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Abstract

Music variations consists of modifying an original mu-
sic piece so that it remains harmonious and provides a
sense of novelty while still remain relatable to the orig-
inal song. The melody should progress in a harmonious
way and under a reasonable chord hierarchy, due to this
constraints, music variations can be considered as a rule
based composition system. In this research, we develop
a genetic algorithm to compose a variation on a given
music piece. To achieve this we design a novel evalu-
ation function and evolutionary operators which favor
the modification process. These are designed to include
components of melody similarity and tempo diversity
in addition to harmony. The experimental results show
that the proposed system can generate variations that
preserve musicality. A human evaluation study is also
included to validate the proposed evaluation function.
Additionally a link to listen to our generated composi-
tions is provided.

Introduction

Music composition has traditionally been another mean of
human expression. This process involves a combination of
concepts from diverse domains including mathematics, mu-
sic theory and creativity. Developments in the field of com-
puter music have seen growing efforts in replicating such
procedure. Automatic music composition is the process of
generating music with the least amount of human interven-
tion. In practice, it can be used to evaluate the degree to
which computers can execute the task or as a tool to enhance
the human process. This has led to a variety of implemen-
tations of music composition systems. Among this efforts
we find music variations which are important to study due
to their nature of creating over an existing structure. This
behavior can provide insights on how the creative process
can leverage on prior information and perhaps give us clues
on how to apply these concepts in other fields.

The automatic music generation problem is complex and
challenging. Recent studies propose music generation sys-
tems using neural networks and deep learning techniques
and have achieved considerable success (Sturm et al. 2016;
Chu, Urtasun, and Fidler 2016; Brunner et al. 2017,
Yang, Chou, and Yang 2017; Yu et al. 2017). Another
paradigm within the field focuses on composing music in
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a specific style instead of composing from scratch. Pre-
vious studies have focused on the generation of Chinese
folk music, Jazz solos and fusions of Flamenco with Ar-
gentine Tango (Biles and others ; Liu and Ting 2017,
Zheng et al. 2017; Luo et al. 2020). Moreover, algorithms
have been able to generate specific style harmony based on
a given melody. Providing a sense that composition systems
can build on top of existing musical structures. Most of these
techniques have focused exclusively on harmony instead of
a global musical structure as its driving force.

The mentioned studies rely on a target style to generate
or adjust a composition. Music variation refers to the pro-
cess of modifying a musical piece without a target style.
The lack of data with original and variation pairs limits the
training and modeling by neural networks. Rule-based ge-
netic algorithms do not require training data and have previ-
ously achieved good results in music composition and vari-
ation (Ozcan and Ercal 2007; Majumder and Smith 2018;
Alfonseca, Cebridan Ramos, and Ortega 2006). Music vari-
ation needs to consider other aspects as compared to tradi-
tional composition. In particular, they have to pay attention
to the original piece and carefully select modifications that
can build on it. This progression must still remain pleasing
to a human audience. This requires balancing the amount of
diversity added to the variations so that they remain novel
while the original songs are still perceivable. In most of the
previous studies the evaluation functions driving the evolu-
tionary process rely solely on harmony rules or music theory.
We propose a more complete function which considers the
following aspects:

e Harmony: Evaluates if the result follows the classical mu-
sic theory which favor musicality.

e Diversity: Measures the amount of rhythm variation
added to the original song while being musically pleas-
ing.

e Similarity: Determines how close is the modified melody
to that of the original song.

These measurements can direct the evolutionary process
and also be used as evaluation functions for any given pair of
music compositions. In conclusion, the contribution of this
research is to provide an automatic music variation system
which relies on a new evaluation method which considers if
the result is harmonious as well as the novelty factor in the



composition while still remaining identifiable to its source.

Methodology
Overview

The proposed music variation system is also similar to the
evolutionary process. The modification with higher fitness
score has higher potential to survive during the selection.
Pitch!, Interval® and Duration® are the modifiable features
and the basic musical components when composing melody.
These features are properly represented in MIDI format
which is adopted in this study. Different operators are de-
signed to manipulate them and generate variations while the
fitness function based on harmony, similarity and diversity
directs the evolutionary process. Evolution is an iterative
process, after initialization mutations will be performed on
the surviving population until satisfying certain fitness crite-
ria.

