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Abstract
In this paper we present R-VAE, a system designed for
the exploration of latent spaces of musical rhythms. Un-
like most previous work in rhythm modeling, R-VAE
can be trained with small datasets, enabling rapid cus-
tomization and exploration by individual users. R-VAE
employs a data representation that encodes simple and
compound meter rhythms. To the best of our knowl-
edge, this is the first time that a network architecture
has been used to encode rhythms with these characteris-
tics, which are common in some modern popular music
genres.

Introduction
In this paper, we present research on customizing a varia-
tional autoencoder (VAE) neural network to play with mu-
sical rhythms encoded within a latent space. To enable cus-
tomization and personalization, the network can be trained
with as few as one dozen MIDI clips with rhythms.

Additionally, our approach employs a data structure that
is capable of encoding rhythms with binary, ternary, or a
combined metrical grid. A metrical grid can be explained as
the main ratio by which the onsets of notes are placed in a
measure. Music where the beats are split in two—a binary
grid—is in simple meter. Music where the beats are split in
three—a ternary grid—is in compound meter. Many modern
music genres, such as footwork, gqom, dembow, or trap, can
be characterized by rhythmic elements using a compound
meter. In these rhythms, the main meter is usually simple
but there are elements that are placed on an overlaid ternary
grid. To the best of our knowledge, this work is the first time
that a network architecture has been used to encode rhythms
that exhibit a combined binary and ternary grid.

Related Work
Several recent projects have aimed to use machine learn-
ing to encode the regularities in rhythmic patterns present
in user-provided examples into a model, so that this model
can afterwards be used to sample rhythms from the original
distribution or generate new, unheard rhythms. For instance,
Choi, Fazekas, and Sandler (2016) created a model trained
on drum patterns from songs by Metallica to generate new
rhythmic sequences. Their approach was based on a text-
based LSTM (Long Short Term Memory) network, so that

they had to adapt and encode the rhythm onsets to fit the data
representation. They limited the number of events in a bar
to 16 by quantizing the drum tracks to 16th notes in a simple
meter binary grid. They used 60 MIDI files of drum tracks as
training data and created drum sequences that were “reason-
able rock drum patterns.” However, since the data represen-
tation they used did not encode the deviations of onsets from
the grid—known as microtiming—nor how hard the onsets
were struck—known as velocity in the MIDI domain—the
resulting patterns were very rigid.

Instead of focusing on a specific musical artist or style,
Nikolov (2016) trained another LSTM network on drum pat-
terns from a wide range of music genres with the goal of cre-
ating a general model for rhythm generation. This work used
professionally produced MIDI loops, increased the quanti-
zation grid to a 32nd note, but used only rhythms with a 4/4
time signature and simple meter. Nikolov described some of
the resulting examples as “musically coherent patterns” but
only in a short timescale.

With the goal of learning longer-term musical structure,
researchers of the Google Magenta team experimented with
language modeling and LSTMs to encode and generate
melodies and drum patterns. They released network archi-
tectures designed to learn representations of melodies1 and
rhythms2 encoded in a symbolic format, as well as models
pre-trained on large datasets containing “thousands of MIDI
files” of undisclosed origin. The data representation did not
encode microtimings or velocities.

Using the data representations implemented in the Ma-
genta projects, and with the goal of modeling sequences with
even longer term structure, the Magenta team released Mu-
sicVAE (Roberts et al. 2018). This network used a hierar-
chical variational autoencoder (VAE) architecture to encode
and generate melodies, drums, and “trios” consisting of a
drum part, a bass line, and a melodic line. For these three
categories, the Magenta team also released models that were
trained on a very large dataset of more than 1.5 million MIDI
files collected from the web. Roberts et al. reported that Mu-
sicVAE was able to generate 2-bar drum sequences reliably,

