
Using Discovered, Polyphonic Patterns

to Filter Computer-generated Music

Tom Collins, Robin Laney, Alistair Willis, and Paul Garthwaite

The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
t.e.collins@open.ac.uk

Abstract. A metric for evaluating the creativity of a music-generating
system is presented, the objective being to generate mazurka-style music
that inherits salient patterns from an original excerpt by Frédéric Chopin.
The metric acts as a filter within our overall system, causing rejection of
generated passages that do not inherit salient patterns, until a generated
passage survives. Over fifty iterations, the mean number of generations
required until survival was 12.7, with standard deviation 13.2. In the
interests of clarity and replicability, the system is described with ref-
erence to specific excerpts of music. Four concepts—Markov modelling
for generation, pattern discovery, pattern quantification, and statistical
testing—are presented quite distinctly, so that the reader might adopt
(or ignore) each concept as they wish.

1 Aim and Motivation

A stylistic composition (or pastiche) is a work similar in style to that of an-

other composer or period. Examples exist in ‘classical’ music (Sergey Prokofiev’s
Symphony No. 1 is in the style of Joseph Haydn) as well as in music for film
and television, and in educational establishments, where stylistic composition is
taught ‘as a means of furthering students’ historical and analytical understand-
ing’ (Cochrane 2009). If a computational system produces successful stylistic
compositions (‘successful’ in the sense of the ‘indistinguishability test’ of Pearce
and Wiggins (2001) for instance), then it is capable of a task that, in the human
sphere, is labelled creative. The creativity metric presented below is intended as
preliminary to (not a replacement of) an ‘indistinguishability test’.

This paper relates ongoing research on a computational system with the aim
of modelling a musical style.1 The motivation for the system is as follows. Cope
(2005, pp. 87-95) describes a data-driven model that can be used to generate
passages of music in the style of Johann Sebastian Bach’s chorale harmonisations.
His model can be cast as a first-order Markov chain and we have replicated this
aspect of his model, with some modifications (see Sect. 2 for details). Our method
is applied to a database consisting of Frédéric Chopin’s mazurkas. This choice

1 See Pearce et al. (2002) on how computational modelling of musical styles constitutes
one motivation for automating the compositional process.

1

of database is refreshing (Bach chorales have become the standard choice) and
explores the range of music in which Markov chain models can be applied.

A passage generated by a first-order Markov model ‘often wanders with un-
characteristic phrase lengths and with no real musical logic existing beyond the
beat-to-beat syntax’ (Cope 2005, p. 91) and Cope discusses strategies for ad-
dressing this problem. One such strategy—of incorporating musical ‘allusions’
into generated passages—has been criticised for having an implementation that
does not use robust, e�cient algorithms from the literature (Wiggins 2008,
p. 112-113).

Our system is motivated by a desire to investigate the above ‘allusion’ strat-
egy, armed with more robust algorithms (or their underlying concepts), and is
illustrated in Fig. 1. Subsequent sections describe various parts of this schematic,
as indicated by the dotted boxes, but an overview here may be helpful. By an
‘allusion’ we mean that an excerpt is chosen from one of 49 Chopin mazurkas
(bottom left of Fig. 1), with the objective of generating mazurka-style music that

inherits salient patterns from the chosen excerpt.2 To this end salient patterns
are handpicked from the chosen excerpt, using the concept of maximal trans-

latable pattern (Meredith et al. 2002). This is the meaning of the box labelled
‘pattern discovery’ in Fig. 1. The discovered patterns are then stored as a ‘tem-
plate’. Meanwhile the dotted box for Sect. 2 in Fig. 1 indicates that a passage
(of approximately the same length as the chosen excerpt) can be generated on
demand. Illustrated by the diamond box in Fig. 1, the same type of patterns
that were discovered and stored as a template are now sought algorithmically in
the computer-generated passage. For a computer-generated passage to survive
the filtering process, we ask that it exhibits the same type of patterns as were
discovered in the chosen excerpt, occurring the same number of times and in
similar locations relative to the duration of the passage as a whole. In Sect. 4
the concept of ontime percentage and the Wilcoxon two-sample test are em-
ployed to quantify and compare instances of the same type of pattern occurring
in di↵erent passages of music.

