
Discovering Textual Structures:
Generative Grammar Induction using Template Trees

Thomas Winters and Luc De Raedt
Computer Science Department, Leuven AI

KU Leuven, Belgium
{firstname}.{lastname}@kuleuven.be

Abstract
Natural language generation provides designers with
methods for automatically generating text, e.g. for cre-
ating summaries, chatbots and game content. In prac-
tise, text generators are often either learned and hard
to interpret, or created by hand using techniques such
as grammars and templates. In this paper, we intro-
duce a novel grammar induction algorithm for learning
interpretable grammars for generative purposes, called
GITTA. We also introduce the novel notion of tem-
plate trees to discover latent templates in corpora to
derive these generative grammars. By using existing
human-created grammars, we found that the algorithm
can reasonably approximate these grammars using only
a few examples. These results indicate that GITTA could
be used to automatically learn interpretable and easily
modifiable grammars, and thus provide a stepping stone
for human-machine co-creation of generative models.

Introduction
Text generation is a prominent tool within computational
creativity, due to many creative fields using text as its pri-
mary medium, e.g. poetry and humor. As such, many com-
putational creative systems have applied a large variety of
text generation methods. Methods like templates and gram-
mars generally grant the model designer relatively more con-
trol over the output, but tend to be labor-intensive to create.
Neural text generation approaches (e.g. RNNs, transformer
models) on the other hand can create impressive language
generators, but at the cost of predictability, interpretability
and ease of regulating its outputs in a directed way. In this
paper, we explore a new technique for learning grammars
for generative purposes by discovering latent templates such
that the grammar is easily interpretable and modifiable by
designers of generative textual models for creative purposes.

Background
Templates
Using templates is a popular approach for generating text.
In this context, a template is a piece of text with several
slots that are later filled in using a particular data source.
While they have a lot of obvious merits for e.g. chatbots
and front-end web development, templates are also popular
in computational creative applications. For these creative

purposes, templates are often paired with schemas for pro-
viding sensible content to the templates that internally en-
code how the template slot values relate to each other (Bin-
sted and Ritchie 1994; Winters, Nys, and De Schreye 2018).
For example, the expansion of non-terminal S in Figure 1
could be seen as a template, where a schema (not in the
figure) would create sensible pairings for T and F . There
have been several efforts into automatically learning such
templates and schemas from single examples by analysing
linguistic relationships and properties (Hong and Ong 2009;
Winters 2019a).

Generative Grammars
Grammars are another popular way of generating text.
A context-free grammar (CFG) is a four-element tuple
(V,⌃, R, S), where V is a finite set of non-terminals, ⌃ a
finite set of terminals, R a set of production rules that map
elements of V to (V [⌃)⇤ and S the start symbol. While
generative grammars were initially mainly used for gener-
ating according to a text need, they are also used for cre-
ative purposes. Tracery is a popular language among casual
creators for designing generative grammars. Such gram-
mars usually extend CFGs, e.g. adding stored assignments
and rule weights (Compton, Kybartas, and Mateas 2015;
Winters 2019b). A prominent design pattern in these gram-
mars is specifying production rules that map non-terminals
either to templates, or to a list of possible values for a par-
ticular template slot (Figure 1). The grammar then fills the
templates with randomly generated slot value combinations.

S -> I like putting <T> on my <F>
T -> cheese | pineapple | soy sauce
F -> pizza | salad | muesli | sushi

Figure 1: An example grammar capable of generating 12
different sentences specifying (odd) dish toppings.

Learning Grammars
There are many different algorithms for inducing CFGs,
usually designed for a particular class of grammar. The most
popular type of grammar induction induces part-of-speech
tag structures from treebanks or plain text. Another popular

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

177

type of grammar induction is discovering repetitive struc-
tures to help encode the input text efficiently, inducing gram-
mars where each non-terminal has only a single production
rule (Nevill-Manning and Witten 1997). The grammars in-
duced by these algorithms are however shaped differently
than typical generative grammars with the template-like pro-
duction rules. The latter generally avoids recursive produc-
tion rules, as generating texts of unbounded lengths is usu-
ally undesirable for the creative goal. Non-recursive gram-
mars are thus tools for compactly specifying a finite space
or interesting texts. In this paper, we introduce an algorithm
that can learn such non-recursive context-free grammars us-
ing a template-focused approach, which can thus easily be
interpreted and adapted by generative grammar creators.

Template Trees
We create and define the notion of template trees as an in-
termediary step for inducing a generative grammar, and pro-
pose an algorithm for learning template trees from input text.

