
Hand-Crafting Neural Networks for Art-Making

Erik Ulberg1, Daniel Cardoso Llach2, Daragh Byrne2

Computational Design Laboratory, School of Architecture
Carnegie Mellon University
Pittsburgh, PA 15232 USA

Abstract
A growing number of visual artists use neural networks
in their practice. While these networks show promise
as an art form, the lack of interpretability limits control
to high level decisions based on observations. As an
alternative, this research investigates the hand-crafting
of network weights coupled with explanatory visual-
izations as a form of creative control over the inter-
nal and lower level processes. Two experimental tools
were developed: one for parametrically generating first
layer kernels and the second for editing multiple lay-
ers. These tools attempt to transform the hand-crafting
of features into “crafting” in a richer sense by bringing
network weights and visual materials into a tight feed-
back loop. The first author extensively engaged with
these tools and these case studies serve to examine the
affordances of internal interaction for art-making. The
findings suggest that direct manipulation can be used
intentionally and can yield insights into network rep-
resentations, but that hand-crafting networks of greater
sophistication would likely require a hybrid approach
integrating data-driven methods.

Introduction
Neural networks show promise as a form of representation
in art. However, the available tools for manipulating net-
works limit creative control to decisions around datasets, al-
gorithms, and hyperparameters (RunwayML). While these
tools are valuable for their ease of use, they do not fully
leverage artists’ fine-grained knowledge of the construction
of images. Interaction happens on the exterior of networks
based on high level observations of input and output. The in-
ternal and lower level processes of networks are overlooked
as a potential site of engagement for artists.

AI researcher Christopher Olah asked the provocative
question: “What if we treated individual neurons, even in-
dividual weights, as being worthy of serious investigation?
(Olah et al. 2020b)” Explainable AI (XAI) research has
demonstrated that networks often contain a rich world of vi-
sual concepts within their intermediate layers (Olah et al.
2020a; Sharif Razavian et al. 2014). This suggests that the
right tools could enable artists to closely engage with net-
work interiors and compose with low-level building blocks.

Two experimental tools for hand-crafting network
weights were developed to explore Olah’s question: one for

parametrically generating weights in the first layer of a net-
work and the other for editing multiple layers. These tools
do not use machine learning to train network models. In-
stead, they explore what can be accomplished through close
study and the hand-crafting of individual network weights.
In the context of neural networks, the term hand-crafted
refers to features designed by humans rather than learned
from data. In creative fields, hand-crafted is often associated
with workmanship, or the subconscious dexterity emerging
from intimate experience with a material (Pye 1968). The
tools presented here seek to reposition the crafting of net-
works to be a form of workmanship. Editing weights and
visual materials in a tight feedback loop is intended to create
a deeper level of engagement and to unveil new co-creative
possibilities.

Background
Understanding and Interacting with AI
Deep neural networks encode visual concepts using tens of
millions of weights in ways that are not well understood.
To maximize their usability, many AI-powered artistic tools
leave network weights as a black box and focus on high
level, external controls. Thus, the interaction paradigm for
creative AI applications tends to fall under the umbrella of
what Zhu et al. (2018) define as Observable AI (OAI). In
OAI, users build a mental model of a network’s function
through observation of inputs and outputs.

OAI stands in contrast to XAI where the goal is to shed
light on the inner functioning of networks. Research in
XAI often includes interactive visualizations of the flow of
weights or renderings of visual concepts within networks
(Smilkov et al. 2017; Olah et al. 2020a). These efforts
have yielded some insight, leading to the prevailing wisdom
that network layers contain progressively higher orders of
abstraction.

On close inspection, Olah et al. (2020a) found that the
early layers of a network trained on natural images built
up recognition from simple concepts such as edge detec-
tion, color contrast, and lines to higher level features includ-
ing corners, patterns, intersections, and shapes. This evi-
dence points to the existence of universal building blocks at
intermediate levels in networks. Practitioners often lever-
age these building blocks through transfer learning to avoid

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

508



training from scratch on new datasets (PyTorch). Their exis-
tence also provides motivation to find tools for manipulating
the low-level, internal processes of networks.

