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Abstract

Many machine learning approaches are focused on defining
artificial agents able to find solutions to a certain problem
given fixed design tools or parameters to optimize. In order
to do that, creators must have certain knowledge of the solu-
tion space to define design parameters that ensure enough ex-
ploration allowing agent to find its best configuration. How-
ever, this approach may limit artificial agents since they are
restricted by their initial conditions of a certain design prob-
lem. In addition, specific initial conditions also limits them
to scale across multiple challenges.
In this paper, we explore how the definition of more general
design tools can allow artificial agents to better explore the
solution space and generalize through multiple design prob-
lems. To do that, we compare design artifacts produced by an
artificial agent that learns to construct 2D shapes with a fixed
number of pieces to another artificial agent that also learns to
add or remove pieces from its design proposal. We demon-
strate how by allowing more freedom in design, an artificial
system is able to produce more novel artifacts with higher
performances in multiple scenarios.

Introduction
Design can be described as a process of co-evolution of
both problem and solution spaces (Maher and Poon 1996;
Dorst and Cross 2001; Howard, Culley, and Dekoninck
2008). In this iterative process that involves generating
and evaluating solutions, knowledge is acquired, augment-
ing designers’ capabilities to generate creative designs based
on previous experience (Gero and Kannengiesser 2004;
Boden 2004). To support their creative role (Dorst and
Cross 2001), many computational design tools have been
defined (Philippa and Michael ) ranging from early design
exploration to more advanced design phases such as refine-
ment and optimization. In this work, we focus on the cre-
ation of computational design tools that can allow an arti-
ficial agent to explore the design space for a given prob-
lem. We inherit from Wiggins (Wiggins 2006) formalization
about Boden’s creativity concepts (Boden 2004) consider-
ing the exploration of possible design proposals, named ar-
tifacts, mainly as a search in a conceptual space. This way,
a the set of rules and actions to generate artifacts must be
defined, playing a crucial role in the solution space explo-
ration. However, this definition is often strictly related to

an specific problem space limiting system’s possibilities to
generalize to multiple problems. In our approach, problem
space will be defined in (Serra and Miralles 2019) environ-
ment that allows us to test 2D shapes as design proposals
on multiple physically based design problems. We decided
to use this environment since we can define different types
of problems such as collecting elements, moving through
or protecting areas which has already been resolved by hu-
mans. We are very interested on the possible emergence of
human solutions for this problems but specially new solu-
tions that may inspire future proposals. In addition, physi-
cally based environments allow us to simulate how different
proposals may behave in a future real scenario. This is spe-
cially relevant to understand why some proposals perform
better and which constrains may appear during the explo-
ration of the solution space. To generate these proposals,
we explore how the definition of different design tools di-
rectly affects on system’s generative and learning capabili-
ties. We are specially interested in how the same compu-
tational tool can be applied in multiple problems. In order
to define these tools, we consider that flexibility is one of
the key aspects to allow computational systems to explore
problem space and re-adapting from possible non-favorable
initial conditions while generalizing better across different
scenarios. As shown in (Ha 2019), by allowing an agent
to learn optimal physical configurations for a given task it
improves its performance and it facilitates its policy learn-
ing. To do that, in our experiments, we compare different
population-based search algorithms with two different con-
structive methods. The first one, based on learning to op-
timize a shape with an already defined number of pieces.
This approach can benefit the algorithm to find solutions,
but it requires that creators know the problem space, since
a possible number of pieces must be proposed for the so-
lution. In contrast, the second method consists in allowing
the agent to freely modify its shape by adding or removing
pieces. We evaluated each method capabilities to generate
creative designs by comparing their artifacts produced con-
sidering both their performance and novelty (Ritchie 2007;
Maher and Fisher 2012). Although the first constructive
method is more efficient in finding possible solutions, the
second method can even provide more novel valid propos-
als in multiple scenarios. By the combination of modular
blocks within multiple environment and without any previ-

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

90



ous knowledge, our system has been able to generate design
proposals from scratch that resembles to human proposals.
These results show the importance of defining tools that can
perform more actions to explore the solution space rather
than focusing solely on the complexity of the algorithm.

