
Computational Humor: Automated Pun Generation

Bradley Tyler, Katherine Wilsdon, Paul Bodily
Computer Science Department

Idaho State University
Pocatello, ID 83209 USA

{tylebrad, wilskat7, bodipaul}@isu.edu

Abstract

Humor is incorporated into our daily interactions, but con-
ceiving jokes ideas can be inherently difficult to produce
spontaneously. The PAUL BOT system, “puns are usually
lame but occasionally terrific”, includes features of the
JAPE system by incorporating aspects of the SAD genera-
tor, templates, and sentence forms to automatically gener-
ate a pun (Ritchie 2003). A two-word database is com-
posed of adjective-noun phrases that contain a homophone.
The punchline to the pun is replacing a word in the two-
word phrase with a homophone. A synonym is derived from
the homophone, and a hypernym is chosen from the non-
homophone word in the original phrase. The synonym and
the hypernym are incorporated into a predetermined sentence
structure to construct the question. Surveys were conducted
to evaluate our artefacts produced by PAUL BOT in order to
identify future improvements of the system. The creativity
in the system is attributed to the novelty of the unique arte-
facts, the level of surprise, the typicality of the artefacts as
classic puns, and the intentionality by providing the connec-
tion between the setup and punchline. This paper proposes
the PAUL BOT system that incorporates the JAPE system to
create puns in order to produce a humorous, creative system
utilized for entertainment.
Source: github.com/knw7x9/PunGenerator

Introduction
The most successful joke-generation systems have concen-
trated on pun generation. The JAPE system, “Joke Analysis
and Production Engine”, exemplifies a humorous system
that generates a wide range of puns that are consistently
evaluated as novel and valuable (Ritchie 2003). An im-
proved version of JAPE has since been developed known
as the STANDUP system, “System To Augment Non-
speakers’ Dialog Using Puns” that teaches children with
communication impairments to tell novel jokes (Waller et
al. 2009).

The purpose of JAPE is to produce short texts that are in-
tended to be punning riddles. The fundamental aspects of
JAPE are the schemata, sentence forms, templates, and the
SAD generation rules (Ritchie 2003). JAPE uses lexemes
from riddles, which are phrases that contain linguistic infor-
mation about a verb, adjective, or noun. Schemata identify

the configuration of the lexemes in various riddles. The SAD
generator, small adequate description, uses the information
provided by the schema to construct abstract linguistic struc-
tures called SADs from the lexemes. The SAD generator fol-
lows various SAD rules that satisfy preconditions for gener-
ating linguistic data according to the information provided
by the schema. The relations between the lexemes and the
derived constituents, called SAD relations, are transferred to
the template stage. The template matcher chooses sentence
forms where the conditions are satisfied for insertion. Lastly,
the grammar rule generator inserts the parameters into slots
within the fixed text to produce the punning riddle.

JAPE incorporates many schemata because there are differ-
ent lexical preconditions that are possible for each variation
of comparable strings. Jokes typically have the same sen-
tence structure, but because of the grammatically diverse
English language separate schemata are used.

We have designed a computational humorous system
called PAUL BOT,“puns are usually lame but occasionally
terrific”. Though similar in many respects to JAPE, PAUL
BOT leverages several more recent knowledge bases, in-
cluding The Corpus of Contemporary American English,
ConceptNet, and the CMUdict, all of which we discuss be-
low. Our main interest of PAUL BOT is to create puns that
users find humorous in some way. In this paper, we focus on
the design of the PAUL BOT system and the analysis of the
artefacts produced.

Much of the design of PAUL BOT relies on previous work
in the joke generation field. Our system filters a two-word
database for adjective-noun phrases which circumvents the
need for identifying the linguistic information about a par-
ticular phrase in schema.

