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Abstract

The ability to extract features from objects or concepts and to
connect them in a meaningful way is believed to be crucial to
creativity. This paper proposes a novel computational model
for creative behaviour, by learning extractions and connec-
tions separately. Such separation enables adaptive feature and
object connections, which means one object can be connected
to different other objects within different contexts. This paper
applies recent cognitive theories of computational creativity
to two specific tasks: an image-to-image mapping and music-
to-video mapping. In both cases deep neural networks are
used to automate these two creative cognition tasks.

Introduction
It is not easy to answer the question: what is creativity? Nev-
ertheless, many agree that the ability to make connections
or combinations between concepts is a key component of
creativity. Mekern, Hommel, and Sjoerds (2019) implied a
unitary model of creative cognition. This model, which is
inspired by Hommel and Wiers (2017), is based on adaptive
relations between features of concepts and ideas. “Features
of concepts” means that the relations are not directly made
between concepts but through features, and that one con-
cept is represented by many independent features. “Adap-
tive” implies the weighting of possible features according
to different situations so that the contributions of different
features vary to adapt to the current situation. This unitary
creative model is arguably an integration and simplification
of the divergent creativity model (Kenett et al. 2018) and the
convergent creativity model (Kajić et al. 2017).

On the practical side, however, few computational mod-
els that stress features and their relations were built into ma-
chines. Some previous studies did partly model these prop-
erties: Olteţeanu and Falomir (2016) used an “Object Re-
placement and Composition” system, in which the features
of an object seem to have to be manually decided and the
size of the dataset is relatively small. This approach makes
the dataset accurate and human-understandable. However,
as they pointed out, the system needs a larger dataset or
a different approach to build the feature space to perform
on a larger scope. In another creative machine (Augello et
al. 2016), features of an image object are extracted directly
based on color and texture information. Although this ap-
proach avoided manually building datasets, it took the risk of

losing much information, for example, distribution of color,
or shapes within the image. These issues reveal the need for
a more general and automatic method to efficiently acquire
more comprehensive features and relations.

Luckily, the development of machine learning makes it
possible to extract various kinds of useful features from large
datasets. Therefore, given two domains X and Y , we can
extract features from points in these domains into feature
spaces ZX and ZY and consider the problem of finding var-
ious mapping functions that map ZX onto ZY that satisfy
some context dependent constraints. We should notice here
that, as we explain in Related Work, the term ‘feature’ has
a somewhat different meaning in the context of ‘machine
learning’ and ‘cognition research’. Nevertheless, without
any risk of confusion we will use this term without speci-
fying the context.

Previous studies (Augello et al. 2016; Olteţeanu and
Falomir 2016; Huang et al. 2018; Liu, Breuel, and Kautz
2017) can only find a single mapping function because this
function relies on some level of equality between the fea-
ture vectors. For example, a red, thick T-shirt should be
mapped to red, thick trousers. However, humans do not al-
ways relate things by similarity of features. For example, we
might think a red, thin T-shirt makes a good pair with blue,
thick trousers because of the influence of fashion trends or
because they are similarly rare in their domains. To find
multiple mapping functions we propose two criteria. First,
if humans experience two things together for several times,
they may naturally connect them. So if previously experi-
enced pairs from X and Y are provided, a mapping function
should map their feature vectors together. This criterion is
named: previously experienced mapping. Second, similar
objects in domain X should be mapped to similar objects in
domain Y , while dissimilar objects in X should be mapped
to dissimilar objects in Y . This criterion is named: topology
mapping.

While a few previous models (Huang et al. 2018; Zhu
et al. 2017b) can already learn non-deterministic mappings
between domains, they still cannot learn different mappings
based on different criteria. Rather the mapped data points
are randomly selected based on statistic distributions. Our
research serves as a realization for recent creative cognition
models as well as an exploration of creativity in contem-
porary deep learning models. It aims to connect cognition
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theory and computational applications.
In the next section, related work regarding the use of fea-

tures in computational creativity theories and its relevance
in computational technologies is introduced. The method-
ology and framework of our Cross-Domain Mapping Net-
work (CDMN) are described in Method, followed by exper-
iments assessing the effectiveness and creative behaviours of
the CDMN. Finally, conclusions are provided.

Related Work
Related work is discussed in four parts. First, the trend of
considering features in creative cognition is introduced. Sec-
ondly, machine learning methods for feature encoding are
briefly described. Third, methods for constructing feature
connections are recognized from the field of machine learn-
ing, specifically image-to-image mapping networks. Fi-
nally, possibilities for multi-modal translations (audio, im-
age, video) are provided.