Related work

Our work is based on previous research on evolutionary
computing (Eiben, Smith, and others 2003) that has demon-
strated its capabilities to solve complex challenges in multi-
ple environments (Lehman et al. 2018). These techniques
have been widely used in robotics ranging from optimiz-
ing already defined morphologies (Joachimczak, Suzuki,
and Arita 2015; Nygaard et al. 2018) to even generat-
ing them from scratch (Sims 1994; Lipson and Pollack
2000). We highlight the work on Evolutionary Design from
(Bentley 1999), showing how evolutionary strategies can
also be applied to producing novel and functional designs.
To do that, a formalism must be defined in order to ex-
plore actions on certain solution space (Wiggins 2006). We
draw inspiration from Shape Grammars firstly introduced by
(Stiny 1980). A Shape Grammar (SG) consists of a com-
putational formalism that allows automatic shape genera-
tion by providing a finite set of shapes and rules that will
be applied to these shapes. By continually applying this
rules, original shapes are transformed and complex struc-
tures can emerge from this process presenting similarities
to creative design process theories (Maher and Poon 1996;
Dorst and Cross 2001; Gero and Kannengiesser 2004). SG
have been often combined with Evolutionary Algorithms
(Duarte 2005; O’Neill et al. 2010; Lee and Tang 2009).
This combination has also been referred as a Grammatical
Evolution (GE) (O’Neill and Ryan 2001; Dempsey, O’Neill,
and Brabazon 2009). The main advantage of combining a
Shape Grammar with an Evolutionary Algorithm is its ex-
ploratory capabilities of the solution space. Many of this
projects focus on the generative power of shape grammars
rather than their possibilities as a design language (Knight
2000) that can be shared between humans and artificial
agents. In addition to that, previous research lines are fo-
cused on solving an specific problem rather than aiming a
more general knowledge acquisition (O’Neill et al. 2010;
Lee and Tang 2009). Other studies (Ha 2019) have also
explored how by allowing agents to also optimize their ini-
tial design conditions they can perform better given a certain
problem. Specially the work of (Pathak et al. 2019), demon-
strates how a better generalization can be achieved by the
usage of modular elements to construct. In our approach we
want to define a computational tool that can be used for both
humans and artificial agents to solve multiple problems. In
contrast to other previous work, we are interested both in the
performance and the novelty of artifacts produced with our
tool and its capabilities to be used in multiple problems. In
addition, we want to show how, by being less restrictive and
allowing more actions, our tool has a direct impact on the
emergence of design by providing a wide range of creative
solutions without losing performance.

Methodology
We have performed our experiments in Coevo environment
(Serra and Miralles 2019) that allow us to test a collection
of physically based scenarios with specific design problems.
This environment has been inspired by (Brockman et al.
2016) with the focus on 2D design creation allowing both
humans and artificial agents to generate proposals. Each sce-
nario has a fixed simulation time and conditions to evaluate
design proposals. A total of five scenarios have been pro-
posed as a benchmark for our comparative study (Figure 1).

• E0 - Collect balls. Each proposal is evaluated by the
number of falling balls collected. We have two variants
based on design proposal position: left side (E0.1) or at
the middle of the scenario (E0.2).

• E1 - Move along an inclined plane. Each proposal is
evaluated based on the total distance moved within the
simulation steps that the experiments lasts.

• E2 - Move through a different medium. Each proposal
is evaluated on total distance moved from an initial free
fall position and experimenting a drag force ~Fs when en-
tering the different medium (Equation 1).

~Fs = �sv2A v̂ (1)

where s refers to the medium properties (density and drag
coefficient), v refers to the speed of the proposed shape,
A the frontal surface of the shape that is pushing through
the new medium and v̂ the velocity unit vector. The area is
computed by extracting the cross section of the proposal’s
shape. Then, the greater the area, the more difficult to
reach the bottom.

• E3 - Protect area. Each proposal is evaluated by count-
ing the number of randomly generated balls that hit the
highlighted orange area (Figure 1).

These scenarios provide diversity within the solutions that
may emerge on the solution space exploration. While E0
and E3, require larger number of blocks to be solved, E1
and E2 perform better with less number of blocks. Based
on this knowledge, we can define constructive rules and ini-
tial configurations that allow the system optimally solving
the scenario. However, this definition may not be optimal
for other scenarios or even limit system capabilities to solve
other specific scenario. So, we want to explore how to define
a system that can perform better globally while allowing a
proper exploration of the problem space. This aspect will be
discussed in the following sections.

