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Abstract

Since the heydays of music informatics, around the 1950s,
the modeling and prediction of musical structures manifested
as symbolic representations have been continuously pursued.
The operational property of such methods is to provide the
conditional distribution over an alphabet – i.e., the entire col-
lection of unique musical events in a composition or corpus –
given a context – i.e., a preceding sequence. This distribution
unpacks temporal morphologies that support multiple appli-
cations for predictive and assisted creative tasks, such as the
generation of new musical sequences that retain a structural
resemblance to a modeled source. Despite their longstanding
tradition, state-of-the-art methodologies for symbolic music
modeling are yet to reach the music community. Naive mod-
els such as Markov chains, which are known to neglect the
fundamental hierarchical nature of musical structure, remain
common practice. In this paper, we extensively review ex-
isting methodologies for symbolic music representation and
modeling, as the first steps towards a study on the resulting
balance across familiarity and novelty in generative music ap-
plications.

Introduction
Historically, music informatics has been exploring the algo-
rithmic modeling and prediction of musical structure. Exist-
ing applications stem from information theory principles and
the postulate of music as a low entropy phenomenon (Con-
klin and Witten, 1995). Given the temporal and hierarchical
nature of the musical structure, algorithmic methods are typ-
ically informed by a sequence of past events, i.e., a context,
to both model existing structures and predict or generate new
structures (Conklin and Anagnostopoulou, 2001). These
models aim to capture different degrees of inter-dependency
across the component elements of the musical structure.
Prior to the modeling of musical structure, a discrete and fi-
nite alphabet including all unique symbolic representations
for a given structure has to be created. Depending on the
adopted intra- and inter-opus musical material, algorithmic
models capture different musical traits ranging from recur-
rent patterns in a composition to stylistic idiosyncrasies of a
composer or even tonal music principles.

The balance between familiarity to known compositional
traits, captured by these algorithmic methods and novelty
introduced by unfamiliar and unpredictable structures is of

utter importance in the design of generative systems (Bev-
ington and Knox, 2014). The Wundt curve, a hedonic func-
tion that relates the levels of novelty and expectation to the
‘pleasantness’ of creative works (Berlyne, 1970), captures
the notion of balance as mentioned above.

In this paper, we argue that the interaction between dis-
crete and finite alphabets of music and their temporal mod-
eling is instrumental in controlling the resulting balanced
of generative music models across the novelty-familiarity
range. To this end, we extensive review musical representa-
tions and modeling methods adopted in the context of gener-
ative music, as the first steps towards a larger study on their
(balanced) interaction thereof.

The remainder of this paper is structured as follows. Sec-
tion “Symbolic Representation of Musical Structures” pro-
vides a literature review on the topic. Section “Modeling
Temporal Musical Structures” presents modeling methods
that capture the morphology of musical structures. Section
“Applications” reviews representative generative music ap-
plications, which combine the two above components and
have a broader adoption by the music community. A twofold
categorization of computer-aided algorithmic composition
and machine improvisation applications is adopted. Finally,
Section “Summary and Future Challenges” presents the con-
clusions and discusses future challenges.

Symbolic Representation of Musical
Structures

In this section, we review the following four symbolic music
representations adopted in the computational modeling of
musical structure: formal strings, graphs, formal grammars,
and geometrical representations. These representations were
selected based on their focus, relevancy and impact in im-
proving the models for musical structure modeling and pre-
diction across related literature.

Formal Strings
Formal strings are one of the earliest and most frequently
adopted computational representations of symbolic music
manifestations. It encodes musical structure as sequences
of symbols driven from a finite and discrete alphabet, ⌃.
To encode duple pitch-duration information – two primary
elements in Western music (Wishart and Emmerson, 1996)
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Pitch/Duration En-
coding

Encoded Sequence

Common music no-
tation (pcmn)

(G,^,3) (G,^,3) (D,^,3) (G,^,2)
(B,^,3) (C,^,4) (D,^,4) (D,^,4)
(B,^,3) (A,^,3)

Absolute Pitch
(MIDI values)

55 55 50 43 59 60 62 60 59 57

Base-12 (p12) 8 8 3 8 12 1 3 1 12 10
Base-21 (p21) 13 13 4 13 19 1 4 1 19 16
Base-40 (p40) 26 26 9 26 38 3 9 3 38 32
Interval (pitv) 0 0 -5 -7 16 1 2 -2 -1 -2
Interval from tonic
(pift)

0 0 7 0 4 5 7 5 4 2

Contour (pc) 0 0 -1 -1 1 1 1 -1 -1 -1
HD-Contour (phdc) 0 0 -3 -3 4 1 1 -1 -1 -1
Absolute time
(rtabs)

0 1/2 1 3/2 2 9/4 5/2 11/4 3 13/4

Absolute duration
(rdabs)

1/2 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4
1/2

Contour (rc) 0 0 0 0 -1 0 0 0 0 0
HD-Contour (rhdc) In this case, the resulting string

is the same as rc because there
is only changes between close
rhythm durations.