Genetic Operators

Initialization Genetic algorithm begins its process with
the creation of an initial population. Under this scenario,
new note sequences that can be composition variations, need
to be created. In music variation, a music section is given
hence initial pitch and rhythm are already defined. A new
note should not be randomly initialized from a huge search
space, adding note series or rearranging notes based on the
existing music section is more suitable. 1000 new MIDI se-
quence with modifications on the given music section are
created and those with the highest fitness score are selected.
Below we describe and illustrate three novel approaches to
initialize these new note sequences.

e Split note: This modification splits one note into two of
the same pitch with half its original duration. This results
in a change in the rhythm while maintaining the same
melody contour within the bar (Figure 1).
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Figure 1: Split note example.

e Exchange notes: Once the bar is chosen, two selected
notes inside the bar will be swapped. The rearrangement
of the notes results in a slight variation of the melody (Fig-
ure 2).

!The basic component in music and can be regarded as notes
which represent the European standard system of 12 equally dis-
tributed semitones.

The distance between two consecutive notes. Consonant inter-
vals, which sound pleasant during the hearing and dissonant inter-
vals, which create a feeling of tension when hearing.

*The length and the timing which one note should occur and
finish.The duration of every note in a melody defines the “rhythm”.
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Figure 2: Exchange notes example.

e Add note sequence: In order to create a different rhythm,
melody and more significant variations, one note is bro-
ken into a four related chord degree note sequence (Fig-
ure 3).
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Figure 3: Add note sequence example.

Crossover Also called recombination, is a genetic opera-
tor to combine the information from two candidates. It is
a way to generate new solutions from an existing popula-
tion. There are multiple ways to implement it such as single
point crossover, k-point crossover and uniform crossover.
As the given music section is too short, performing k-point
crossover will not be as beneficial as single point crossover
which will favor keeping the better individual notes from
good phrases. This process is illustrated by Figure 4.
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Figure 4: Example of crossover for a given phrase.

Mutation This operator seeks to help the population be-
come better. The mutations occur based on a probability and
the positions where they occur are randomly decided. Three
mutation alternatives were implemented.

e Pitch Mutation: A note out of harmony will be selected
and changed to one of a harmony degree based on the
previous note.

e Duration Mutation: A note is randomly selected and its
duration is either doubled or reduced to half and. This en-
ables changes in rhythm while keeping the origin melody.

Fitness Rules

Designing the fitness function in GA can be regarded as a
critical point since it determines the quality of evolution.
Melody similarity, thythm diversity and harmony are pro-
posed as components of the fitness function. The total fitness
score will result from the sum of these three aspects.



Melody Similarity Chord analysis can assist in determin-
ing which chords and note series are present in a sequence
hence enabling a comparison between two sequences. The
Spiral Array Model (Chew and Chen 2005) is adopted to
obtain the chord in each bar. Pitches are projected into a
3-dimensional space and every collection of notes is repre-
sented by a center of effect(CE), which is a point in the inte-
rior of the Spiral Array that is the convex combination of the
pitch positions weighted by their respective duration. Con-
sequently, the CE of a bar represents its chord. The score
for the distance between the original and generated music
pieces can be obtained by equation (1), were b is the total
number of bars in the song.

100 — Y (CE; - CE})/b

=0

Se ey

Tempo Diversity To evaluate the differences in tempo we
adopt the metrical complexity (Thul and Toussaint 2008).
This measurement uses metricity(W), the sum of all the met-
rical accents of the beats present in a rhythm, to obtain a
tempo complexity complexity. Equations 2 and 3 present
the tempo diversity score calculation where maxW; is the
maximum metricity for 5 beats and W is the actual metric-
ity for every 5 beats in the generated song.