Design tool
As we mentioned earlier, to generate design proposals we
use a language inspired by shape grammar formalism (Stiny
1980). This grammar is defined by the following elements:

• Initial shape: single block with fixed dimensions.

• Shape: finite set of proposals defined by rules

• Rule: transformations applied to shapes (Figure 2).
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Figure 1: Scenarios. From left to right: collect falling balls, move along inclined plane, move thought different medium and
protect target

Figure 2: This shape grammar consist on three basic rules:
add block (A); remove block (B); block rotation (C)

These constructive rules can allow emergence of complex
shapes by concatenating simple blocks. In order to allow
more freedom in design, block overlapping has been permit-
ted.

Once the language has been defined, an internal represen-
tation of these operations and rules has been created in order
to allow an artificial agent to learn how to construct a pro-
posal(Figure 3). In our approach each shape is described by
one integer which corresponds the length of the unit block,
followed an open-ended stream of angles in radians which
describe all the shape, as is showed in the equation (2);

design proposal = [ length, �1, �2, ... ,�N ] (2)

where N is the number of blocks that make up a shape.

Figure 3: Internal representation of three different shapes
generated using this shape grammar.

In our experiments, we maintained block length to 30
units to remain consistent across all the scenarios and ar-
tificial agents.

Artificial Agents Definition
For this study, we created three different artificial agents
that learn to generate design proposals using previously de-
scribed tools. All these AI agents are based on evolutionary
techniques that learn to optimize its shape to fit the problem
of each scenario. Then, we summarize each agent used:

• Fixed Genetic algorithm: this agent is based on a simple
genetic algorithm (Mitchell 1998) that selects best candi-
dates using roulette-wheel selection via stochastic accep-
tance (Lipowski and Lipowska 2012). Crossover is per-
formed by combining selected candidates representation
and we also add a mutation value that randomly changes
angles (0, 2⇡) to add noise when defining a new popula-
tion

• Fixed CMA-ES : this agent is based on Covariance-
Matrix Adaptation Evolution Strategy (Hansen, Müller,
and Koumoutsakos 2003) adapted to optimize a shape
with a certain number of blocks. Initial population is ran-
domly generated. Then, each new population is generated
within time from multiple distribution of mean and co
variances (one for each block) based on previous gener-
ation performance. Note that the number of distributions
depends on the initial number of blocks defined for that
certain experiment.

• Variable Genetic algorithm: similar to the first agent,
this approach is also based on a genetic algorithm. Its
main difference is that a mutation value for adding and
removing pieces has been also added. This allows the
agent to optimize also the number of pieces required and
explore possible valid morphologies for each scenario.
We have chosen to define our agents based on these evolu-

tionary techniques as being ones of the most simple and pop-
ular amongst researchers in the field. (Salimans et al. 2017;
Prabhu et al. 2018). In addition, population-based search
techniques make possible to explore many areas in these
spaces at once (Miikkulainen 2019) so we have considered
ideal for our experiments. All experiments are initialized
with a fixed number of blocks and only the third one is able
to add and remove blocks. This decision allows us to evalu-
ate how an agent with more design capabilities performs in
comparison with the other ones.

Experiments
Here we enumerate all the experiments performed with each
artificial agent and scenarios described in previous section

As seen in Figure 4, each scenario and algorithm has
been initialized with three different number of blocks (6,12
and 24, respectively). Each combination has been simu-
lated for 200 generations with a population of 100 members
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each one initialized randomly at the beginning of the experi-
ment. We decided to define this initial conditions to compare
how the different agents behave in possible optimal or bad
initial configurations. Since we are specially interested on
the global performance and novelty of each agent we con-
sider that initializing the agent with three different number
of blocks gives us a general idea on how the agent is able to
adapt and provide different solutions within a limited num-
ber of iterations (200 generations). Finally, we repeated each
experiment 10 times to have enough data to extract design
patterns. This makes a total of 450 experiments to be ana-
lyzed

Figure 4: A total of 45 combinations can be performed con-
sidering given variables: scenario, agents and number of
blocks

All design proposals are placed in the same corresponding
initial position and evaluated individually using each sce-
nario specific fitness function.