Table 1: Multiple encoding of pitch and duration using for-
mal string representations for the musical excerpt shown in
Figure 1.

– decoupled symbols from (⌃p) and (⌃r) alphabets can be
adopted. Table 1 summarizes typical formal string represen-
tations for encoding the pitch and duration of the musical
excerpt shown in Figure 1.

Figure 1: The first bar of J. S. Bach’s Courante of Suite No.
1 in G major, BWV 1007.

The multiple viewpoint systems (Conklin and Witten,
1995) emerged as an extension of the duple pitch-duration
formal string representations. It expands the former formal
string representations by including secondary structural in-
formation, such as metrical position and interval. These sys-
tems use domain knowledge to derive new representations
for encoding temporal events from the musical structure by
abstracting properties types, ⌧ , as summarized in Table 1. To
compute each type a function  ⌧ is adopted. A viewpoint
comprises one such function and the set of strings that can be
computed. A multiple viewpoint system comprises a collec-
tion of different viewpoints, some of which can be derived
from basic viewpoints. Furthermore, as the viewpoints can
have correlations, a new type was introduced: the product
type (⌧x⌦ ⌧y), whose elements are the cross product of their

Type e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
start offset 10 12 14 16 18 19 20 21 22 23
pitch (absolute) 55 55 50 43 59 60 62 60 59 57
duration 2 2 2 2 1 1 1 1 1 1
key signature 1 1 1 1 1 1 1 1 1 1
time signature 12 12 12 12 12 12 12 12 12 12
deltast (is rest?) F F F F F F F F F F
posinbar (position in
bar)

10 0 2 4 6 7 8 9 10 11

fib (is first in bar?) F T F F F F F F F F
seqint (sequential in-
terval from last note)

? 0 -5 -7 16 1 2 -2 -1 -2

contour ? 0 -1 -1 1 1 1 -1 -1 -1
hdcontour ? 0 -3 -3 4 1 1 -1 -1 -1
referent 7 7 7 7 7 7 7 7 7 7
thrbar (seqint at bars) ? 0 ? ? ? ? ? ? ? ?
thrqu (seqint at quar-
ters)

? 0 ? -12 ? ? 19 ? ? ?

Table 2: Some basic and derived viewpoints for the events
of Figure 1.

constituents. Table 2 shows a set of multiple viewpoints of
the musical excerpt in Figure 1.

Polyphonic (i.e., multi-layer) formal string represen-
tations can be split into the following three categories:
non-interleaved (Lemström and Tarhio, 2003), inter-
leaved (Pienimäki, 2002) and onset-based (Lemström and
Tarhio, 2003). The first category encodes polyphonic mu-
sic textures as independent monophonic layers sequentially.
The second category encodes all layers linearly, ordering
pitch values sequentially by their onset times. It provides
greater flexibility for handling the complex multidimen-
sional nature of polyphonic music; however, it does not
highlight the vertical, namely homophonic, nature of the tex-
tures. The third category underlines homophonic textures by
discriminating all overlapping notes as vertical aggregates.
However, the duration information is lost and it can lead to a
combinatorial explosion. Hanna et al. (2008) minimize the
lack of duration information by fragmenting long notes into
notes of fixed duration connected by ties.

The task of capturing all co-dependencies across vertical
and horizontal textures is still challenging and has not yet
been fully achieved.

Graphs
E-Graph is a representation of monophonic sequences pro-
posed by Marsden (2001). It typically adopts a minimum of
two places (i.e., nodes) for each symbol, namely time and
pitch.

Places can be connected by elaborations (i.e., edges),
which typically include metrical and pitch information. The
latter generates new intermediate places without crossing
links, making the representation interpretable as an acyclic
graph, hence easily represented as a tree. Elaborations can
either be simple or accented. Simple elaborations refer to in-
sertions between two-note events, such as rests, repetitions,
anticipations, passing notes, and octave jumps. Accented
elaborations refer to delays, suspensions, and accented pass-
ing notes.

