, Manurung proposes a general
model of a poem as a natural language artifact that simulta-
neously satisfies the constraints of grammaticality, meaning-
fulness, and poeticness. A grammatical poem must be syn-
tactically well-formed. This might seem obvious for natural
language texts, but it must be stated explicitly in the context
of poetry. Syntactic well-formedness in poetry may well be
different from that of ordinary texts (cf. figurative language),
but it is still governed by rules. A meaningful poem must
intentionally convey some conceptual message that is mean-
ingful under some interpretation. Finally, poeticness states
that a poem must exhibit features that distinguishes it from
non-poetic text. We follow Manurung (2003) in concentrat-
ing on the concretely observable aspect of rhythmic patterns,
or metre.

This characterization suggests a ‘classical’ account of po-
etry where adherence to regular patterns in form is essen-
tial. This avoids some of the complications of imagery or
interpretation that are central to assessing more free forms
of verse, and ensures that many of the important aspects of
a text can be defined formally. Figure 1 shows a prototyp-
ical example of this genre — and one that we will revisit
throughout this paper, i.e. a limerick by Arthur H.R. Buller,
first published in Punch magazine on the 19th December
1923 (Knowles 2009).

Evolving poetry
Poetry generation can be viewed as a specialized instance
of natural language generation, or NLG, i.e. the develop-
ment of computer systems that can produce understandable

Proceedings of the Second International Conference on Computational Creativity 4

There was a young lady called Bright
who could travel much faster than light.

She set out one day
in a relative way

and re turned on the pre vious night.

Figure 1: Arthur Buller’s ‘relativity’ limerick

texts in a human language, starting from some nonlinguistic
representation of a communicative goal as input (Reiter and
Dale 2000). A considerable amount of research has been
done in NLG on the so-called “generation gap” problem,
where interdependent decisions must be made across vari-
ous levels of linguistic representation. This problem is ex-
acerbated by the unity of poetry. For example, with regards
to metre, every single linguistic decision potentially deter-
mines the success of a poem in fitting a regular defined pat-
tern.

Poetry generation can be viewed as a state space search
problem, where a state in the search space is a possible text
with all its underlying representation, from semantics all
the way down to phonetics. A goal state satisfies the three
constraints of meaningfulness, grammaticality, and poetic-
ness. Such a search space is undoubtedly immense, even —
given the recursive structures in natural language — infinite.
Stochastic search is a heuristic search strategy that relies on
the random traversal of a search space with a bias towards
more promising solutions. It has become increasingly popu-
lar for solving computationally hard combinatorial problems
such as constraint satisfaction, and has been shown to out-
perform deterministic approaches in a number of domains.

The genetic algorithm, or GA, is a particularly well-
known instance of such a strategy, which is essentially an
iteration of two phases, evaluation and evolution, applied
to an ordered set, called the population, of candidate solu-
tions (Mitchell 1996).

Multiobjective optimization
There are two ways that constraints can be implemented in
a GA: either invalid solutions are totally excluded from the
search space, or they are admitted to the space but with a
bias against them. In MCGONAGALL, grammaticality is
treated as a prerequisite for meaningfulness and poeticness;
that is, grammaticality is implemented as an absolute con-
straint on the items admitted to the search space, through
the design of representation and genetic operators. The re-
maining constraints of meaningfulness and poeticnes will be
implemented as preferences via the evaluation functions of
the genetic algorithm.

Given the two constraints to be optimized, poetry gen-
eration is thus an instance of multiobjective optimization.
The Strength Pareto Evolutionary Algorithm (SPEA) 2 is
an algorithm which handles multiobjective optimization. It
is based on its predecessor, SPEA, which still has some
weaknesses such as dealing with fitness assignment, density
estimation and archive truncation (Zitzler, Laumanns, and
Thiele 2001).

SPEA originally uses a population and archive set that is
maintained per iteration. Initially the archive set is empty
and shall contain any nondominated individuals from the
previous population and archive in the next iteration. Fur-
thermore, if the size of the archive exceeds a predefined
limit, the archive will be truncated without destroying its
characteristics. SPEA2 overcomes the problem of fitness as-
signment and density estimation in SPEA by taking account
of both dominating and dominated values for each individ-
ual.