Low-level interaction with network weights is generally
viewed as impractical, but forcing a confrontation chal-
lenges users to deepen their understanding of networks.
Smilkov et al. (2017) argue that rapid, direct manipulation
readily provides intuitions on how networks function and
sought to demonstrate this through their popular web inter-
face “A Neural Network Playground.” Similarly, the hand-
crafting tools in this paper are meant to provide intuitions
through open-ended interaction and internal visualizations.
While explanations of internal processes of networks is less
favored in creative practice, this project uses it alongside ob-
servation. The tools presented here combine elements of
both XAI and OAI by relying on observations of a gener-
ative drawing system in tandem with visualization tools for
exploring and directly editing the inner weights of networks.
The hope is that combining stimulating feedback with the
hand-crafting of network weights will lead to fruitful artistic
interactions.

Hand-Crafting Networks
Hand-crafting is used sparingly with neural networks be-
cause of the relative success of learned features. A num-
ber of studies have compared the performance of hand-
crafted features to those derived through machine learn-
ing. These studies found mixed results showing that hand-
crafted features can reduce training time, but struggle to
match the accuracy of learned features (Antipov et al. 2015;
Zhang et al. 2020). Regardless of these results, quantitative
measures of success are less relevant in creative practice.
The purpose of this project is not to improve the predictive
accuracy of networks through new tools for hand-crafting,
but to apply the technique in an art-making context where
open-ended interaction and creative control are valued.

Directly crafted weights have generally been overlooked
by the creative community. One partial exception that rein-
forces this observation comes from “Neural Glitch” by artist

Mario Klingemann (2018). In his project, Klingemann man-
ually altered the internal weights of a generative adversarial
network to probe its inner representations. His results re-
tain some of the appearance of the original output, but with
haunting effects. Klingemann’s work reveals the delicate
balance of weights within networks and shows how even
small changes can have a dramatic impact on the learned
structures. The name itself, “Neural Glitch,” contains the
prospects facing an artist attempting to edit network weights
by hand. The expectation is that direct manipulation will
be a search for interesting glitches rather than a series of
intentional choices. This project attempts to challenge that
boundary.

Hand-Crafting Tools
The tools developed as part of this work are called the Ker-
nel Tuner and the Network Builder (Fig. 1). They combine
an editable canvas, interactive visualizations, and the hand-
crafting of weights.

The Kernel Tuner is a parametric tool for crafting a single
layer of weights to extract basic features from a line draw-
ing. Generally, the process of using it begins by making a
drawing on the canvas to serve as the basis for evaluating
sets of parameters. Next, the user adjusts the sliders within
the interface to rapidly test different parameters. The canvas
can also be rotated to see how tolerant the kernels are to vari-
ance. While these updates are made, the Kernel Tuner pro-
vides real time visualizations of how the network responds.
Through this iterative process, the tool facilitates human-led
jumps through the search space of possible kernels.

The Network Builder uses the kernels from the Kernel
Tuner as its first layer and assists with the more ambi-
tious goal of hand-crafting multiple layers of convolution
and pooling. Since explanation becomes more difficult with
multiple layers, the Network Builder also offers opportuni-
ties for understanding the network’s function through ob-
servation. It achieves this by plugging in the network as a
reward function for a generative line drawing system.

The line drawing system operates iteratively on the cur-

(a) (b)

Figure 1: The (a) Kernel Tuner and (b) Network Builder combine interactive visualizations, a canvas, and editable weights.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

509



rent state of a canvas by drawing or erasing marks of a few
pixels in length. The algorithm has two options: it can start a
new line or continue a line it is already drawing. Either way,
it generates batches of random segments, tests how each
segment changes the activation score, and then chooses the
highest score. Through this method, the algorithm greedily
maximizes the activation of the network. The system termi-
nates when it can no longer find segments that sufficiently
improve the activation score (based on a tuned threshold).
Additionally, it uses a line end detector to inject options that
connect to existing line ends. This small modification makes
the system much more likely to draw meaningful shapes.