E-Graphs have shown great potential in capturing musical
patterns in multiple stylistic contexts. However, it was grad-
ually abandoned due to its: i) excessive complexity, ii) am-
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biguous and multiple representations derived from the same
musical sequence, and iii) restriction to melodic layer pars-
ing.

Tagliolato (2008) presented a time-independent graph-
based signature of melodic layers as an alternative to E-
Graphs. It adopts a reduced 12-tone pitch alphabet, which
captures invariant-pitch structures under inversion and ret-
rogradation. Basic rhythmic features and events’ order can
be encoded in the graph’s edges.

Formal Grammars
Formal music grammars, or simply grammars, represent the
“intuitions of a listener who is experienced in a musical id-
iom” (Lerdahl and Jackendoff, 1983, p. 3) using formalized
methods (i.e., higher-level abstractions). It can be split into
four hierarchies: i) grouping into motives, phrases, peri-
ods or sections, ii) metric alternation of strong and weak
beats, iii) time-span reduction from metrical and group-
ing structures to higher-level hierarchies, and iv) prolonga-
tional reductions describing tension and relaxation phenom-
ena across time (Lerdahl and Jackendoff, 1983). Despite be-
ing well-suited for representing structural dependencies in
musical structure, formal context-free1 music grammars are
challenging to compute. Their strict hierarchy is difficult
to reconcile with the inherent ambiguity of musical struc-
ture (Rohrmeier and Pearce, 2018).

Rizo (2010) proposed a formal grammar representation
for computing the similarity of monophonic and polyphonic
music sequences as tree structures. The tree leaves represent
note events and pitch class sets from monophonic and poly-
phonic layers, respectively. Employing multi-sets with dura-
tion information and number of notes overlapping solves the
problem of encoding polyphonic information. Rizo showed
that tree structures are versatile in encoding information
other then pitch or rhythm, such as harmonic structure and
form. However, its dependency on a priori knowledge of the
metric structure and its high complexity in representing ties,
dots, and syncopations are prominent drawbacks.

Geometric Representations
Maidı́n (1998) proposes the use of geometric representations
to encode music as 2-dimensional pitch-duration contours
across time. From the resulting geometrical representation,
various metrics were proposed, namely for similarity com-
putation across musical sequences.

A particular case of these geometric representations is the
multidimensional point sets, proposed by Meredith (2006),
that adopt the Euclidean space to represent musical events
as a tuple of 5 elements: onset time of the note; chromatic
(absolute) pitch; diatonic pitch, defined by an integer that
indicates the position of the head of the note on the staff;
duration; and the voice (i.e., layer) number within the poly-
phonic texture. The 2- or 3-dimensional projection of the

1A context-free formal grammar is a set of production rules that
describe all possible strings in a given formal language by allow-
ing the application of those rules regardless of the context of the
nonterminal symbols.

point sets allows the efficient search for similar patterns, in-
cluding small variations, using their spatial configuration.
Figure 2 shows a projection of onset time and chromatic
pitch for the musical excerpt in Figure 1.

Figure 2: A Multidimensional Point Sets projection of onset
time and chromatic pitch for the example in Figure 1.

Modeling Temporal Musical Structures
In this section, we review the following two musical struc-
ture modeling techniques, which were selected based on the
visibility and attention they attract from the music commu-
nity: statistical sequence modeling and compression algo-
rithms. Despite the possibility to manually draw these mod-
els from scratch, they are typically driven from existing mu-
sical structures (e.g., individual pieces or a corpus). Despite
falling into the general category of musical structure model-
ing, we do not include evolutionary computation algorithms
in this review, as they do not address domain-specific knowl-
edge (Nierhaus, 2009).

Statistical Sequence Modeling
N-grams are specific types of Markov models, which cap-
ture dependencies across discrete and finite symbols from
an alphabet, given a context (Downie, 1999). N corresponds
to the total number of contiguous symbols under consider-
ation in the model, i.e., the context. Despite its popularity,
N-grams have been criticized due to their limitation in cap-
turing long-term structural dependencies (Sears et al., 2017).
When encoding musical structures in multiple directions or
hierarchies, the number of associations between events can
explode in combinatorial as N and the length of the original
sequence increase (Sears et al., 2017).

In light of this limitation, skip-grams have been proposed
to parse non-contiguous elements from the musical struc-
ture. The maximum length of these skips can be defined by
a threshold in the fixed-skip model. Symbols are only con-
sidered if within a fixed range of skips from the event pro-
cessed. Alternatively, it can follow a variable-skip approach
that parses all events satisfying a particular condition (Her-
remans and Chuan, 2017). The latter approach is typically
adopted for modeling temporal-dependent sequences.