Template Tree Definition
A template tree is a connected acyclic directed graph where
each node represents a template that is more general than
the template of all its child nodes, thus defining a partial or-
dering. The leaves of a template tree are templates without
slots, i.e. the input sentences used to learn this tree. A tem-
plate slot maps to zero or more other template elements (i.e.
slots and/or word tokens). A simple template tree can be
seen in Figure 2.

hAi

hello hBi hCi world hi hDi hEi people

hello world hello people hi world hi people

Figure 2: A template tree example

Learning Template Trees
Merging Templates To create a template for the parent
node of two templates nodes, we use a longest common sub-
sequence algorithm on their word tokens to create the most
specific template that is more general than its children. More
specifically, we adapted the Wagner-Fischer algorithm and
use the displacement matrix to insert slots when tokens dif-
fer (Wagner and Fischer 1974). When there are multiple
longest subsequences, the algorithm ignores templates that
are longer than the original templates1, and prefers less slots.

Template Distance The distance between two templates
is defined in terms of the merged template mij causing the
lowest distance d to templates ti and tj :

d(ti, tj) = max(lti , ltj)� lmij + smij �min(sti , stj)

1E.g., when merging ”hi hXi” and ”hY i hi”, it discards
”hY i hi hXi” to avoid overgeneralisation, and prefers ”hZi”.

where lt is the number of non-slot elements of a template t,
and st the number of slots in t.

Learning Algorithm Algorithm 1 shows how a template
tree is learned from input texts D. Initially, all pairs of input
texts are stored in a priority queue Q, sorted by their dis-
tance as defined above. The algorithm keeps track of active
templates, i.e. templates without parent, in a list A. As long
as A contains more than one template, the algorithm will
take all minimally distant pairs of templates from Q, where
both templates are still active. Every such minimally distant
pair is merged, making both templates inactive and the new
merged template active. All new templates are then paired
up with other active templates, and added to Q. If A only
contains one template, then this template becomes the root
of the template tree. The template tree is reconstructed by
adding all templates that once merged to a particular tem-
plate as children of the node of this template.

Algorithm 1 Calculating template tree from input texts
Require: input texts D
Ensure: A = {t} where leavest = D

Q {(di, dj) | di, dj 2 D}
A D
while #A > 1 do
M argmin(ti,tj)2Q(d(ti, tj)) \ {(a, b) | a, b 2 A}
N {}
for all (ti, tj) 2M do

m merge(ti, tj)
N N [{m}
A A \ {ti, tj}

end for
for all n 2 N do

Q Q [{(n, a) | n 2 N, a 2 A}
A A [{n}

end for
end while

GITTA: Template Tree to Grammar
We introduce a new grammar induction algorithm named
GITTA (Grammar Induction using a Template Tree Ap-
proach). GITTA aims to induce a non-recursive CFG, thus
compactly representing a finite number of similar finite
strings. While any finite language of size n can trivially be
represented by a simple grammar with n production rules,
having fewer production rules implies that patterns have
been induced. This allows the grammar to potentially gen-
erate unseen examples from the language, and also be more
easily modifiable. GITTA converts the template tree into a
grammar by assuming independence between slot values,
and simplifying the template tree. The resulting slot values
and root template then specify the grammar.

Pruning Template Tree
GITTA first prunes redundant children of template tree
nodes. A child is redundant if all its descendant leaves are
reachable through the other children. For each level, nodes

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

178

are checked in ascending order of number of descendants,
pruning nodes with less general templates first.

Merging Slots
To convert the template tree into a grammar, GITTA assumes
that all possible slot values are independent from all other
slot values of the template. For every slot, all possible slot
values are extracted from the templates of the children of the
nodes having a template with this slot.

After finding all slot values Ui for every slot si, the algo-
rithm merges similar slots if #(Ui\Uj)

#(Ui[Uj)
� r, where r 2 [0, 1]

is determined by the user. Lower values of r thus require
slots to have less overlap in slot values in order to be merged.
GITTA also removes uj 2 Ui if there is a slot sk such that
sk 2 Ui and uj 2 Uk. If si 2 Ui, the slot will also be
removed from the slot values. If Ui = {sk}, then si is re-
placed with sk. For example, for the tree in Figure 2, the
algorithm would discover that D has the same slot values as
B, and thus should be replaced by B. This process continues
until there is an iteration without any update.