An individual a ∈ X is said to dominate another individ-
ual b ∈ X (also written as a � b) if and only if

∀i ∈ {1, . . . , n} : fi(a) ≥ fi(b) and
∃j ∈ {1, . . . , n} : fj(a) > fj(b)

for each objective function (f1, . . . , fn).
From the definition above, the strength (dominating)

value, S(i), for individuals in the population Pt and the
archive At can be defined by:

S(i) =| {j | j ∈ Pt +At ∧ i � j |

where | . | indicates the cardinality of a set and the symbol
+ denotes the multiset union.

Based on the strength value, the raw (dominated) value of
an individual, R(i), is calculated as:

R(i) =
∑

j∈Pt+At,j�i
S(j)

The smaller the raw value the better it is, i.e. R(i) = 0 means
the individual is a nondominated one.

The density is obtained using an adaptation of the k-th
nearest neighbor method, where the density estimation is the
inverse of the distance to the k-th nearest neighbor :

D(i) =
1

σk
i + 2

Here σk
i denotes the k-th nearest neighbor for individual i to

all individuals j in the population and archive set. As com-
monly used, k equals to the square root of the population and
archive size, or k =

√
| P | + | A |.

Adding the density value to the raw value of an individual
yields its fitness value :

F (i) = D(i) +R(i)

Unlike SPEA, SPEA2 preserves the number of individu-
als in the archive to be constant. If the number of nondomi-
nated individuals is less than the archive size, the best domi-
nated individuals in the previous archive and population are
copied to the archive until the archive is full. If the opposite
happens, each individual in the archive is sorted based on its
k-th nearest neighbor value and the one with the minimum
distance will repeatedly be removed from the archive. This
method prevents boundary solutions being removed. This
archive set will be the solution set when the stopping crite-
rion is satisfied.

Proceedings of the Second International Conference on Computational Creativity 5

MCGONAGALL: an evolutionary poet

In this section we will briefly describe how MCGONAGALL
ensures grammaticality through its linguistic representation
and genetic operators, and how it optimizes poeticness and
meaningfulness.

Firstly, linguistic structures are represented using lexical-
ized tree-adjoining grammar, or LTAG. These grammars are
based on the composition of elementary trees, of which there
are two types, i.e. initial trees and auxiliary trees. These
trees represent minimal linguistic structures in the sense that
they account for all and only the arguments of the head of the
syntactic constituent they represent, e.g. a sentential struc-
ture would contain a verb and all its complements.

In LTAG, the derivation tree is a data structure that
records the composition of elementary trees using substitu-
tion and adjunction. The derived tree, on the other hand, is
the phrase structure tree created by performing all the op-
erations specified within the deriviation tree; in a sense, the
derived tree is the result of generation, whereas the deriva-
tion tree is a trace of how it was built up. The derivation tree
can therefore be seen as the basic formal object that is con-
structed during sentence generation from a semantic repre-
sentation (Joshi 1987), and is the appropriate data structure
on which to perform nonmonotonic operations in a stochas-
tic generation framework. Essentially, the LTAG derivation
tree forms the genotypic representation of a candidate solu-
tion, from which one can compute the phenotypic informa-
tion of semantic and prosodic features via the derived tree.

A simple ‘flat’ semantic representation (Hobbs 1985) is
used. A semantic expression is a set of first order logic liter-
als, which is logically interpreted as a conjunction of all its
members. The arguments of these literals represent concepts
in the domain such as objects and events, while the func-
tors state relations between these concepts. For example,
the representation of the semantics of the sentence “John
loves Mary” is {john(j),mary(m), love(l, j,m)}, where
l is the event of j, who has the property of ‘being John’, lov-
ing m, who has the property of ‘being Mary’. The semantic
expression of a tree is the union of the semantic expressions
of its constituent elementary trees, with appropriate bind-
ing of variables during substitution and adjunction to control
predicate-argument structure.

Finally, each word is associated with its phonetic spelling,
taken from the CMU pronouncing dictionary. Vowels are
marked for lexical stress, with 0 for no stress, 1 for primary
stress, and 2 for secondary stress. For example, the spelling
of ‘dictionary’ is [D,IH1,K,SH,AH0,N,EH2,R,IY0].
For monosyllables, closed class words (e.g. the) receive no
stress, and open class words (e.g. cat) primary stress.

Genetic mutation operators that randomly add or delete
subtrees of a derivation tree have been introduced to move
through the search space. In addition, a subtree swapping
operator that randomly swaps two derivation tree subtrees is
also implemented. When these subtrees belong to the same
derivation tree, it behaves as a mutator, otherwise, it is used
as a crossover operator.