Sears et al. (2017) has shown that skip-grams signifi-
cantly outperform contiguous n-grams in discovering ca-
dences. Markov chains embed n-gram and skip-grams mod-
els to generate musical sequences that are statistically simi-
lar to modeled sources.
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Factor Oracle (FO) was introduced by Allauzen,
Crochemore, and Raffinot (1999) as acyclic automata that
recognizes at least the factors of a word. FO is a time- and
memory-efficient string-matching algorithm and has been
recently proposed for modeling musical structures.

FO is learned online in an incremental fashion. Repeated
patterns in FO are denoted by two types of links between
states: factor links and suffix links. Factor links indicate
paths across states that produce similar patterns by contin-
uing forward. Suffix links indicate paths across states that
share the largest similar subsequence from the input se-
quence. FO is particularly useful in satisfying the incremen-
tal and fast online learning, time-bounded generation of mu-
sical sequences, and implementation of multi-attribute mod-
els to deal with the multi-dimensionality of music (Tatar and
Pasquier, 2019).

Toro (2016) and Déguernel, Vincent, and Assayag (2018)
extend FOs towards the introduction of link probabilities to
maximize novelty when adopting the model for generative
purposes. Furthermore, they promote the application of FO
to multidimensional domains such as polyphonic music or
improvisations with multiple musicians.

The Variable Markov Oracle (VMO) was proposed
by Wang and Dubnov (2014a) for clustering multivariate
time series without a priori assumptions on the number
of clusters. VMO algorithm is based on FO (Allauzen,
Crochemore, and Raffinot, 1999) and Audio Oracle (Dub-
nov, Assayag, and Cont, 2007). It allows the construction
of the oracle without an initial alphabet. To this end, it in-
troduces a threshold variable for computing the degree of
similarity across states. The threshold value in VMO typ-
ically adopts an entropy metric to capture the information
rate across events (Wang and Dubnov, 2014b).

Wang, Hsu, and Dubnov (2016) made a first attempt at
establishing a statistical model for VMO by making an anal-
ogy to the HMMs based on the inference of emission prob-
abilities, without introducing probabilities to the transitions
themselves. Transition probabilities in the VMO were later
proposed by Wang and Dubnov (2017), using the lengths
of longest repeated suffixes, which provide variable-length
Markov transition information. This new model has shown
to provide a more compact and abstract representation of the
oracle structure while keeping its variable-length Markov
properties. Furthermore, it allows the processing of multi-
ple works (i.e., a corpus) in a single VMO.

Hidden Markov Models (HMMs) capture relations be-
tween states that are partially hidden, i.e., unknown. Proba-
bility distributions per state define a particular alphabet sym-
bol emission. These models are defined by a tuple of five
elements that correspond to: i) the finite alphabet of visible
symbols, ii) the finite set of states, iii) the mappings defining
the probability of transitions between hidden states, iv) the
emission probability of each visible symbol at a given hid-
den state, and v) the initial probabilities of the hidden states.
HMMs can process complex structures of sequential data
but require a considerable understanding of the problem do-
main and a large number of training examples (Schulze and
van der Merwe, 2011).

Frankel-Goldwater (2007) implements HMM using the
forward-backward, Viterbi, and Baum-Welch algorithms for
modeling pitch, duration and dynamics from musical struc-
tures. Schulze and van der Merwe (2011) computes the pa-
rameters for HMMs of variable order by means of empirical
counts to capture monophonic arc structures and accompa-
niment chord progressions.

Compression Algorithms
General-purpose lossless compression algorithms use the re-
dundancy of input sequences to decrease storage memory
size while maintaining the information in full. When applied
to musical structures, these algorithms find relevant pat-
terns and efficiently model musical structures as the “short-
est descriptions of any musical object, [...] that describe
the best possible explanations for the structure of that ob-
ject” (Louboutin and Meredith, 2016, p. 2). In this con-
text, we will review the following compression algorithms
adopted in music structure modeling: LZ77 and LZ78, the
Burrows-Wheeler Transform and the variants in the Struc-
ture Induction Algorithm (SIA) family.