Collapsing Template Tree
Using the merged slots, several simplifications are made to
the template tree. First, the replacement mapping reduces
the number of different slots of the template tree. Second,
knowing the slot values for a slot helps reduce the number of
nodes in the tree. For a node p with template tp, and a child
c with template tc that contains a slot of tp and for which
the template tc can be obtained by filling in other slots with
known slot values into tp, then this child node c is redun-
dant and can be pruned. All children of c are then added as
direct children of p. For example, for Figure 2, if the root
template would be “hCi hBi”, the four middle nodes would
collapse into their parent, leaving only “hCi hBi” as parent
of the four leaf nodes. After collapsing the template tree us-
ing knowledge of the slot values, the template of each node
is recalculated, which leads to the aforementioned new root
node template of Figure 2. This process of simplification
of the template tree and recalculation of the templates keeps
repeating until the template tree is unchanged after an iter-
ation. The resulting grammar is derived by mapping from
start symbol S to the root template of the template tree, and
using slot values mappings as production rules.

Experiment: Reverse-engineering Grammars
To measure the performance of the algorithm, we test how
well it can induce grammars from generations of a human-
made grammars. We use Tracery grammars to generate a
fixed number of sentences that serve as examples for GITTA.
The algorithm also receives the depth of the original gram-
mar as a parameter to limit the height of the template tree.
After inducing a grammar I , we compare how many ele-
ments that are generatable using I are in the language LG

defined by G, and how many elements of LI are not in
LG. We also compare size of the grammars, i.e. number
of production rules #RI of the induced grammar to #RG

of the original grammar G. These production rules can not
have disjunctions on the right side, meaning a rule with the

shape A ! cat | dog would be normalised to the two rules
A ! cat and A ! dog. Smaller grammars are generally
more interpretable, and for GITTA also an indication for how
well the grammar compacted information.

Out of all Tracery bots on listed BotWiki2 (159), we
downloaded all sources that were available on CheapBots-
DoneQuick3 (58) and used all grammars without advanced
syntax (47) that only generated text (31) with at most one
million possible generations (10) in order to make it fea-
sible to calculate LG \ LI . We also removed non-terminal
modifiers, used e.g. for capitalisation and pluralisation, from
the grammars, leaving only the bare non-terminals. We ran
GITTA five times on every grammar on randomized subsets
of LG of size 25, 50 and 100 examples, and took the median
values over the runs.

As can be seen in Table 1, the algorithm is generally able
to induce grammars that generate significantly more ele-
ments of the original language than shown as example to
the algorithm, with usually relatively few elements not in
the original language. However, GITTA also sometimes uses
relatively more rules RI to generate relatively less genera-
tions LI , most notably in grammars 1 and 2. This indicates
that many rules are likely redundant or should be decom-
posed into simpler rules to allow for more generations. For
grammar 6, generalisation is not possible due to the origin
template having one slot, and this slot mapping to different
word lists, which also explains why it has more production
rules than generations.

For grammars 4 and 5, GITTA tends to induce gram-
mars with relatively large numbers of generations that are
not in LG. This is usually due to overgeneralisation.
For example, a grammar G that has the production rule
“S ! hHelloi hWorldi | hHelloi there, hNamei”,
might lead to GITTA creating a more general rule “S !
hHelloi hTherei hThingi”, with “There ! there | ✏”
and Thing mapping to all values of Name and World. For
grammar 5 in particular, the origin template has four consec-
utive non-terminals separated from two other non-terminals
by only one terminal, all mapping to varying number of ter-
minals. This property makes it unclear for GITTA where
slots start and end, thus leading to overly specific produc-
tion rules being added instead of finding clear slot values.

Discussion & Future Work
GITTA could be employed in a collaborative generative
grammar building tool, where a designer and the algorithm
create a generative grammar together. In this scenario, the
designer could first illustrate several examples or use an ex-
isting corpus specifying what the grammar should generate,
for which the algorithm will propose a suitable grammar by
discovering latent templates, thus creating an initial gram-
mar prototype. The designer can then add, remove and mod-
ify production rules to further suit their needs, thus allowing
more meaningful interactions than black-box generative text
generators generally allow. This direct control could be used
e.g. for limiting the possibilities of generating offensive or

2https://botwiki.org/
3https://cheapbotsdonequick.com/

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

179

Grammar G I from 25 examples I from 50 examples I from 100 examples
id Name #LG #RG 2 LG /2 LG #RI 2 LG /2 LG #RI 2 LG /2 LG #RI