1https://github.com/magenta/magenta/tree/master/

magenta/models/melody_rnn
2https://github.com/magenta/magenta/tree/master/

magenta/models/drums_rnn
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but failed when trying to reconstruct 16-bar sequences.
In the aforementioned approaches to drum pattern model-

ing, only the position of the drum onsets was encoded, not
their microtiming or velocity. These two characteristics are
important for giving the drum loops a human feel, or groove.
In order to overcome those flaws, the Magenta team released
GrooVAE (Gillick et al. 2019), a data representation and a
set of models trained on real drum performances. Again,
this work used quantization to a 16th note grid in both the
data structure and models, resulting in an inability to encode
rhythms such as footwork or trap, which commonly have
rhythmic elements in compound meter. As a result, these el-
ements are quantized incorrectly into the binary grid, prob-
ably loosing their rhythmic signature or “feel.”

A number of applications have been released based on the
Magenta data representation and their pre-trained models.
For example, the Neural Drum Machine3 is a web-based ap-
plication in which the user seeds the system with a short
rhythmic sequence, and the model “imagines” the continua-
tion. Beat Blender4 packages MusicVAE pre-trained models
in a web application in which the user plays back patterns
and create paths in a latent space filled with rhythms. The
Drum Beats Latent Space Explorer5 is another web appli-
cation that uses a VAE architecture trained on 33K MIDI
drum files to learn a bi-dimensional latent space representa-
tion that can be explored in a browser. All the rhythms in
these applications are quantized to 16th notes and so their
data structure is only able to decode rhythms based on a bi-
nary grid of simple meter.

R-VAE
Motivation
Our goal is to design a system that can generate a series of
models using minimal training data, to better enable artists
without extensive computational resources to build and ex-
plore bespoke rhythm models. Further, we would like this
system to encode the onsets, velocities, and microtimings
of rhythms, and to allow the encoding of simple or com-
pound meter rhythms, or their combination. Once a model
is trained, performers using the system should be able to
explore the latent space of the model and retrieve rhythmic
patterns as if they were moving a playback head on it.

Most of the architectures, models, and applications we
have reviewed have been trained using very large datasets of
rhythms. For example, MusicVAE models were trained on
about 1.5 million unique MIDI files (Roberts et al. 2018),
and the GrooVAE and Expanded Groove MIDI Dataset
models were trained on more than 13 and 444 hours of mu-
sic, respectively, performed by professional drummers and
recorded in both MIDI and audio formats (Gillick et al.
2019; Callender, Hawthorne, and Engel 2020). The goal of
these representations was to learn the groove—the human
feel—in drum performances. To achieve this, the authors

3https://bit.ly/nikolov-neuralbeats
4https://experiments.withgoogle.com/ai/beat-blender/

view/
5https://towardsdatascience.com/

drum-patterns-from-latent-space-23d59dd9d827

encoded in a VAE network the onsets, velocities, and micro-
timings of the drum hits.

These approaches entail practical challenges, both in that
they require large-scale datasets and in that they are trying to
learn commonalities from disparate data. Creating generic
models from large and diverse data can be interesting and
reasonable from a computational point of view, but this can
also hinder customization. Individual creative practitioners
usually do not have access to large datasets or the process-
ing power to train such large models. On the other hand,
the ability to train models from smaller datasets can enable
the modeling of niche genres or even a personal style, while
requiring fewer resources for training.

Some prior work has aimed to empower individual ex-
pression and personalization of generative models by en-
abling training from smaller datasets. Dinculescu, En-
gel, and Roberts (2019) introduced MidiMe, an approach
to quickly train a small model to control a much larger and
generic latent variable model. Their system learns a com-
pressed representation of the already encoded latent vec-
tors of MusicVAE and generates musical melodies from
only portions of its latent space based on MIDI files with
melodies provided by users by means of a web-based app.
Other work has enabled musicians to create bespoke su-
pervised learning systems with small training sets; for in-
stance, Wekinator (Fiebrink, Trueman, and Cook 2009) uses
shallow multi-layer perceptron neural networks to learn be-
spoke mapping functions (e.g., from a performer’s gestures
to sound synthesis parameters) using small datasets gener-
ated by musicians in realtime.