Typically, the process of using the Network Builder starts
with the manual entry of kernel weights (with the help of
functions for rotation, reflection, and shifting). Then, the
generative algorithm is run to produce several sample out-
puts to evaluate the success of the weights. If the samples
do not match expectations, the generative algorithm is run
again until it reproduces an aspect that is not intended (such
as premature stopping). The user can pause the algorithm
to draw and erase on the canvas while observing changes
in network activations. This helps to explain why the final
activation score is not responding as expected. Following
inspection of the network activations, the steps are repeated.
This crafting process involves both observation (of the gen-
erative system’s response to a given canvas state) and expla-
nation (through the tracing of network weights).

The first author used the Kernel Tuner and Network
Builder to experiment with hand-crafting weights as a means
of creating line drawings. In addition, the author explored
various calibrations of the generative algorithm to produce
artistic output. The following sections provide an overview
of case studies for each tool and a short description of the
artistic process utilizing the tools.

Findings & Discussion
Kernel Tuner
As a specific example, the Kernel Tuner was used to produce
a set of weights for a line end detector for the drawing sys-
tem (Fig. 2). After about an hour of experimentation, a set
of eight kernels of five pixels across was chosen (Fig. 2a).
Fewer and smaller kernels minimized the number of calcu-
lations performed during convolution and thus allowed the
algorithm to operate more efficiently. Since the detector did
not have to be perfect, these kernels were an attractive bal-
ance between speed and accuracy. It is important to note that
the eight kernels produced were not a one-size fits all solu-
tion for detecting line ends in images. Instead, they were a
solution for a particular creative project with a certain type
of image.

A distinct advantage of the Kernel Tuner was the visibility
into the effects of different options. The explanatory visuals
provided insights into the relative balance between kernels.
Initially, our intuition was that these convolutional kernels
would give each pixel a name such as “upwards facing line
end” or “left facing right angle.” Closely watching the ac-
tivations and interacting with the system demonstrated how
difficult it was to disentangle signals. As more types and ro-

(a) (b)

Figure 2: (a) Kernels for detecting line ends. (b) Ends de-
tected on a drawing (highlighted in red).

tations of kernels were added many kernels were activated
at any given pixel. This suggested that the internal abstrac-
tions in a network are better thought of in terms of adjectives
on continuous scales rather than one-hot vectors of labels
matching nouns. A patch of pixels cannot simply be labeled
as a “corner.” It is “corner”-like, but also “vertical line”-like
and “horizontal line”-like. The Kernel Tuner supported ex-
ploration, produced useful kernels, and yielded insights into
the internal representations of neural networks.

Network Builder
The Network Builder was used to create flexible detectors of
increasingly complex visual concepts including boxes (Fig.
3), houses, and bottles (Fig. 4). One of the first networks de-
signed with the Network Builder was for robustly detecting
different-sized boxes. To start, the network was designed us-
ing positive weights corresponding to vertical and horizontal
lines. This attempt produced extra lines and lacked corners
(Fig. 3a). Various patterns of construction were explored,
such as overlap between parts, sizes of kernels, the depth
of negative margins, and the relative magnitude of weights
(Fig. 3b and c). After hours of experimentation, the proper
combination of positive connections to lines and corners, as
well as negative margins yielded flexibly shaped boxes with
a single continuous line and no extra artifacts (Fig. 3d).

(a) (b) (c) (d)

Figure 3: A progression of boxes produced by the genera-
tive line drawing system as the Network Builder was used to
produce a flexible box-detecting network.

Throughout these experiments, the Network Builder facil-
itated updating the weights and understanding their effects,
but it fell short of providing clear intuitions as to the impact
of a given change. The complexity of balancing weights
within and between features made encoding anything be-
yond trivial concepts impractical. Even encoding a single
line with robustness to different positions proved challeng-
ing as it was difficult to predict whether fixing one part
would cause an issue somewhere else.