!"#"$"%&'()*#"+*+*,'

-.)/+*0%'1"2345"%'

6&(#7'8'

9)41":)*');'

<"45)='1)>&?'

@"%%",&');'13%+('

,&*&4"#&>'$A'1)>&?'

BC(&4/#'(.)%&*';4)1'

"'-.)/+*'1"2345"'

6&(#7'D'

@"E&4*'

>+%()=&4A'

@"E&4*%'+*'&C(&4/#'

%#)4&>'"%'#&1/?"#&'

6&(#7'F'

G&*&4"#&>'

/"%%",&'

%34=+=&%'

H?#&4+*,'

!)&%7'

,&*&4"#&>'

/"%%",&'H#'

#&1/?"#&I'

J)'

K&%'

Fig. 1. A schematic of the system to be described.

2 We would like to thank Craig Stuart Sapp for creating these kern scores and MIDI
files, hosted at http://kern.humdrum.net. The database used in this paper consists
of opuses 6, 7, 17, 24, 30, 33, 41, 50, 56, 59, 63, 67, and 68.

2

2 Generation of Computer Music Using a Markov Model

Since initial attempts to marry music theory and Markov chains (Hiller and
Isaacson 1959), their application to music analysis and composition has received
considerable attention (see Loy 2005 for an accessible introduction and Norris
1997 for the supporting mathematics). The generation of a so-called ‘Markovian
composition’ is outlined now. Suppose that we join the Markovian composition
partway through, and that the chord D4-C6 indicated by an arrow in bar 2
of Fig. 2 has just been composed, but nothing further (‘middle C’ is taken
to be C4, and look out for clef changes). The 49 mazurkas by Chopin having
been analysed, it is known, say, that in this corpus Chopin uses the D4-C6
chord (or any of its transpositions) on 24 occasions. The computer generates
a random number uniformly between 1 and 24, say 17. The 17th instance of
this chord (actually one of its transpositions, A2-G4) occurs in bar 38 of the
Mazurka in B Major, op. 41/3. The chord that follows in this mazurka, A2-
D]4, is transposed appropriately (to D4-G]5) and becomes the next chord of
the Markovian composition. To continue composing, one can repeat the last few
sentences with D4-G]5 as the current chord. The passages shown in Figs. 2–3
were generated in this way.

!
1

67/3,

0

" !

56/1,

119

56/1,

116

67/4,

18

" !
" !

7/5,

5

"# " !
!
"

63/3,

18

63/3,

26

63/3,

58

" ! " !

41/3,

38

41/4,

60

" ! "$!

63/1,

77

67/1,

49

" !

""$!
! " !

""$!
! ""$!

!
"" !

!
"" !

!
""$!

! ""$$!
!
"" !

!

% &! '
""" !

!
!

! """(!
!
! " !

"""$!
!

! " !

"" !

!
"" !

!
"" !

!
"" !

!

Fig. 2. A passage from the computer-music generator that does not survive filtering
(contrast with Fig. 3). The italicised numbers refer to opus and bar numbers of par-
ticular fragments. For instance ‘67/3, 0’ means opus 67, number 3, bar 0 (anacrusis).
The durations in this system are dotted to improve the legibility of the first bar.

The above explanation is simplified slightly, for what happens if one or more
already-articulated notes are held while others begin? This is discussed with
reference to the chord C3-F]4-D5 indicated by an arrow in bar 6 of Fig. 3. In
this chord, the bottom C3 is held over to the next chord, C3-E]4-C]5. We observe
that a note in a given chord can be held in one of four ways:

1. Not held beyond the given chord
2. Held over to the next chord
3. Held from the previous chord
4. Held both from the previous chord and to the next chord

Thus in our model, the chord C3-F]4-D5 indicated by an arrow in Fig. 3 would
be represented by the pair of vectors (18, 8), (2, 1, 1). The first vector is the chord

3

!"
!"

#
1

67/4,

0

$% !