[w,s,w,w,s,w,w,s,b,
w,s,w,w,s,w,w,s,b,

w,s,w,w,s,b,
w,s,w,w,s,b,

w,s,w,w,s,w,w,s,b]

Figure 2: Target form for a limerick

Evaluating poeticness

In this paper, poeticness is taken to be the well-defined and
objectively observable metre, i.e. regular patterns in the
rhythm of the lines. Figure 1 shows the metre of Buller’s
limerick, with stressed syllables in bold type, unstressed syl-
lables in normal type, and syllables extraneous to the under-
lying metre in italics. The first, second, and fifth lines have
the same number of stressed syllables, with a regular pat-
tern of ‘beats’ at intervals of two unstressed syllables, and
likewise for the third and fourth lines.

The system tries to maximize the similarity between the
target form, a specification of the required metrical con-
straints, and the candidate form, the stress pattern of a can-
didate solution. The target form is encoded as a list of target
syllables, notated as follows: w (‘weak’) is an unstressed
syllable, s (‘strong’) is a stressed syllable, and b indicates
a linebreak. Figure 2 shows the example target form for a
limerick(formatted into lines for readability purposes).

The candidate form, a representation of the metre exhib-
ited by a candidate solution, is encoded as a list of candidate
syllables obtained from a derived tree by concatenating the
phonetic spellings at its leaf nodes.

To compute the similarity between the target and candi-
date forms, we use the minimum edit distance, in which the
distance between two strings is the minimal sum of costs
of operations (symbol insertion, deletion, and substitution)
that transform one string into another. The minimum edit
distance can be efficiently computed in a way that produces
a pairwise syllable alignment between candidate and target,
thus indicating the operations that yield the minimum cost.
The operation costs for substitution, insertion, and deletion
of syllables have been assigned to reflect our intuitions in
perceiving poetic metre. Our candidate forms indicate lexi-
cal stress patterns as if the words were pronounced in isola-
tion. Within poetic text, context can affect stress. To com-
pensate for this, the system iterates over the minimum edit
distance alignment, detecting certain patterns and adjusting
the similarity value. Two types of patterns are implemented:
two consecutive deletions, or two consecutive insertions, of
non-linebreaks, increases the cost by 1; the destressing of a
stressed candidate syllable adjacent to a stressed target syl-
lable, or the stressing of an unstressed candidate syllable ad-
jacent to an unstressed target syllable, decreases the cost by
1.

The metre evaluation function, Fmetre, takes the value
computed by the minimum edit distance algorithm, adjusts
it using the context-sensitive compensation scheme, and nor-
malizes it to the interval [0,1].

Proceedings of the Second International Conference on Computational Creativity 6

Line 1: There was a young lady called Bright.
relativity1:
{lady(l), young(l), name(l, b), bright(b)}
Line 2: She could travel much faster than light.
relativity2:
{travel(t, l), faster(f, t, li), light(li),much(f), can(t)}
Line 3: She set out one day in a relative way.
relativity3:
{leave(le, l), relative(le), oneday(le)}
Line 4: She returned on the previous night.
relativity4:
{return(r, l), on(r, n), night(n), previous(n)}

Table 1: Modified limerick consisting of four sentences

Evaluating meaningfulness
An approach to meaningfulness is essentially similar to the
above approach to poeticness: try to maximize the similarity
between the target semantics, a specification of the meaning
an optimal solution should convey, and a candidate seman-
tics, the meaning conveyed by a candidate solution. This
requires a method for computing the similarity between two
semantic expressions.

Love (2000) proposes two factors that must be consid-
ered: structural similarity and conceptual similarity. Struc-
tural similarity measures the degree of isomorphism be-
tween two semantic expressions. Conceptual similarity is
a measure of relatedness between two concepts (logical lit-
erals).

Computing a structural similarity mapping between two
expressions is an instance of the NP-hard graph isomor-
phism problem. However, Manurung implemented a greedy
algorithm that runs in O(N3), based on Gentner’s structure
mapping theory (Falkenhainer, Forbus, and Gentner 1989).
It takes two sets of logical literals, Starget and Scandidate,
and attempts to ‘align’ the literals. In doing this, it creates
various variable bindings and also two sets of unmatched lit-
erals that are left over (from Starget and Scandidate).

A function Fsem, normalised to [0,1], is then applied to
compute a score based on various aspects of the best match
that has been achieved; this is based on Love’s computa-
tional model of similarity (Love 2000).