Ziv and Lempel’s LZ77 (1977) and LZ78 (1978) are two
of the most popular lossless data-compression algorithms.
Both algorithms adopt a dictionary-form of the alphabet
from the original musical structure to be compressed. LZ77
replaces portions of the input data with symbols represent-
ing the longest found match, in run-length encoding format,
using a sliding window. The larger the window, the high-
est amount of recent data is acquired. The encoder can too
search farthest back for creating references. LZ78 improves
the performance of LZ77 by using an ordered dictionary of
reusable data and its indexes, instead of the actual stream
data.

The Transform of Burrows and Wheeler (1994) uses a
suffix array to permutate the input data structure so that iden-
tical elements are brought closer together. It increases the
probability of finding an event from an alphabet if there are
near occurrences of the same event. Along with move-to-
front coding, it builds the alphabet from the events in the
structure using left to right parsing and constructs a vector
of the alphabet indexes, which promotes enhanced compres-
sion factors.

The family of Structure Induction Algorithms (SIA)
aims at discovering maximal repeated patterns from n-
dimensional sets of points in Cartesian spaces, namely
those representing musical structures (Meredith, Wiggins,
and Lemström, 2002). SIA discovers all maximal subsets
from a n-dimensional point set with an ordering metric
and removes repetition under symmetry. SIATEC (Mered-
ith, Wiggins, and Lemström, 2002) extends SIA by find-
ing all occurrences of maximal repeated patterns, including
those related by translational equivalence as a Translational
Equivalent Class (TEC). COSIATEC (“COmpression with
SIATEC”) extracts the TECs resulting from SIATEC and se-
lects those that provide “best” compression factor without
overlap. RECURSIA-RRT stands for recursive translatable
point-set pattern discovery with the removal of redundant
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translators. It optimizes the previous algorithms by increas-
ing the compression factor.

Louboutin and Meredith (2016) compares all these algo-
rithms on classifying folk song melodies using a multiple
viewpoints system representation. LZ77 and COSIATEC
were shown to achieve the best results.

Applications
In this section, we review applications that make use of
the representations and modeling techniques detailed in
Sections “Symbolic Representation of Musical Structures”
and “Modeling Temporal Musical Structures”. The non-
comprehensive, yet representative, selection was based on
the visibility and attention the applications attract from the
music community. We adopt the following twofold cate-
gorization of the applications: computer-aided algorithmic
composition (CAAC) and machine improvisation.

Computer-aided algorithmic composition
CAAC systems refer to computer applications that promote
the generation of musical structures by means other than
the direct manipulation the musical surface elements (Ariza,
2005a). These computational systems expand compositional
design strategies towards the adoption of (semi-)automatic
algorithmic techniques at different levels of the composition.
A process referred to as meta-composition (Ariza, 2005b).

One of the earliest algorithmic composition examples is
the Illiac Suite by Hiller and Isaacson (1957). It adopts rule-
based systems and Markov chains to compose formal music
structures. Inspired by Hiller and Isaacson’s work, Baker
proposed in 1963 the library MUSICOMP, which imple-
ments its various algorithmic composition methods (Ames,
1987).

In the early-1960s, Xenakis, renowned for his stochas-
tic processes, uses computers to automate his composition
methods (Ames, 1987). Koenig, another pioneer, imple-
ments some techniques, such as Markov chains, to auto-
mate the generation of music structures (Ames, 1987). Berg
(1995) lately compiled these techniques in a collection of
tools, the AC Toolbox, to promote various methods for algo-
rithmic composition.

In 1981, Cope presented EMI (Experiments in Musical
Intelligence). The system learns stylistic traits from a music
corpus, manifested in the MIDI standard, to imprint them
into generated musical structures (Cope, 1989). The musi-
cal information at the note level is encoded in a multidimen-
sional point set, although the term had not yet been coined.
The relation of these musical units is encoded in a formal
grammar.

CACIE (Computer Aided Composition using Interactive
Evolution) is an application by Daichi Ando and Hitoshi Iba
(2007) that aims to assist composers in creating atonal mu-
sic. It uses formal grammars to represent musical phrases
from music manifested in the MIDI standard and an evolu-
tionary (genetic) system to generate new musical structures.

FlowComposer is an interactive music composition en-
vironment developed by Papadopoulos, Roy, and Pachet
(2016). It uses Markov chains to automatically compose

lead sheets, which are further harmonized by style-specific
traits encoded in formal string representations driven from
MIDI musical corpora.

MorpheuS uses the COSIATEC pattern recognition tech-
nique to find repeated sequences in a musical piece, in
MIDI format, combined with a three-dimensional geomet-
ric model (the Spiral Array) with tonal tension information
from MusicXML music. Found sequences are then used to
constraint generative polyphonic music processes based on
evolutionary computation (Herremans and Chew, 2016).