33/3,

17

56/1,

108

$&

63/1,

33

24/3,

19

$ $' $! $ $ $
59/1,

91

$ $

67/3,

23-28

$ $ $ $ ($

) * $ * (($! $ $ $
$$$ $$$

22

$$$
27

31

*(!

%% $$
33

$$

#
5 $$!

! $$%%
+ $$' $$ $$'% $$%% $$' $$ $$' !

! $$%'
+ $$ $$

67/1,

32

$$' $$% $$ $$,

24/3,

26

56/1,

18

$$$,,' $$$

) (!

*
38

$$ $$ *(!

$$$%
61

$$$ (!

* $$$$', $$$$
$ $$ $$% $ $'

Fig. 3. A passage from the computer-music generator that does survive filtering. The
darker noteheads in the left hand are referred to as pattern P ⇤, and indexed (in order
of increasing ontime and pitch height) to help with understanding Table 1 (p. 8).

spacing (18 semitones from C3 to F]4, and 8 from F]4 to D5) and the second
vector encodes how each of the three notes are held (or not), according to the list
just given. How is an actual chord of certain duration produced in our model,
if it only uses chord spacing and holding information? Above, an example was
given in which the 17th instance of a chord spacing was chosen from 24 options.
By retaining the bar and opus numbers of the original mazurka to which this
choice corresponds, we are able to utilise any contextual information (that is not
already implied by the chord spacing and holding information) to produce an
actual chord of certain duration. This Markov model alone is no match for the
complex human compositional process, but it is capable of generating a large
amount of material that can be analysed for the presence of certain patterns.

3 Discovering Patterns in Polyphonic Music

Meredith et al. (2002) give an elegant method for intra-opus analysis of poly-
phonic music. In ‘intra-opus analysis’ (Conklin and Bergeron 2008, p. 67), a
single piece of music or excerpt thereof is analysed with the aim of discovering
instances of self-reference. The human music analyst performs this task almost
as a prerequisite, for it is arguable that music ‘becomes intelligible to a great
extent through self-reference’ (Cambouropoulos 2006, p. 249). Listening to the
passage in Fig. 4, for instance, the human music analyst would notice:

1. The repetition of bars 11-12 at bars 13-14
2. The repetition of the rhythms in bar 12 at bar 14 (implied by the above

remark), at bar 15, and again at bar 16 (here except the o↵beat minim B4)

4

No doubt there are other matters of musical interest (the tonicization of the
dominant at bar 16, the crossing of hands in bars 17-18), as well as ‘lesser’
instances of self-reference, but here attention is restricted to remarks 1 and 2.
It should be emphasised that these remarks are ‘human discoveries’; not from
an algorithm. However, the key concepts of Meredith et al. (2002) can be used
to automate the discovery of these types of pattern, so that they can be sought
algorithmically in a computer-generated passage.3

!"

!"

[Vivace h. = 60]

$$$$11

[f]

%
7 8

% % %
15

23

%%&$' %% %%(%%
31

%%) %% **+ %% % % %%&$' %% %%(%% %%) %% **+
3 3

, $$$$
1

%%%%
-

9

%%%%
-

17

%%%%
-

25

%%%%
-

33

%%%%
-

39

%%%%
- %%%%

-
52 %%%

-% 60 %%%
-% %%%%

- %%%%
- %%%%

-

$$$$15 %%) %% **+ *
+%%) % *

+

) ,

p

%- %- %- %- % % *+ !

, $$$$ %
90

$%%%
95

%%%
%

104%% %+%107 %% %% %%+ %% %% %%+

Fig. 4. Bars 11-18 of the Mazurka in E Major, op. 6/3 by Frédéric Chopin. As in Fig. 3,
some noteheads are darker and indexed to help with understanding Table 1 (p. 8).