Experiments in multiobjective optimization
For our experiments, we used Buller’s ‘relativity’ limerick
shown in Figure 1 as the target to be generated. The seman-
tics and metre of this limerick are encoded and provided to
the system as the target semantics and target metre.

Furthermore, aside from the task of generating the entire
limerick, we experiment with the generation of this limer-
ick on a line-by-line basis. Thus, we have modified the text
slightly so that it consists of four complete sentences which
our system can generate individually. These four sentences
are shown in Table 1, along with the respective semantic tar-
gets, relativity1 to relativity4.

This modified limerick preserves the metre and syllable
count of the original. However, the third and fourth lines

from the original limerick have now been merged into one
line. The form targets for lines 1, 2, and 4 of the modified
limerick are the same, as follows:

limerickline1: [w,s,w,w,s,w,w,s,b]

The form target for line 3 is as follows:

limerickline2: [w,s,w,w,s,w,s,w,w,s,b]

To summarize, we will be using relativity1,
relativity2, and relativity4 as Starget along
with limerickline1 as Ftarget to generate lines 1, 2,
and 4, relativity3 as Starget and limerickline2
as Ftarget to generate line 3, and finally, the union of
relativity1 to relativity4 as Starget along with
the limerick pattern in 2 as Ftarget to generate the entire
modified limerick.

Experimental setup
For each target, we ran the genetic algorithm using both
the SPEA2 multiobjective optimization algorithm and the
algorithm used in (Manurung 2003), i.e. where the fit-
ness score being optimized is simply a linear combina-
tion of the semantic and metre evaluation functions, i.e.
(Fsem + Fmetre)/2. Moreover, the GA employs propor-
tionate selection, which assigns a distribution that accords
parents a probability to reproduce that is proportional to its
fitness (Bäck, Fogel, and Michalewicz 1997), where indi-
viduals are sampled from this distribution using stochastic
universal sampling, which minimises chance fluctuations in
sampling, using an elitist population of 20% of the entire
population. All other parameters were also adapted from
Manurung (2003), i.e. the population size was set to 40, each
test was run ten times, each run lasted for 500 iterations,
the mutation operators used, along with their probabilities,
were creation (0.5), adjunction (0.3), and deletion (0.2). For
crossover, the subtree swapping operator was used. The lin-
guistic resources used, i.e. grammar and lexicon, are un-
changed from MCGONAGALL.

Results and discussion
Table 2 shows a statistical summary of the best fitness scores
obtained during the various experiments. It shows the min-
imum, maximum, mean, and standard deviation of the best
fitness scores obtained after the last iteration across the ten
runs of each test. To further confirm the results obtained on
Buller’s limerick, we experimented with a different set of
target semantics and metre, namely Hillaire Belloc’s “The
Lion”, a poem that is used throughout Manurung (2003). We
used two variations, the “half” variation which makes use of
the first two lines of Belloc’s poem, and the “full” variation
which uses all four lines.

Figure 3 shows, over time, the maximum and average of
the best fitness scores across all the GA runs for the gener-
ation of limerick line 4. Finally, Tables 3 and 4 show the
actual highest-scoring solutions from the various limerick
tests. It shows the fitness score, text, and semantic mapping
of Starget to Scandidate. Note that for all these experimental
results, the fitness scores reported for the SPEA2 results are
in fact (Fsem+Fmetre)/2. This is merely for the purpose of

Proceedings of the Second International Conference on Computational Creativity 7

Test Min Max Mean Std.Dev
Line 1
Linear combination 0.57 0.77 0.60 0.06
SPEA2 0.69 0.88 0.76 0.08
Line 2
Linear combination 0.52 0.62 0.56 0.03
SPEA2 0.56 0.88 0.74 0.12
Line 3
Linear combination 0.52 0.61 0.53 0.03
SPEA2 0.6 0.87 0.79 0.10
Line 4
Linear combination 0.57 0.69 0.65 0.05
SPEA2 0.59 0.83 0.74 0.07
Entire
Linear combination 0.42 0.61 0.51 0.05
SPEA2 0.49 0.62 0.55 0.04
Lion “half”
Linear combination 0.45 0.70 0.57 0.07
SPEA2 0.61 0.71 0.68 0.03
Lion “full”
Linear combination 0.47 0.53 0.51 0.02
SPEA2 0.56 0.65 0.60 0.03

Table 2: Statistical summary of test results

presenting the results in such a way that it is meaningful to
compare them against the linear combination fitness. During
the evolution phase of SPEA2, it uses a Pareto-based fitness
score based on population domination statistics.