1 botdoesnot 380292 363 648 0 64 2420 0 115 1596 4 179
2 BotSpill 43452 249 75 0 32 150 0 62 324 0 126
3 coldteabot 448 24 39 0 38 149 19 63 388 9 78
4 hometapingkills 4080 138 440 0 48 1184 3240 76 2536 7481 106
5 InstallingJava 390096 95 437 230 72 2019 1910 146 1156 3399 228
6 pumpkinspiceit 6781 6885 25 0 26 50 0 54 100 8 110
7 SkoolDetention 224 35 132 0 31 210 29 41 224 29 49
8 soundesignquery 15360 168 256 179 52 76 2 83 217 94 152
9 whatkilledme 4192 132 418 0 45 1178 0 74 2646 0 108
10 Whinge Bot 450805 870 3092 6 80 16300 748 131 59210 1710 222

Table 1: Grammar induction results given a specific number of random generations of G, measuring median number of gener-
ations of the induced grammar I that are in and not in the target language, as well as their median sizes, over five runs.

unwanted content, which is an important aspect for many
text generation domains such as game development.

One limitation compared to other grammar induction al-
gorithms is that it cannot induce recursive grammars. As
such, production rules like S ! SS | (S) | ✏ (= the bracket
language) are not able to be learned by our system. How-
ever, since recursion is generally an unwanted property of
generative grammars due to making grammars able to gen-
erate unbounded texts, our proposed algorithm thus prevents
language model overgeneralization caused by recursion.

GITTA creates a basis for learning more complex, inter-
pretable generative models. It could be trivially extended
by learning probabilities of rules as a post-processing step
using the input sentences. Another interesting extension is
learning constraints that hold between expansions of non-
terminals, and thus create complex generative schemas.

We mainly see the use for this algorithm in automatically
mimicking patterns or extending data sets that have some
sort (possibly latent) template in their texts, such as forum
topic titles or writing and comedy prompts. Template trees
in itself could also be used for discovering frequently occur-
ring templates in a corpus, and provide similar functionality
as clustering algorithms. The code of GITTA is available on
https://github.com/twinters/gitta.

Conclusion
We introduced a new way for learning context-free gram-
mars, focusing on interpretability and its generative per-
formance. We introduced the notion of template trees to
achieve this purpose, as well as a learning algorithm for this
structure and transformations. The experiments indicate that
the grammar induction algorithm is able to induce real gram-
mars from little examples, showing its potential for use in
collaborative modelling of grammars. We hope that this sys-
tem could be a stepping stone towards automatic co-creation
of complex but interpretable generative grammars.

Acknowledgments
Thomas Winters is a fellow of the Research Foundation-
Flanders (FWO-Vlaanderen).

References
Binsted, K., and Ritchie, G. 1994. An implemented model
of punning riddles. CoRR abs/cmp-lg/9406022.
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Tracery:
An author-focused generative text tool. In Schoenau-Fog,
H.; Bruni, L. E.; Louchart, S.; and Baceviciute, S., eds.,
Interactive Storytelling, 154–161. Cham: Springer Interna-
tional Publishing.
Hong, B. A., and Ong, E. 2009. Automatically extract-
ing word relationships as templates for pun generation. In
Proceedings of the Workshop on Computational Approaches
to Linguistic Creativity, CALC ’09, 24–31. Association for
Computational Linguistics.
Nevill-Manning, C. G., and Witten, I. H. 1997. Identifying
hierarchical structure in sequences: A linear-time algorithm.
Journal of Artificial Intelligence Research 7:67–82.
Wagner, R. A., and Fischer, M. J. 1974. The string-to-string
correction problem. Journal of the ACM (JACM) 21(1):168–
173.
Winters, T.; Nys, V.; and De Schreye, D. 2018. Automatic
joke generation: Learning humor from examples. In Dis-
tributed, Ambient and Pervasive Interactions: Technologies
and Contexts, volume 10922 LNCS, 360–377. Springer In-
ternational Publishing.
Winters, T. 2019a. Generating philosophical statements us-
ing interpolated markov models and dynamic templates. In
31st European Summer School in Logic, Language and In-
formation Student Session Proceedings, 181–189. ESSLLI.
Winters, T. 2019b. Modelling mutually interactive fictional
character conversational agents. In Proceedings of the 31st
Benelux Conference on Artificial Intelligence (BNAIC 2019)
and the 28th Belgian Dutch Conference on Machine Learn-
ing (Benelearn 2019), volume 2491. CEUR-WS.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

180