The formal representation of music as points in multidimensional space can
be traced back at least as far as Lewin (1987). Each note in Fig. 4 can be
represented as a point in multidimensional space, a ‘datapoint’ d = (x, y, z),
consisting of an ontime x, a MIDI note number y and a duration z (a crotchet is
set equal to 1). The set of all datapoints for the passage in Fig. 4 is denoted D,
for ‘dataset’. For any given vector v, the maximal translatable pattern (MTP)
of the vector v in a dataset D is defined by Meredith et al. (2002) as the set of
all datapoints in the dataset that, when translated by v, arrive at a coordinate
corresponding to another datapoint in D.

MTP (v, D) = {d 2 D | d + v 2 D}. (1)

For instance,
P = MTP (w, D), where w = (6, 0, 0), (2)

is indicated by the darker noteheads in Fig. 4. The vector w = (6, 0, 0) iden-
tifies notes that recur after 6 crotchet beats, transposed 0 semitones and with
3 Further automation of this part of the system is a future aim.

5

unaltered durations (due to the final 0 in w). This is closely related to remark
1 (on p. 4), which observes the repetition of bars 11-12 at 13-14, that is after
13� 11 = 2 bars (or 6 crotchet beats). It can be seen from Fig. 4, however, that
P contains two notes each in bars 13, 15 and 16, which are repeated in bars
15, 17, 18 respectively. This is less closely related to remark 1, showing that the
human and computational analytic results do not align exactly. One highlights
an idiosyncrasy—perhaps even a shortcoming—of the other, depending on your
point of view.

As well as the definition of a maximal translatable pattern, the other key
concept in Meredith et al. (2002) is the translational equivalence class (TEC).
Musically, the translational equivalence class of a pattern consists of the pattern
itself and all other instances of the pattern occurring in the passage. Mathemat-
ically, the translational equivalence class of a pattern P in a dataset D is

TEC(P,D) = {Q ✓ D | P ⌘⌧ Q}, (3)

where P ⌘⌧ Q means that P and Q contain the same number of datapoints and
there exists one vector u that translates each point in P to a point in Q. We
return to the specific example of the dataset D containing the datapoints for the
passage in Fig. 4, and suppose P is defined by (2). It can be verified that the
translational equivalence class of P in D is

TEC(P,D) = {P, ⌧(P,w)}, (4)

where ⌧(P,w) denotes the set of all vectors p + w, and p is a datapoint in P .
Equation (2) helps to identify notes whose durations and MIDI note numbers
recur after 6 crotchet beats. The set in (4) contains the pattern P and ⌧(P,w),
the only other instance of the pattern in the excerpt. Together, the equations
suggest how to automate discovery of the type of pattern described in remark 1.

What of remark 2, the repetition of the rhythms in bar 12 at bar 14 (after 6
beats), bar 15 (after 9 beats) and bar 16 (after 12 beats)? As this is a rhythmic
pattern, it is useful to work with a ‘rhythmic projection’ D

0 of the dataset D.
If d = (x, y, z) is a member of D then d0 = (x, z), consisting of an ontime and
duration, is a member of the projected dataset D

0. It should be noted that two
distinct datapoints d, e 2 D can have a conicident projection, that is d0 = e0, just
as two objects placed side by side might cast coincident shadows. The repetition
observed in remark 2 occurs at 6 and 9 and 12 beats after the original, so let

S = MTP (u0
, D

0) \MTP (v0
, D

0) \MTP (w0
, D

0), (5)

where u0 = (6, 0), v0 = (9, 0), and w0 = (12, 0). The set MTP (u0
, D

0) in (5)
corresponds to notes whose durations recur after 6 crotchet beats. The second
set MTP (v0

, D

0) corresponds to notes whose durations recur after 9 beats, and
the third set MTP (w0

, D

0) to notes whose durations recur after 12 beats. Taking
their intersection enables the identification of notes whose durations recur after
6, 9 and 12 beats, which is closely related to remark 2. It can be verified that

TEC(S, D

0) = {S, ⌧(S,u0), ⌧(S,v0), ⌧(S,w0)}. (6)

6

As with pattern P , the human and computational analytic results for pattern
S do not align exactly. All of the notes in bar 12 of Fig. 4 are identified as
belonging to pattern S, but so are a considerable number of left-hand notes from
surrounding bars. While it is not the purpose of this paper to give a fully-fledged
critique of Meredith et al. (2002), Sect. 3 indicates the current state of progress
toward a satisfactory pattern discovery algorithm for intra-opus analysis.