Machine improvisation
Machine improvisation refers to musical collaborations be-
tween humans and machines in an improvisation setting.
Lewis’ Voyager (1988) is a pioneer work that expands upon
the concept of “virtual improvising orchestra.” It produces
variations from live performers’ MIDI input data and gen-
erates responses accordingly, using a rule-based, formal-
grammar approach (Lewis, 2000).

The Continuator was proposed by Pachet (2003) as a sys-
tem that “bridges the gap between interactive musical sys-
tems, limited in their ability to generate stylistically consis-
tent material, and music imitation systems, which are funda-
mentally not interactive.” It adopts variable-length Markov
chains to model MIDI input data from a live musician en-
coded as a tree structure. A weighted fitness function con-
trols the level of ‘sensitivity’ to the musical context.

OMax is a real-time system presented in 1998 and under
active development. The system learns the style of live mu-
sicians and actively participates in an ongoing performance
as a co-improviser machine. OMax uses the FO, and lately
the VMO, to learn stylistic traits from a performer’s MIDI
stream in the form of formal string encodings.

FILTER (Freely Improvising, Learning and Transform-
ing Evolutionary Recombination) by Nort, Oliveros, and
Braasch (2013), combines FO and HMM in a context of
free improvisation to learn temporal structures from the in-
put. Moreover, it adopts a fitness function for controlling the
level of imitation vs. novelty of the responses.

Summary and Future Challenges
This paper reviewed symbolic music representations using
finite and discrete alphabets and temporal modeling tech-
niques that capture musical structure hierarchies.

In Section “Symbolic Representation of Musical
Structures”, we detailed multiple strategies to represent
musical structures, namely formal strings, formal gram-
mars, graphs, and geometrical representations. These
representations can encode complex and hierarchical music
structures, yet, only a few can adequately parse inter-part
(polyphonic) dependencies, such as multiple viewpoint
systems. Encoding linear (i.e., part) and vertical (i.e., inter-
part) dependencies should be further explored. Moreover,
as noted in Section “Applications”, despite the considerable
number of existing representations for musical structure,
their adoption by the music community focus almost
exclusively on formal string representations. We believe
that domain-specific representations, such as the multiple
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viewpoint systems, would allow for enhanced control over
which structural elements are further modeled.

Methodologies for modeling the temporal structure of
music at multiple hierarchies typically draw on pattern
recognition methods, such as the LZ77 and LZ78 compres-
sion algorithms, and statistical modeling that capture repeat-
ing sequences in the longer-term musical structure. The
compression algorithms explore exact matches, while statis-
tical modeling, namely the Variable Order Markov Oracles,
also contemplate variations (e.g., note insertions, passing
notes). Despite the advances on the state-of-the-art, exist-
ing modeling techniques inadequately account for implicit,
yet important, elements of musical structure, such as phrase
boundaries.

In Section “Applications”, we explore the combination
of representations and temporal modeling in the scope of
CAAC and machine improvisation. These applications are
ideal test-beds for exploring the balance across the novelty-
familiarity range in generated musical structures. CAAC
systems typically require a wider exploration of this range,
while machine improvisation tend to rather focus on bal-
anced outputs with greater tendency towards familiarity.
Yet, both use predominantly Markov chains, which neither
optimize this balance nor provide fine degrees of control
across the familiarity-novelty range. VMO shows finer and
more flexible degrees of control over the representation and
pattern recognition. However, its full capacity within gener-
ative music contexts is yet to be explored, namely the non-
linear relations between the representation and modeling.

Currently, the state-of-the-art in temporal music model-
ing is at a crossroads. The rise of deep learning tech-
niques – which can be explained by the increasing amount
of available data, and efficient and affordable computing
power – can render traditional modeling and prediction ob-
solete. Representative models are BachBot (Liang et al.,
2017) and Music Transformer (Huang et al., 2018). How-
ever, a relevant problem of these models is that they often
fail to capture the intrinsic non-linear relationships of cre-
ative tasks (Briot, Hadjeres, and Pachet, 2019). Deep learn-
ing architectures rely on multiple layers to directly extract
relevant features from the sources before modeling. Their
hyper-specialization towards a particular objective or a spe-
cific training corpus and their lack of explainability pose a
critical problem to the creative balance. A greater under-
standing of latent spaces2 is instrumental in promoting bal-
anced outputs that match user preferences across novelty and
familiarity.
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