Results
In this section, we present the results based on the design
proposals generated by each agent. Our goal is to evalu-
ate agents capabilities to produce creative designs. We have
considered (Ritchie 2007) approach for evaluating individ-
ual creativity by its produced artifacts rather than from the
process used. To do that, we evaluate each individual arti-
facts based on (Maher and Fisher 2012) proposal that con-
siders three parts for evaluation:
• Value: performance measure of the design.
• Novelty: similarity from the rest of the proposals.
• Surprise: how an artifact can exceed the value and nov-

elty expectations of the already defined patterns found in
the solution space.

Value
Since we have captured and analyzed all the designs pro-
duced we measure the value by computing the fitness ob-
tained by the best member of each generation from each
experiment. This parameter also gives us an idea of each
agent’s performance within generations. As we can see in
Figure 5, there is a common behavior between configura-
tions with fixed number of initial blocks reaching high fit-
ness in most scenarios when their number of blocks is op-
timal for that scenario. In contrast, performs worse when
this initial number is not optimal. For example, In Sce-
narios 0.1 and 0.2, only the configurations that start with
24 blocks are able to reach higher fitness. This behavior is
also seen in Scenario 3, in which configurations with higher

amount of blocks perform better. Opposite to that, in Sce-
nario 2, configuration with lesser number of blocks perform
better reaching maximum fitness faster. In this Scenario 2,
the agent based on GA-24-fixed is the only place where this
agent does not find a solution. We also observe that both
fixed agents are also able to reach higher fitness within gen-
erations with the exception of the fixed ones that started with
only 6 blocks.

Fitness performance comparison
Fixed G.A CMA-ES Variable G.A

E0.1 0.24 1 0.27 1 0.95 1
E0.2 0.3 0.71 0.32 0.81 0.54 0.66
E1 0.43 0.97 0.05 0.99 0.4 0.98
E2 0.65 1 1 1 1 1
E3 0.12 0.88 0.13 1 0.94 1

Table 1: Comparison between worst fitness and best fitness
obtained by each agent configuration. As shown, agent with
variable number of blocks performances are more similar.

In contrast to that, as also shown in Table 1, the agent
with a variable number of blocks is able to perform better,
no matter the number of blocks it is initialized. Similar to
previous agents, proposals generated by this third agent are
able to reach higher fitness in all scenarios expect from Sce-
nario 0.2, also the worst scenario for the other agents. Using
its constructive capabilities is able to optimize the number of
blocks needed to solve the scenario. One exception to this
behavior is in Scenario 1 with the with the agent starting
form the lowest number of blocks (6), that the third agent
has not been able to reach higher fitness.

Novelty and surprise
In terms of agent novelty, we have decided to evaluate each
group of generated design proposals based on how similar
are from each other. This approach is based on (Maher and
Fisher 2012) which proposes evaluating similarity using dis-
tance of potentially creative designs and later on clustering
them based on that. Since each agent proposes a large num-
ber of designs, we have only considered the ones a thresh-
old performance higher than 0.9. In addition, to further re-
duce the number of proposals, we randomly pick only 15
proposals of each roll-out for agent. This ensures having
enough representatives of each agent agent while maintain-
ing a small data set for our similarity comparison. Then we
have multiple data sets of valuable design proposals gen-
erated by each artificial agent. These two decisions ensure
that selected design proposals are valuable to the given prob-
lem, while we can also evaluate how different they are across
agents.

Then, we must define an efficient comparison method for
determining which data set contains more novel designs. To
do that, we decided to generate an image containing each
proposal. To ensure enough resolution, we centrally place
each proposal in a 300x300 image and then we reduce their
dimensionality into 2 components using Principal Compo-
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Figure 5: Learning process from each scenario and agent configuration considering 10 random rollouts

Figure 6: Random artifacts selected from third agent (G.A Variable) proposals. As shown different proposals can emerge from
simple parts in each scenario.

nent Analysis (Wold, Esbensen, and Geladi 1987). This re-
duction helps us to visualize similar proposals closer in a
2D space allowing us to navigate between them and under-
stand better similarity relations. We decided to use this ap-
proach to standardize all the design proposals within a single
measurement since each agent may provide solutions with
different number of pieces. We computed this value using
(Pedregosa et al. 2011) tools. Then, for each scenario, we
have placed each proposal on 2D dimensional space based
on these two PCA components and clustered them.