Implementation
Autoencoders (Kingma and Welling 2014) can learn a com-
pact representation of the training data that captures impor-
tant factors of variation in the dataset. Points in the latent
space map to realistic datapoints, and nearby points map to
semantically similar (or here, musically similar) examples.
Variational autoencoders (VAEs), in particular, assume the
training data has an underlying probability distribution and
attempt to find the parameters of the distribution. Once those
parameters are found, we can sample the space to generate
data that will follow the original distribution. In other words,
in VAEs the generated data will be related to (but not neces-
sarily the same as) the source data. This make VAEs a good
network topology for creating generative models of rhythms.

We have implemented a variational autoencoder-based
system, called R-VAE, which, for the first time, encodes
simple and compound meter rhythms. It also encodes the
onsets, velocities, and microtimings of rhythms, and can be
trained using small datasets. We released a web-based app
that can be used as a rhythm model player, enabling peo-
ple to explore rhythmic latent spaces and make music di-
rectly in the browser. We based the implementation of our
rhythm explorer on the Tensorflow.js VAE implementation
called tfjs-vae6 and the M4L.RhythmVAE rhythm genera-
tor device (Tokui 2020). While the former provides the
Tensorflow backend for the VAE, the latter provides a data

6https://github.com/songer1993/tfjs-vae
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Figure 1: User interface of R-VAE-JS web application. The latent space can be explored by using a playback head represented
by the yellow circle, in the black performance space on the right of the figure. Additional knobs for threshold and noise help
the performer to control how to the latent space is sampled. Mute buttons enable the performer to silent individual instruments.
User interface elements on the left side provide additional visual feedback.

structure based on the one by Gillick et al. (2019) that en-
codes the onsets of rhythms, their velocities, and microtim-
ings. M4L.RhythmVAE also comes conveniently packed as
a Node for Max application that can be opened as a Max for
Live device in Ableton Live, a popular digital audio work-
station.

The configuration for training our model consists of a
vanilla VAE architecture with 864 dimensions for the in-
put, 512 for the intermediate layer, and 2 dimensions for
the latent space. The batch size is set to 64, the opti-
mization algorithm to Adam, and the activation function
to LeakyReLU. The favouring of fully connected feedfor-
ward layers by Tokui instead of Gillick et al.’s bidirectional
LSTMs allows for faster training using CPUs and we com-
pared the performance of this implementation with much
larger and complex architectures such as MusicVAE and
GrooVAE. We found it required considerably less data and
processing power to converge into a useful model.

Binary and ternary representations In R-VAE we ex-
tended the internal data representation of M4L.RhythmVAE
to encode simple and compound meter rhythms, as well as
their combination. Most previous approaches used only six-
teen 16th notes in one bar of 4/4 time, corresponding to a
resolution of four ticks (i.e., subdivisions) per quarter note.
However, the encoding of most modern music genres needs
a much finer grid of up to a 32nd triplet note, which we then
chose as the basic unit in our data representation. Then,
the encoding of one bar of 4/4 time in R-VAE comprises
three matrices (for onsets, velocities, and microtimings) of
dimensions 96 ⇥ 3. These dimensions represent 24 ticks ⇥
4 quarter notes ⇥ 3 drum instruments. Although GrooVAE
and M4L.RhythmVAE work with nine canonical drum cat-

egories, for this project we only work with the three main
drum instruments in modern popular music: kick, snare, and
hi-hat.

User interface The chosen VAE topology projects the in-
put matrices to a two-dimensional space. As can be seen
in Fig. 1, this rhythmic latent space is presented as a two-
dimensional plane that the practitioner can play using the
analogy of controlling a playback head. Clicking on any
given point of the latent space will retrieve and decode a
rhythm sequence. As expected, the patterns mimic closely
those ones in the training data with the additional benefit of
being able to interpolate between them by dragging the play-
back head, or to extrapolate to new ones when moving to a
new zone in the space.