Similarly to JAPE’s SAD generator, the system constructs
abstract linguistic structures from the two-word phrase
(Ritchie 2003). The punchline to the joke replaces a word
in the original two-word phrase with a homophone via the
2-Gram Database from Corpus of Contemporary Ameri-
can English (COCA) (Weide 2005). The setup to the pun
uses WordNet to identify relationships between words on
the basis of synonyms, antonyms, and hypernyms (Fellbaum
2012).

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

181



Finally, PAUL BOT chooses a template depending on
whether the synonym/antonym or hypernym is a verb and
whether the sentence structure should be negated for an
antonym. Like the template matcher in JAPE, these con-
ditions need to be satisfied in order to choose the cor-
rect format of the question (Ritchie 2003). Then, the syn-
onym/antonym and hypernym are inserted into the slots
within the chosen template and the appropriate article is
added to the noun, which is comparable to the grammar rule
generator.

Methods
In this section we describe the design and operation of the
PAUL BOT system. We first provide a high-level overview
of the system. Then, the two-word database, homophone
dictionary, synonyms, antonyms, hypernyms, and templates
are explored further in detail. Finally, we define the metrics
for our user evaluation and special package installations for
Python.

PAUL BOT System Overview

Taking as input a two-word phrase, the system transforms
the phrase using semantic relationships with other words to
output a humorous pun. In this case, we define the generated
artifact as question-answer pair, where the question acts as a
prompt, and the answer is an altered two-word phrase which
contains the pun. The flow of information through PAUL
BOT is as follows, Figure 1.

1. Choose a two-word phrase at random from a database of
adjective-noun phrases as the input into the system.

2. Randomly select one of the two words within the two-
word phrase and identify a homophone for this word.

3. Replace the selected word with the homophone found in
the previous step. This forms the answer portion of the
artifact.

4. Identify a synonym or antonym for the substituted homo-
phone.

5. For the word in the original phrase that was not replaced
by a homophone, identify a hypernym.

6. Select the appropriate question template that matches the
parts of speech of the synonym or antonym and the hyper-
nym chosen in the previous two steps.

7. Insert the synonym or antonym and the hypernym into the
question template.

8. Output the generated pun.

The following demonstrates an example of the flow of in-
formation through the system. The chosen two-word phrase
input is electric motor. A homophone for motor is voter. A
synonym for voter is elector. A hypernym for motor is car
through a part-of relationship. The output is

What do you get when you cross a car with an elector?
electric voter

Figure 1: An overview of the PAUL BOT system. Given
a two-word phrase, the system determines a homophone
within the phrase, chooses a synonym for the homophone,
finds a hypernym for the non-homophone word, and selects
a template that satisfies all the conditions to produce a pun.

Two-word Database Synopsis

A 2-Gram database of two-word phrases was obtained
from COCA, Corpus Of Contemporary American English
(Davies 2014). The database included the two words, their
associated parts of speech, and the frequency of the phrase
in the English language. The punchline answer to jokes gen-
erated by PAUL BOT is always an adjective-noun combina-
tion of words, so we filtered the database for phrases that
only contained an adjective followed by a noun.

Homophone Examination

The CMUdict, a dictionary of homophones, was retrieved
from Carnegie Mellon University (Weide 2005). The dic-

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

182



tionary is composed of words and their phonetic spellings.
The Levenshtein distance was used to measure the minimum
number of single-character edits (insertions, deletions, or
substitutions) to change one word into the other. Our algo-
rithm used the Levenshtein distance to measure the differ-
ence between the phonetic spellings of two words. If a word
is within one edit distance of the search word, this word is
considered a homophone. The homophone with the highest
frequency in the English language is chosen via the wordfreq
package.

Synonyms, Antonyms, and Hypernyms Overview

WordNet was utilized for grouping words by semantic re-
lations for synonyms, antonyms, and hypernyms (Fellbaum
2012). The synonyms and antonyms are found in the lem-
mas of synsets which are data elements considered to be se-
mantically equivalent. Our algorithm uses the wordnet mod-
ule of the nltk package to decipher synonyms and antonyms
of a word. WordNet was used for obtaining type-of rela-
tionships for hypernyms. The hypernym and synonym or
antonym with the highest frequency in the English language
is chosen.