For clustering, we propose Mean Shift algorithm (MS)
(Comaniciu and Meer 2002). We decided to use the MS
algorithm because it does not predetermine the number of

clusters. We are interested in the emerge of clusters from
our current distribution of proposals. Then from each clus-
ter we randomly selected multiple representative proposals
to compare them visually. As an example of this selection
Figure 6 provides a visual overview on the divergence of so-
lutions present in each scenario.

Regarding novelty between agents, in general, there is not
a significant differentiation between the novelty produced
by agents with fixed initial number of blocks than the oth-
ers. All three agents are able to produce similar design pro-
posals considering their number of blocks. However, as ob-
served in Figure 7, the number of blocks strongly conditions
the shape of generated proposals. As an example, proposals
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Figure 7: A total of 30 selected proposals (10 from each
artificial agent) from Scenario 3 distributed on a 2D space.
We can observe how a rich number of proposals are being
generated by each artificial agent

from agent that CMA-ES with 24 blocks resemble a lot each
other. In contrast, the agent with variable number of blocks
is able to converge to a wide range of solutions with multi-
ple number of blocks. This flexibility in design results in a
greater dispersion of the generated artifacts.

Finally in terms of surprise, unexpected results specially
emerged on Scenario 1. This scenario was originally de-
signed expecting proposals with a circular shape similar to
wheel. Each design agent has been able to produce not only
circular shapes but also a large number of different shapes
able to move along given inclined plane.

Discussion and future work
In this section, we discuss the results presented before and
the findings based on the proposals generated by our artifi-
cial agents. We also include current limitations of our ap-
proach and plans for future work.

To perform our analysis, we have compared all the de-
signs produced by our three different artificial agents in a to-
tal of 5 different scenarios. In general, all three agents have
been able to produce valuable artifacts for each scenario.
In terms of performance, Scenario 0.2 has been proved to
be the most difficult one, directly lowering the performance
obtained by the agents. In this particular scenario only the
proposals generated by CMA-ES agent with 24 blocks has
been able to surpass the value of 0.8 in fitness. In other sce-
narios, Variable G.A agent has been the unique one that has
generated proposals with higher fitness no matter the initial
number of blocks. This result evidences how an approach
that allow more freedom in designing influences positively
in exploration of the design space ending up in a richer num-
ber of high valuable generated artifacts. In contrast, both
Fixed G.A and CMA-ES agents highly depend on initial pa-
rameters having less capabilities to adapt to each scenario.
Then, only when initial parameters are beneficial, their per-
formance is better reaching higher fitness faster than the oth-
ers. One limitation of the current work is related to the initial

conditions given to the system in terms of number of blocks
and allowed iterations(200). As shown in our results, some
of these configurations may limit agent’s capabilities of find-
ing optimal solutions. However, this has not happened in the
flexible agent which, despite being affected in the iterations
necessary to find optimal solutions, its exploratory capabil-
ities allowed it to find solutions regardless of its initial con-
ditions. This supports our approach that defining flexible
constructive methods allows our computational tools to gen-
eralise better since we are not embedding scenario specific
knowledge that may affect negatively in other situations.

Since the number of valuable proposals has been large in
all the scenarios, the definition of metrics and tools to eval-
uate, compare and clustering them based on similarity has
become crucial in our work. We have defined a compari-
son method inspired by (Maher and Fisher 2012) work on
evaluating novelty as a distance between individual propos-
als. In our approach, we showed how by generating im-
ages from each shape and using PCA (Wold, Esbensen, and
Geladi 1987) we can efficiently visualize and select pro-
posals for novelty evaluation. Then, regarding novelty, our
results evidence how by using these simple design tools a
wide diversity of proposals emerge in all the scenarios and
agents. This behavior is also stronger in Variable G.A agent
since is not influenced by its initial conditions, its solution
space exploration is higher. Our results also suggest how
population-based algorithms combined with simple design
tools inspired by shape grammars can be a powerful combi-
nation for iteratively exploring multiple solution spaces

As we seen in Figure 6, the same tools are able to gen-
erate a rich diversity of proposals for each scenario. Then,
designers role in this creative environment can be focused
on defining problem space and collaborating with artificial
agents to propose solutions to propose proper solutions to
that problem. Our current environment is limited to only five
different scenarios. However, new evaluation techniques can
be applied to each of them or even new scenarios can be cre-
ated and tested using our artificial agents.