4 Filtering Process

4.1 Quantifying an Instance of a Musical Pattern

When an instance of an arbitrary pattern P has been discovered within some
dataset D, as in the previous section, how can the position of the pattern be
quantified, relative to the duration of the excerpt as a whole? Here the straight-
forward concept of ontime percentage is used. For a note having ontime t, appear-
ing in an excerpt with total duration T , the note has ontime percentage 100t/T .
For instance, the excerpt in Fig. 4 has total duration 24 (= 8 bars ⇥ 3 beats).
Therefore, taking the F] at the top of the first chord in bar 13, with ontime 6,
this note has ontime percentage 100t/T = 100 · 6/24 ⇡ 33%.

When calculating the ontime percentage of each datapoint p in a pattern P ,
a decision must be made whether to include repeated values in the output. For
instance, the six notes in the first chord in bar 13 will have the same ontime
percentage, so repeated ontime percentages indicate a thicker texture. The in-
clusion of repeated values does not a↵ect the appropriateness of the statistical
test described in Sect. 4.2, but it may a↵ect the result: two otherwise similar
lists of ontime percentages might be distinguishable statistically due to a high
proportion of repeated values in one collection but not the other. Here the deci-
sion is taken not to include repeated values. Two lists of ontime percentages are
shown in columns 2 and 5 of Table 1 (overleaf). The bottom half of column 5 is
derived from the darker notes in Fig. 3, referred to as pattern P

⇤. Column 2 and
the top half of column 5 are derived from the darker notes in Fig. 4, pattern P .

4.2 Applying Wilcoxon’s Two-sample Test in Musical Scenarios

Let us suppose we have two random samples, one consisting of m observations
x1, x2, . . . , xm, and the other consisting of n observations y1, y2, . . . , yn. Columns
2 and 5 of Table 1 serve as an example, with m = 17 and n = 6. It should
be pointed out that the random-sample supposition almost never applies in
musical scenarios. Increasingly however, the assumption is being made in order
to utilise definitions such as the likelihood of seeing a pattern (Conklin and
Bergeron 2008). Wilcoxon’s two-sample test helps to determine whether two sets

of observations have the same underlying distribution. The calculation of the test
statistic will be demonstrated, with the theoretical details available elsewhere
(Neave and Worthington 1988). The test statistic W is calculated by assigning
ranks R1, R2, . . . , Rn to the set of observations, y1, y2, . . . , yn, as though they

7

Table 1. The note indices, ontime percentages and combined sample ranks of two
patterns are shown, P indicated by the darker noteheads in Fig. 4, and P ⇤ from Fig. 3.

Pattern P Pattern P continued
Note Ontime Note Ontime
index % Rank index % Rank

1 0.0 1 90 54.2 19
7 1.4 2 95 58.3 20
8 2.8 3 104 66.7 21
9 4.2 4 107 70.8 23
15 6.3 5
17 8.3 6 Pattern P ⇤

23 10.4 7 22 28.0 12
25 12.5 8 27 32.0 14
31 15.6 9 31 36.0 16
33 16.7 10 33 40.0 17
39 20.8 11 38 48.0 18
52 29.2 13 61 68.0 22
60 33.3 15 P ⇤

rank total: 99

appear in a combined sample with the other set. This has been done in column
6 of Table 1 (see also column 3). Then W =

Pn
i=1 Ri is a random variable, and

from Table 1, a value of w = 99 has been observed. Either the exact distribution
of W or, for large sample sizes, a normal approximation can be used to calculate
IP(W w). Using a significance threshold of ↵ = 0.05 and with m = 17, n = 6, a
value of W outside of the interval [43, 101] needs to be observed in order to reject
a null hypothesis that the two sets of observations have the same underlying
distribution. As we have observed w = 99, the null hypothesis cannot be rejected.