TempoComplexity = Z mazW,; — Z Wi (2
i=1 i=1

n
Sq = ZT@mpoC’omplezityi
i=0

3

Harmony For measuring the harmony of a song, the fit-
ness function evaluates every sequence according to music
theory. It examines every note from the sequence, when-
ever a rule is matched, the fitness score is modified accord-
ingly. The higher score means the sequence violates less
rules. These rules mainly focus on the basic consonance be-
tween consecutive notes and the harmony note with chord
sequence, the score arrangement of each rule is listed in Ta-
ble 1 and its calculation denoted by equation (4).

n

Z(Rulei xd;)/n

=0

Sp = “

Experiments
Measurement Validation

First, to verify the designed harmony rules can scale the song
correctly or not, six testing songs including three from ma-
jor tonal and three from the minor tonal are evaluated. The
harmony score is calculated to see if the proposed rules can
scale the harmony degree accordingly. The results presented
in Table 2 support theoretical agreements stating harmony is
dependent on Major tonality.
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No | Rule Weight
1 |2 consecutive notes are the same (C, C) +3
2 |2 consecutive notes are Major 2nd (C, D) +3
3 |2 consecutive notes are Major 3rd (C, E) +3
4 |2 consecutive notes are Perfect fourth (C, F) | +3
5 |2 consecutive notes are Perfect fifth (C, G) |+3
6 |Big jump between notes (degree > 5) -8
7 | The note is a chord root note +5
8 | The note is a second chord note +4
9 | The note is a third chord note +4
10 | The note is in the scale (C major) +2

Table 1: Fitness Score for Every Rule

The fitness function was tested on a human composed
music variation. “12 variation on Twinkle Twinkle Little
Star” consists of improvisations on each section composed
by Mozart. Table 3 presents the resulting scores for each
varying section. This experiment demonstrates the proposed
measurements can properly model the target characteristics
pertinent to music variation.

No | Song Tonal | Harmony Score
1 | Through the Arbor Major | 106.03

2 |Little Star (Mozart) |Major [99.8

3 |Minuet G (Bach) Major | 100.2

4 | Sonata No. 5 Minor | 66

5 | Concerto 5 (Beethoven) | Minor | 68

6 |Concerto 23 (Mozart) | Minor |71

Table 2: Harmony Score in Different Type of Music

Section | Harmony | Similarity | Diversity
1 100.88 | 100 0

2 101.33  |96.8 5

3 89.8 83.25 5

4 89.33 92.5 8.6

5 87.79 84.88 8.2

Table 3: Harmony and Similarity Score for Little Star Com-
posed by Mozart.

Music Variation Results

The proposed system was tested with songs from multi-
ple genres ranging from classical music to pop. Parame-
ters for the GA were set at 8 bar sequence length, popula-
tion size of 100, 0.5 crossover and 0.05 mutation running
for 600 generations. A demo of the results is available at
“https://sharon1018.github.io/”. To evaluate the impact of
each of the proposed measurements on the fitness function
three different variations are presented for each song, incre-
mentally adding an additional component. Samples of the
music scores for original an variation songs are presented in
Figures 5 and 6.

Through visual inspection and listening to the demo it can
be perceived how the musicality is preserved. It is also a
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Figure 6: Variation Result for Little Star.

good reference to the impact of the different proposed oper-
ators and their impact on the evolution.

Human Evaluation of the Variation Results

To rate the quality of the generated songs human evalua-
tion was performed. A total of 20 test subjects, university
students aged 22 to 26 with no specific music background,
scored the variation results for the different combinations of
generated songs as presented in the demo. Figure 7 shows
the average harmony score rating, all samples score above
6/10 indicating the songs preserve and even improve their
harmonious musical quality while integrating the new fea-
tures. The samples were also rated in terms of similarity and
diversity displaying similar results.

Harmony Score with Different Factors
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Figure 7: Harmony score for different measurements.

Conclusion

The automated evolutionary approach for music variation is
discussed and evaluated in this research. The proposed op-
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erators and fitness function guide the evolution process and
are able to generate coherent music pieces. The system suc-
cessfully generated samples that achieve the desired surprise
factor in variations and still being relatable to the original
songs.
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