Template Identification

The template is chosen depending on two factors: the parts
of speech and the negation. The hypernyms, synonyms, or
antonyms must be either an adjective, noun, or verb. If one
of these is a verb, the “What do you that is ?” template is
used. Otherwise, the chosen template is “What do you get
when you cross with ?”. The negation of these templates
is included to accommodate antonyms.

Evaluation Metrics

The PAUL BOT system was run consecutively to produce
150 artefacts. From these artefacts, we manually selected
what we deemed the 10 best artefacts for survey evaluation.
Ten users evaluated the puns on a scale of 1 to 5 on their
funniness, surprise, cleverness, did the user laugh, wit, inge-
nuity, timelessness, and accessibility.

Installation of Packages

Our system utilizes the Levenshtein, nltk, and wordfreq
packages. The Levenshtein package measures the edit dis-
tance between the phonetic spellings of homophones. The
nltk package provides access to WordNet to determine syn-
onyms and antonyms. Lastly, the wordfreq package provides
the frequencies of words in the English language.

Results

A survey of jokes was administered to ten participants to
assess the creativity of the PAUL BOT system. Ten jokes
were rated on a scale of 1 to 5 on their funniness, surprise,

Average Rating of Jokes

What do you get when you cross a people with a fire? Human burning 2.73
What do you get when you cross a time with a self-will? Temporary possession 2.55
What do you get when you cross a mother with a sign? Uterine signing 3.19
What do you get when you cross a living with a jerk? Professional yanks 2.83
What do you get when you cross large with a joke? Muscular jest 2.73
What do you get when you cross a training with a predator? Corporate vultures 3.30
What do you get when you cross a butter with a cycle? Buttered biking 2.84
What do you have that is bad? Tough sex 2.54
What do you create that is big? Large shit 3.10
What do you get when you cross a woman with full? Wide women 2.21

Table 1: The average evaluation scores of artefacts on a scale
of 1 to 5.

Figure 2: The median evaluation of the ten jokes according
to funniness, surprise, cleverness, if the user laughed, wit,
ingenuity, timelessness, and accessibility on a scale of 1 to
5.

cleverness, if the user laughed, wit, ingenuity, timelessness,
and accessibility.

The average evaluation of the artefacts across all the fea-
tures is shown in Table 1. The overall evaluations of the
puns range from 2.21 to 3.30. The highest rated pun was
“What do you get when you cross a training with a preda-
tor? corporate vultures” with an average rating of 3.3 / 5.0.
The lowest evaluated pun with an average evaluation of 2.2
/ 5.0 was “What do you get when you cross a woman with
full? wide women.”

The median evaluation of the funniness, surprise, cleverness,
if the user laughed, wit, ingenuity, timelessness, and acces-
sibility of the jokes is shown in Figure 2. Out of all the fea-
tures of a joke, the artefacts were the most surprising with a
3.35/5.00 evaluation. Unfortunately, the artefacts performed
the worst in making the user laugh with a median of 2.0/5.0
and an average of 2.6/5.0. The rest of the features of a joke
performed marginally above the midpoint with a rating of
3.0/5.0.

According to Table 1, the highest rated pun was, “What do
you get when you cross a training with a predator? corporate
vultures.” As shown in Figure 3, users considered this pun
to be clever, witty, and accessible with a median evaluation
of 4.0 / 5.0. The average user thought this pun was funny
with a 3.5/5.0 evaluation. However, this pun did not make
the user laugh with an overall 2.0/5.0 rating.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

183



Figure 3: The best joke evaluation according to funniness,
surprise, cleverness, if the user laughed, wit, ingenuity, time-
lessness, and accessibility on a scale of 1 to 5.