From all of these experimental results it can be observed
that the GA consistently performs better using the SPEA2
algorithm compared to the simple linear combination used
in (Manurung 2003). This can be easily seen in Figure 3,
where the average and best scores using SPEA2 are always
higher than the average and best scores using the linear com-
bination. This pattern recurs in the plots for all the other
targets. Note that none of the runs achieve a perfect fitness
score of 1.0. This is to be expected, given that the target text

0

0.2

0.4

0.6

0.8

1

1 51 101 151 201 251 301 351 401 451

Relativity limerick line 4

Max (linear combination)

Average (linear combination)

Max (SPEA2)

Average (SPEA2)

Figure 3: Fitness scores progression for limerick line 4

Line 1 (Linear combination) fitness: 0.77
Text: A lady called Bright is on Bright.
Matched: {name(l, b), lady(l), bright(b)}
Umatched: {young(l)}
Line 1 (SPEA2) fitness: 0.88
Text: There was the young lady called Bright.
Matched: {name(l, b), lady(l), young(l), bright(b)}
Umatched: {}
Line 2 (Linear combination) fitness: 0.62
Text: It melted her. Light could be small.
Matched: {can(t), light(li)}
Umatched: {travel(t, l), faster(f, t, li),much(f)}
Line 2 (SPEA2) fitness: 0.88
Text: They could travel much faster than light.
Matched: {faster(f, t, li), travel(t, l),
much(f), light(li), can(t)}
Umatched: {}
Line 3 (Linear combination) fitness: 0.61
Text: An animal left. An animal left.
Matched: {leave(le, l)}
Umatched: {relative(le), oneday(le)}
Line 3 (SPEA2) fitness: 0.87
Text: They relatively left one day. It survived.
Matched: {leave(le, l), oneday(le), relative(le)}
Umatched: {}
Line 4 (Linear combination) fitness: 0.69
Text: An animal dwells on a night.
Matched: {on(r, n), night(n)}
Umatched: {return(r, l), previous(n)}
Line 4 (SPEA2) fitness: 0.83
Text: They left. On the night, she returned.
Matched: {on(r, n), return(r, l), night(n)}
Umatched: {previous(n)}

Table 3: Best found solution for limerick lines 1 to 4

Entire limerick (Linear combination) fitness: 0.61
Text: A lady resides on a night.
A night could be relative. Facts,
that could be on Bright,
could wander on Bright.
A lady resides on the light.
Matched: {on(r, n), can(t), bright(b), light(li),
lady(l), relative(le), night(n)}
Umatched: {young(l), name(l, b), travel(t, l),
faster(f, t, li),much(f), leave(le, l), oneday(le),
return(r, l), previous(n)}
Entire limerick (SPEA2) fitness: 0.62
Fitness: 0.62
Text: She could left much faster than men.
There is the young lady, who with men,
on the evening, returned,
called previous Bright.
She one day left much faster than them.
Matched: {name(l, b), on(r, n), faster(f, t, li), lady(l),
young(l), return(r, l), bright(b), night(n),much(f),
can(t), oneday(le)}
Umatched: {travel(t, l), light(li), leave(le, l),
relative(le), previous(n)}

Table 4: Best found solution for entire limerick

Proceedings of the Second International Conference on Computational Creativity 8

itself, i.e. Buller’s limerick, is suboptimal from a rhythmic
perspective. Note, for example, the extraneous leading syl-
lables in lines 2, 4, and 5 of Figure 1, and the fact that open
class words such as ‘young’ and ‘called’ receive no stress
in line 1. All of these incur penalties when measured by
Fmetre against the target metre in Figure 2.

Examining the best solutions from Table 3, it can be seen
that the linear combination GA satisfies the metre pattern
perfectly (modulo the destressing of the open class word
‘called’ in line 1), at the expense of some unrealized seman-
tics, i.e. unmatched literals in all cases. This would suggest
that the linear combination approach hinders the growth of
the rarer opportunities to satisfy the target semantics. On the
other hand, SPEA2 is able to achieve perfect semantics in all
but the last line, however does occasionally introduce extra-
neous syllables (lines 2 and 3). Since our system ignores
the gender and number of pronouns, the fact that some lines
contain they as opposed to she is not penalized.

Putting it all together, the result of generating the limerick
line-by-line using the linear combination approach in Manu-
rung (2003) is as follows:
A lady called Bright is on Bright.
It melted her. Light could be small.
An animal left. An animal left.
An animal dwells on a night.
whereas using SPEA2 it is as follows:
There was the young lady called Bright.
They could travel much faster than light.
They relatively left one day. It survived.
They left. On the night, she returned.