An interesting future work would be to explore how prob-
lem space definition by designers can influence the novelty
of designs generated by artificial agents. It has been shown
that the most complex scenario (Move along a plane) is the
one that produced a greater emergence of novel design pro-
posals. In natural evolution, the environment plays an im-
portant role in diversity, however, more research should be
done to determine if this also happens on digital environ-
ments.

In future work, we will also investigate how these design
tools can also be used by humans and how they can col-
laborate with different artificial agents to solve together a
given challenge. In our work, many artifacts that resemble
to human designs have emerged through each artificial agent
learning process. However, also unique designs that we have
not initially thought about have also emerged. It would be
very interesting to explore how human creative capabilities
can be augmented by collaborating with agents with no prior
knowledge given a design problem.
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Conclusions
In this paper we are especially interested in how by provid-
ing an artificial agent with more degrees of freedom in its
creation tools, it can better adapt to multiple design chal-
lenges by offering proposals of greater value and novelty. To
do that, we presented a new set of design tools to construct
complex proposals by concatenating minimal blocks. The
environment provided (Serra and Miralles 2019) together
with the tools created, allowed us to define and evaluate
problems such as collecting elements, moving or protect-
ing areas that have been already been solved by humans in
different ways. Our results suggest that the degrees of free-
dom given to the tool allowed the system to generate more
novel designs with higher performance providing also solu-
tions that are not influenced by initial design considerations
based on the expected solution of a given problem.

To show that in our studies, we have defined three
population-based different evolutionary agents that have
generated design proposals for a total of five different sce-
narios. Each agent is initialized with a fixed number of
blocks that can use to construct and only one has been al-
lowed to change this number during its learning process. By
defining the initial number of blocks we are providing some
knowledge on the solution space since some environments
can be solved optimally depending on this number. How-
ever, this knowledge is related to a certain set of solution
that the creator may have in mind limiting the system to ex-
plore other solution spaces. In addition to that, it cannot be
generalized in different scenarios, since this knowledge that
can be beneficial in some scenarios is a limitation in others.
As an example, E0 and E3 involve that the solution includes
larger number of blocks than scenarios E1 and E2. Then,
agents initialized with the optimal number of blocks learn
faster than others that may not even reach higher fitness due
to their initial definition 5. Then when defining these sys-
tems, creators must consider initial configuration as a key
aspect in their design. This requires an initial human ef-
fort to understand the problem and also an initial limitation
since the creators are already embedding their knowledge
in the tool they are creating. However, our results suggest
that flexible agent does not show this limitation in the given
scenarios. In contrast to fixed ones, variable agent is able
to reach optimal solution spaces despite the fact of being
initialized in a less beneficial solution space or even with
a configuration that has no possible solutions to the given
problem. As a result of this, our artificial agent has been able
to construct valid design proposals across multiple scenarios
surpassing the other two agents in terms of performance and
novelty. Is also specially relevant that this agent is also able
to find novel solutions with high performance compared to
fixed agents initialized on optimal spaces. Our results sug-
gest that allowing more degrees of freedom influences the
ability to innovate by reconfiguring its morphology, aug-
menting the space of possibilities and exploring new paths
within this space in each scenario. Especially in E1, by con-
tinually adding pieces, different new shapes emerge to the
wheels, such as spirals or S-shaped morphologies similar to
sleds. This phenomenon may be related to the evolution-
ary path followed by the solutions provided by the variable

agent since all the possibilities found by the fixed agent end
up in the wheel as an optimal shape.

We hope that our results encourage computational creativ-
ity community to continue working on the definition of flex-
ible design tools that allow artificial agents to better adapt to
multiple environments.
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