Discussion and Conclusion

In this paper, we explored the design of the PAUL BOT
system and the analysis of the artefacts produced. We dis-
covered that our puns usually did not make the user laugh.
However, the users were usually surprised by the joke. The
funniness, cleverness, wit, ingenuity, timelessness, and ac-
cessibility of the pun were marginally better than midpoint.

We believe that PAUL BOT is a computational creative sys-
tem that exemplifies novelty, value, typicality, and surprise
with limited intentionality. PAUL BOT exhibits P-creativity
through its creation of puns without a prior knowledge base
of existing puns (Wiggins 2006). The artefacts produced
are unique due to the transformation of words and therefore
novel. The worth or value of the artefacts is moderate be-
cause users found the puns to be marginally funny. Our sys-
tem has high typicality because the artefacts produced by
our system represent an ordinary, classic pun. Our system
has limited intentionality because the artefact is framed by
showing the connection between the setup and the punchline
shown in Figure 1. Our puns have a high level of surprise
as shown in Figure 2. Because of these points, we believe
the PAUL BOT system meets the criteria for generalization
(Ventura 2016). Our system does have a fitness function for
generating a pun. The word with the highest frequency is
chosen from various word lists including homophones, hy-
pernyms, and synonyms/antonyms. However, there is no fit-
ness function for choosing the best puns that are above a
certain threshold. Therefore, we argue that PAUL BOT is in
between the generalization and filtration stages on a scale of
being merely generative to being creative.

Some of the remaining issues that need to be addressed in
PAUL BOT are the limited diversity of question templates,
failure to appropriately add articles to nouns in generated ar-
tifacts, inclusion of unsolicited adult content, and failure to
incorporate homonyms. Our system is limited to only hav-
ing four templates for the question where the hypernym and
synonym/antonym can be inserted into the slots. For exam-
ple, the lowest-rated joke in Table 1 could be improved by

adding a template in the following format, “What do you
call a woman that is full? wide women.” Our system also
has loose constraints on adding an article to a noun by mis-
placing an article on a plural noun, e.g. a people. The breath
of topics of our puns narrows the audience to only adults.
Children are not advised to use PAUL BOT. Our system cur-
rently does not support the use of homonyms, words that
have the same spelling or pronunciation but different mean-
ings, only homophones. As seen in Figure 2, our system
cannot produce a pun that is liked by every user.

Despite these limitations, PAUL BOT will be developed fur-
ther to provide humor for adults. Our next steps are to ac-
commodate more templates, refine the algorithm for adding
articles to nouns, and incorporate homonym choices. Our
goal is to create a computational humorous system that is
capable of making users laugh.

Acknowledgments

Credit goes to Andrew Christiansen and Andres Sewell for
helping us to devise the method of hypernym selection
within our system.

References
Davies, M. 2014. N-grams data from the corpus of contem-
porary american english (coca).
Fellbaum, C. 2012. Wordnet. The encyclopedia of applied
linguistics.
Ritchie, G. 2003. The jape riddle generator: technical spec-
ification. Institute for Communicating and Collaborative
Systems.
Ventura, D. 2016. Mere generation: Essential barometer or
dated concept. In Proceedings of the Seventh International
Conference on Computational Creativity, 17–24. Sony CSL,
Paris.
Waller, A.; Black, R.; O’Mara, D. A.; Pain, H.; Ritchie,
G.; and Manurung, R. 2009. Evaluating the standup pun
generating software with children with cerebral palsy. ACM
Transactions on Accessible Computing (TACCESS) 1(3):1–
27.
Weide, R. 2005. The carnegie mellon pronouncing dictio-
nary [cmudict. 0.6]. Pittsburgh, PA: Carnegie Mellon Uni-
versity.
Wiggins, G. A. 2006. A preliminary framework for
description, analysis and comparison of creative systems.
Knowledge-Based Systems 19(7):449–458.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

184