The user interface exposes two variables to control and
add variability to the network decoding. Threshold controls
the complexity of the patterns decoded from the latent space,
and noise rules the precision of the mapping between the
performance space to the latent space. Mute buttons per in-
strument allow the performer to silence instruments at any
given moment. These parameters can be seen on Fig. 1
as part of the web-based player application. This browser-
based version also features MIDI output so that performers
can integrate R-VAE with external standalone devices and
software-base sound engines.

A video demonstrating the capabilities of R-VAE and
snippets of renditions performed with it can be accessed at
https://vimeo.com/422294058. Both implementations of R-
VAE, for Ableton Live7 and the R-VAE-JS browser-based
model player,8 are available.

7https://github.com/vigliensoni/R-VAE
8https://github.com/vigliensoni/R-VAE-JS
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Discussion
We have investigated the viability of our system by encod-
ing rhythms from music genres such as footwork, gqom,
and trap, and using the models in musical improvisation and
performance. When experimenting with data selection and
model training, we found that the system was able to learn
useful and playable models with as low as one dozen MIDI
clips. However, when we increased the number of clips to a
few dozen, the learned latent spaces were richer and exhib-
ited a more even topology, helping the performer to create
smoother interpolations when moving the playback head be-
tween rhythms in different zones of the performance space.
The use of R-VAE in creative practice demonstrates that its
data representation is able to model accurately simple and
compound meter rhythms, opening possibilities for using
this tool with other rhythms exhibiting these characteristics.

Even if not perfect, individually crafted models from
smaller datasets could prove to be useful and inspiring to the
creative practitioner. The amount of data needed to generate
creatively interesting models will vary with context and in-
tention, but small data may be more suited to generate cus-
tom models that are good for exploring a specific idea or
creative concept (Fiebrink, Trueman, and Cook 2009).

Interacting and performing with latent spaces encoding
rhythms pose excellent questions, from both a computa-
tional and musical point of view. For example, how can we
characterize the latent space in terms the smoothness of the
interpolations? What is a good metric to measure the rich-
ness of the encoded space? Musical performance contains
some pertinent differences to other fields unaddressed by
current technical literature. For example, when measuring
rhythmic similarity, the apparently small change of moving
a few onsets from a 16th grid to its closest triplets is small in
terms of edit distance, but it can have a large perceptual im-
pact. Furthermore, there are some instrumental hierarchies
when working with rhythms. For example, changing a few
hi-hats in a rhythmic sequence is likely to have a subtler per-
ceptual influence than changing a drum kick pattern.

Conclusions and Future Work
We have presented R-VAE, a system designed for the ex-
ploration of latent spaces of simple and compound meter
rhythms, a common combination in modern musical gen-
res. The ability to use it with small datasets can enable the
modeling of niche genres, while requiring fewer resources
for training. We used R-VAE to learn models of a few
modern music genre rhythms and used them in creative mu-
sic production and performance. Some of the insights we
learned are: (i) VAEs are capable of encoding compound
meter rhythms; (ii) small training data is enough to create
a useful and playable rhythmic latent space; but (iii) if the
data is too small, the space can be perceived as a discrete
collections of zones, instead of a contiguous space.

Research is needed to overcome the issues found and im-
prove the system. For example, visual feedback may help
performers to visualize the topology of the latent space, so
that they know if they are in zones with specific rhythms or
in zones of transition. Along the same lines, and in particu-

lar for small datasets, displaying where the original training
data points are encoded in the latent space may provide vi-
sual guidance to explore the space. As a result, there is a
pressing question about how to best incorporate this visual
feedback into the system. Additional improvements are use-
ful and needed. The web-based application may benefit from
making the training process available directly in the browser,
so that there is no need for an additional application. Extra
playability and variability of the rhythmic patterns can be
achieved by extending the number of bars encoded in the
space and the number of drum instruments.

Our experience with R-VAE has reinforced the idea that
a system for the exploration of latent spaces of musical
rhythms is worth pursuing further. Systems like this could
be also used for browsing through libraries of rhythms, com-
mon in contemporary music production.

Acknowledgments
This research has been supported by Fonds de recherche du
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