Turning our attention to the generation of the entire lim-
erick, we can see that both approaches still fail to generate a
successful poem (Table 4). The same failure occurs for the
generation of Belloc’s “Lion” poem. This may suggest that
some form of discourse modelling is imperative if the ap-
proach is expected to generate anything beyond the sentence
level. The ability of MCGONAGALL to successfully gener-
ate a text is directly determined by the ability of its evalu-
ation functions to discriminate between “good” and “bad”
solutions. Since our evaluation functions only measure cov-
erage of propositional semantics, it has no way of discerning
between coherent and incoherent texts. When attempting to
generate longer multi-sentence texts, such as limericks, this
approach appears rather naive. One solution is to construct
an evaluation function that accounts for discourse.

Summary and future work
This paper has shown how the multiobjective optimization
nature of poetry generation as a stochastic search that seeks
to produce a text that simultaneously satisfies the properties
of grammaticality, meaningfulness, and poeticness, needs to
be handled by appropriate algorithms, such as the SPEA2
algorithm. Our results show that it consistently outperforms
the previous system in its ability to generate a meaningful
metrical text according to given semantic and metre speci-
fications. It is quite successful in generating short one-line
sentences.

Unfortunately, it is still unable to find a solution given the
much harder task of generating an entire limerick. As dis-
cussed in the previous section, we believe this can be recti-
fied by augmenting the evolutionary algorithm with evalua-
tion functions that account for discourse models. One idea is
to employ Rhetorical Structure Theory (Mann and Thomp-
son 1987), which is quite often used in NLG systems, but
rarely in a discriminative model. Another exciting avenue is
to explore the possibilities of integrating the work of story
generation systems, which explicitly aim to generate narra-
tives, e.g. (Gervás et al. 2006).

References
Bäck, T.; Fogel, D.; and Michalewicz, Z., eds. 1997. Hand-
book of Evolutionary Computation. Oxford University Press
and Institute of Physics Publishing.
Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989. The
structure-mapping engine: Algorithm and examples. Artifi-
cial Intelligence 41:1–63.
Gervás, P.; Lönneker-Rodman, B.; Meister, J. C.; and
Peinado, F. 2006. Narrative models: Narratology meets arti-
ficial intelligence. In Proceedings of the LREC-06 workshop
Toward Computational Models of Literary Analysis.
Hobbs, J. 1985. Ontological promiscuity. In Proceedings
of the 23rd Annual Meeting of the Association for Computa-
tional Linguistics, 61–69. Chicago, USA: The Association
for Computational Linguistics.
Joshi, A. K. 1987. The relevance of tree adjoining grammars
to generation. In Kempen, G., ed., Natural Language Gen-
eration: New Results in Artificial Intellligence. Dordrecht,
The Netherlands: Martinus Nijhoff Press. 233–252.
Knowles, E., ed. 2009. The Oxford Dictionary of Quota-
tions. Oxford University Press, 7 edition.
Levin, S. R. 1962. Linguistic Structures in Poetry. Num-
ber 23 in Janua Linguarum. ’s-Gravenhage: Mouton.
Love, B. C. 2000. A computational level theory of similarity.
In Proceedings of the 22nd Annual Meeting of the Cognitive
Science Society, 316–321.
Mann, W. C., and Thompson, S. A. 1987. Rhetorical struc-
ture theory: A framework for the analysis of texts. Technical
Report RS-87-185, USC Information Science Institute, Ma-
rina Del Rey, UK.
Manurung, H. M. 2003. An Evolutionary Algorithm Ap-
proach to Poetry Generation. Ph.D. Dissertation, School of
Informatics, University of Edinburgh.
Mitchell, M. 1996. An Introduction to Genetic Algorithms.
Cambridge, USA: MIT Press.
Reiter, E., and Dale, R. 2000. Building Natural Language
Generation Systems. Cambridge, UK: Cambridge Univer-
sity Press, first edition.
Zitzler, E.; Laumanns, M.; and Thiele, L. 2001. SPEA2: Im-
proving the strength pareto evolutionary algorithm. Techni-
cal Report TIK-Report 103, Computer Engineering and Net-
works Laboratory (TIK), Department of Electrical Engineer-
ing, Swiss Federal Institute of Technology (ETH) Zurich.

Proceedings of the Second International Conference on Computational Creativity 9