What does the above result mean in the context of musical patterns? We
have taken P and P

⇤, two instances of the same type of pattern occurring in
di↵erent passages of music, and compared their ontime percentages. Not being
able to reject the null hypothesis of ‘same underlying distribution’ is taken to
mean that a computer-generated passage survives this element of the filtering
process. We are notionally content that the relative positions of P and P

⇤ are
not too dissimilar. There are five further elements to the filtering process here,
with the Wilcoxon two-sample test being applied to the ontime percentages of:

1. ⌧(P,w) and ⌧(P ⇤
,w), where w = (6, 0, 0)

2. S and S

⇤, where S is given in (5), and S

⇤ denotes the corresponding pattern
for the computer-generated passage in Fig. 3

3. ⌧(S,u0) and ⌧(S⇤
,u0), where u0 = (6, 0)

4. ⌧(S,v0) and ⌧(S⇤
,v0), where v0 = (9, 0)

5. ⌧(S,w0) and ⌧(S⇤
,w0), where w0 = (12, 0)

At a significance threshold of ↵ = 0.05, the passage in Fig. 3 survives each
element of the filtering process, whereas the passage in Fig. 2 does not.

8

5 Discussion

This paper has presented a metric for evaluating the creativity of a music-
generating system. Until further evaluation has been conducted (by human lis-
teners rather than just by the creativity metric), we are cautious about labelling
our overall system as creative. The objective in the introduction was to generate
mazurka-style music that inherits salient patterns from a chosen excerpt. It is
encouraging that Fig. 3—which arguably sounds and looks more like a mazurka
than Fig. 2—survives the filtering process, whereas Fig. 2 does not. In terms
of meeting the aim of pattern inheritance, there is considerable room for im-
provement: Figs. 3 and 4 do not sound or look much alike, and a human music
analyst would be hard-pressed to show how the filtered output (Fig. 3) inherits
any salient patterns from the chosen excerpt (Fig. 4). One solution would be to
include more filters. Another solution would be to raise the significance thresh-
old, ↵. By making the null hypothesis of ‘same underlying distribution’ easier
to reject, it becomes harder for a generated passage to survive filtering. Over
fifty iterations, the mean number of generations required until survival was 12.7,
with standard deviation 13.2. Raising ↵ may increase pattern inheritance, but
it may also have a non-linear impact on these statistics.

The verbatim quotation in Fig. 3 (of bars 23-28 from the Mazurka in C Ma-
jor, op. 67/3) raises several issues that relate to further work. First, we will
consider including in the system a mechanism for avoidance of verbatim quo-
tation. Second, the quotation contains a prominent sequential pattern that is
di↵erent in nature to the intended inheritance (the two patterns observed in re-
marks 1 and 2 on p. 4). Using the concept of morphetic pitch defined in Meredith
et al. (2002) it is possible to identify such sequential patterns, so the sequence
itself is not a problem, only that its presence was unintended. Measures exist
for the prominence (Cambouropoulos 2006) or interest (Conklin and Bergeron
2008) of a pattern relative to others in a passage of music. The adaptation of
these measures to polyphonic music would constitute a worthwhile addition,
both to Meredith et al. (2002) and to the use of discovered, polyphonic patterns
in filtering computer-generated music.

We have more general concerns about the extent to which the first-order
Markov model generalises from Bach chorales to Chopin mazurkas. From a mu-
sical point of view the mazurkas may be too rich. The verbatim quotation men-
tioned above is indicative of a sparse transition matrix, which might be made
more dense by including more mazurkas or other suitable compositions. There
are several ways in which the system described could be fine-tuned. First, com-
putational time could be saved by filtering incrementally, discarding generated
passages before they reach the prescribed length if for some reason they are al-
ready bound not to survive filtering. Second, both Lewin (1987) and Meredith
et al. (2002) propose (di↵ering) methods for ordering notes. These could be used
instead of or as well as ontime percentages, to investigate the e↵ect on the output
of the system described. Third, if a region of original music is spanned entirely
by a pattern (so that there are no non-pattern notes in this region) and this is
also true of its recurrence(s), then this ought to be stored in the template (see

9

the definition of compactness in Meredith 2006). Again this would save com-
putational time that is currently wasted in our system. Finally, sometimes the
occurrence of a certain type of pattern implies the occurrence of another type
of pattern. For example, bars 11-12 of Fig. 4 (approximately pattern P) recur
at bars 13-14, implying that the rhythms of bar 12 (approximately pattern S)
will recur in bar 14. This may seem obvious for only two discovered patterns, P

and S, but when more patterns are discovered, the way in which these might be
arranged into a hierarchy is worthy of further investigation.