Artistic Output
Next, we explored the production of artistic outputs us-
ing these tools. The generative system (using the bottle-
detecting network as a reward function) could be run on user

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

510



input as seen in Fig. 4 or on a blank canvas as seen in Fig.
5. Fig. 5 demonstrates a more complex workflow. Multiple
versions of the generative system maximizing different parts
of the bottle-detecting network (starting from the lower lay-
ers and moving up) were run. The artistic process involved
writing small programs for running the generative algorithm
as well as tweaking thresholds and parameters within the al-
gorithm (such as the ratio of drawing to erasing or when to
halt). Fig. 5 also demonstrates the further step of printing
out and hand painting the result.

Figure 4: The four images on top are random human input.
The generative algorithm (with bottle-detecting network as
reward function) was run on the drawings until it halted, al-
tering the drawings to look like bottles (shown at bottom).

Our goal with this conceptual work was to leverage the
system’s strength, which is its ability to robustly and dynam-
ically respond to input, and to see if direct manipulation of
network weights could be used to make intentional output.
The findings demonstrate that the system is able to respond
to human or random input and to transform it into rough, but
recognizable, shapes.

(a) (b)

Figure 5: (a) A sequence where the generative algorithm
progressively builds up a drawing from a blank canvas. (d)
The result printed out and hand-painted. For more documen-
tation visit: github.com/ulberge/interactive-network

Conclusion
This paper has proposed and evaluated two tools for hand-
crafting networks for art-making. The purpose of these tools
was to facilitate manipulating network weights by providing

information at the point of action. This research demon-
strated the possibility of discovering insights and making in-
tentional, granular decisions through direct engagement, yet
the successes were relatively minor. The findings indicated
that crafting more complex visual concepts within networks
would likely require data-driven methods. To address this,
future work could explore targeted training while maintain-
ing the interactive visualizations inside the networks. One
possibility would be to manipulate weights through syn-
thetic datasets coupled with rich labeling at multiple levels
of abstraction. Operating on the interior of neural networks
presents challenges, but understanding the abstract encod-
ings contained within them is an intriguing reward.

Acknowledgments
We are grateful for input from Golan Levin and members of
the Computational Design Laboratory at CMU.

References
Antipov, G.; Berrani, S.-A.; Ruchaud, N.; and Dugelay, J.-
L. 2015. Learned vs. Hand-Crafted Features for Pedestrian
Gender Recognition. In Proceedings of the 23rd ACM inter-
national conference on Multimedia, MM ’15, 1263–1266.
Klingemann, M. 2018. Neural Glitch. Retrieved from
http://underdestruction.com/2018/10/28/neural-glitch/.
Olah, C.; Cammarata, N.; Schubert, L.; Goh, G.; Petrov,
M.; and Carter, S. 2020a. An Overview of Early Vision in
InceptionV1. Distill.
Olah, C.; Cammarata, N.; Schubert, L.; Goh, G.; Petrov, M.;
and Carter, S. 2020b. Zoom In: An Introduction to Circuits.
Distill.
Pye, D. 1968. The nature and art of workmanship. Univer-
sity Press Cambridge.
PyTorch. Finetuning Torchvision Models. Retrieved from
https://pytorch.org/tutorials/beginner/finetuning torchvision
models tutorial.html.

RunwayML. RunwayML | Machine learning for creators.
Retrieved from https://runwayml.com/.
Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; and Carls-
son, S. 2014. CNN features off-the-shelf: an astounding
baseline for recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
806–813.
Smilkov, D.; Carter, S.; Sculley, D.; Viégas, F. B.; and Wat-
tenberg, M. 2017. Direct-Manipulation Visualization of
Deep Networks. arXiv:1708.03788.
Zhang, Y.; Li, W.; Zhang, L.; Ning, X.; Sun, L.; and Lu,
Y. 2020. AGCNN: Adaptive Gabor Convolutional Neural
Networks with Receptive Fields for Vein Biometric Recog-
nition. Concurrency and Computation: Practice and Expe-
rience.
Zhu, J.; Liapis, A.; Risi, S.; Bidarra, R.; and Youngblood,
G. M. 2018. Explainable ai for designers: A human-
centered perspective on mixed-initiative co-creation. In
2018 IEEE Conference on Computational Intelligence and
Games (CIG), 1–8.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

511