6 Acknowledgements

This paper benefited from a helpful discussion with David Meredith. We would
also like to thank the three anonymous reviewers for their comments.

References

Cambouropoulos, E.: Musical parallelism and melodic segmentation: a computational
approach. Music Perception 23(3), 249-267 (2006)

Cochrane, L.: “pastiche.” A. Latham (ed.). The Oxford Companion to Music. Oxford
Music Online, http://www.oxfordmusiconline.com (accessed 20 September, 2009)

Conklin, D., and Bergeron, M.: Feature set patterns in music. Computer Music Journal
32(1), 60-70 (2008)

Cope, D.: Computational models of musical creativity. Cambridge, Massachusetts: MIT
Press (2005)

Hiller, L., and Isaacson L.: Experimental music. New York: McGraw-Hill (1959)
Lewin, D.: Generalized interval systems and transformations. New Haven, Connecticut:

Yale University Press (1987)
Loy, G.: Musimathics: the mathematical foundations of music, vol. 1. Cambridge, Mas-

sachusetts: MIT Press (2005)
Meredith, D.: Point-set algorithms for pattern discovery and pattern matching in music.

T. Crawford and R.C. Veltkamp (eds.). Proceedings of the Dagstuhl Seminar on
Content-Based Retrieval. Dagstuhl, Germany (2006)

Meredith, D., Lemström, K., and Wiggins, G.A.: Algorithms for discovering repeated
patterns in multidimensional representations of polyphonic music. Journal of New
Music Research 31(4), 321-345 (2002)

Neave, H.R., and Worthington, P.L.: Distribution-free tests. London: Unwin Hyman
(1988)

Norris, J.R.: Markov chains. Cambridge: Cambridge University Press (1997)
Pearce, M.T, Meredith, D., and Wiggins, G.A.: Motivations and methodologies for

automation of the compositional process. Musicae Scientiae 6(2), 119-147 (2002)
Pearce, M.T., and Wiggins, G.A.: Towards a framework for the evaluation of machine

compositions. Proceedings of the AISB Symposium on Artificial Intelligence and
Creativity in Arts and Sciences (2001)

Wiggins, G.A.: Computer models of musical creativity: a review of computer models
of musical creativity by David Cope. Literary and Linguistic Computing 23(1),
109-115 (2008)

10

	Cover
	Proceedings.pdf
	FrontMatter
	title
	preface
	people
	table_of_contents

	Papers
	iccc10_submission_4
	iccc10_submission_29
	iccc10_submission_9
	iccc10_submission_22
	Establishing Appreciation in a Creative System
	David Norton, Derral Heath, Dan Ventura

	iccc10_submission_48
	iccc10_submission_45
	iccc10_submission_39
	iccc10_submission_49
	iccc10_submission_13
	iccc10_submission_21
	iccc10_submission_20
	iccc10_submission_37
	iccc10_submission_50
	iccc10_submission_24
	iccc10_submission_31
	iccc10_submission_30
	iccc10_submission_42
	iccc10_submission_35
	iccc10_submission_44
	iccc10_submission_2
	iccc10_submission_15
	iccc10_submission_11
	iccc10_submission_8
	iccc10_submission_7
	iccc10_submission_10
	iccc10_submission_27
	iccc10_submission_38
	iccc10_submission_17
	iccc10_submission_47
	iccc10_submission_41
	iccc10_submission_28
	iccc10_submission_3
	iccc10_submission_25

	Show&Tell
	s&t55
	s&t56
	s&t57
	s&t58
	s&t59
	s&t60
	s&t61
	s&t62
	s&t63
	s&t64
	s&t65

	author.index

	Back cover