Features and Computational Creativity
A feature set is a distributed representation of a concept,
where ‘distributed’ means a feature set is maximally rep-
resentative of the concept on a certain level of signifi-
cance. Feature extraction and feature connections have
an important role in the theory of computational creativ-
ity since the distinction between convergent and divergent
thinking of creativity (Guilford 1967). Divergent think-
ing is to generate creative ideas or solving problems cre-
atively by exploring many possible solutions whereas con-
vergent thinking is to provide a single best solution to a
well-defined question. The ability to make associations is
believed to be important to both processes (Gabora 2010;
Mednick 1962).

Both divergent and convergent thinking are modeled ex-
plicitly in a dual-process computational painter by Augello
et al. (2016). The key operation in this painter is to re-
place image part A with image B that shares features such
as color and texture. However, in such dual-process mod-
els, outcomes of divergent and convergent processes are of-
ten hard to distinguish and outcomes of each process rely
to some extent on the interplay between these two processes
(Mekern, Hommel, and Sjoerds 2019)

Merken et al.(2019) proposed a unitary model for creative
behaviour in which creative behaviours are facilitated by the
interplay between features. To achieve a degree of flexibil-
ity, under a different context different connections between
features are activated. From Merken’s unitary model, we
identify two processes: (1) the encoding of distributed fea-
tures, and (2) flexible connections between features to fa-
cilitate contextualization and individual differences. Along
with these two processes, three criteria are proposed to eval-
uate a creative model: (1) features are distributed and rep-
resentative, (2) the connections are flexible under different
circumstances, and (3) individual differences (flexible and
persistent) can be modeled.

Encoding and Decoding Features
Although the importance of features is identified, the com-
putational creativity community still does not have many re-

liable and automatic ways to encode (extract) features from
concepts. Previous programs either involve manual encod-
ing (e.g. (Olteţeanu and Falomir 2016)) or the encoded fea-
tures are not well-distributed (a concept cannot be fully rep-
resented by its feature set; e.g. (Augello et al. 2016)). For-
tunately, neural networks have been developed to find com-
plex features from raw data. A prominent example of such
networks is the autoencoder (e.g. (Hinton and Salakhutdi-
nov 2006)). One may think that the features encoded by
an autoencoder are just numbers and thus of a different na-
ture from ‘color’, ‘shape’ or ‘texture’. However, what makes
features crucial is not whether they are abstract numbers, ac-
tivation of neurons or concrete attributes, but whether they
serve as a set of distributed representations of a concept or an
object. The encoding-decoding process of an autoencoder
ensures that the encoded features are maximally representa-
tive of the input data.

One property of an autoencoder is that the encoded fea-
tures are data-specific. With a dataset of cup images, it
can never recognize ‘concave’ as a feature because it is not
distinctive. Because of this, creative problem solving as
by Olteţeanu and Falomir (2016) cannot be easily achieved
without an extensive dataset. However, this property also
enables autoencoders to generate never-before-seen objects
from features. Utilizing this advantage, this paper aims at a
generative model instead of an associative model.

Feature Connection
Several recent studies regarding Domain Transfer Networks
(DTNs) have already achieved the process of feature en-
coding and connection to some extent. However, relevance
between DTNs and creativity theories is hardly mentioned.
Thus, in this section, the relevance of DTNs in the connect-
ing of features is identified.

DTNs have been studied for image-to-image translation.
Early works (Yoo et al. 2016; Zhu et al. 2017a) do not
perform any manipulations on the encoded features. Some
successors (Zhu et al. 2017b; Taigman, Polyak, and Wolf
2017) found that having features as inputs to the generators
enhanced the performance of the network. However, in these
methods, features from different domains are not explicitly
connected.

Liu et al. (2017) were the first to model explicitly the con-
nection of features, although this connection simply equates
features of X with features of Y without flexibility of such
connections. Huang et al. (2018) proposed an improvement
that provides some degree of flexibility of connections. It
implies that some features are always connected and other
features are never connected. Since true flexibility is decid-
ing which features are relevant to the context and should be
connected adaptively, our work makes an attempt to imple-
ment such flexibility.

Cross-modal Temporal Data Generation
We are interested not only in the domain of images. The
problem becomes more tricky if the domains include tem-
poral data, such as video or music, or require cross-modal
(audio to visual, visual to audio) mapping. With other
applications showing the possibilities (Song et al. 2019;
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Ephrat and Peleg 2017), we want to explore and evaluate
the creative behaviour in audio-video translation also.

Method
The two steps of creative cognition (feature encoding and
flexible feature connecting) are implemented in a computer
program. Although the programs are specially designed for
image data and temporal data, the methodology should in
principle be suitable for other types of data as well.

Mapping Functions
A mapping function m is, in principle, a function that trans-
lates each data point zx in feature space ZX to a data point
zx!y in feature space ZY : zx!y = m(zx). Since usually
there are infinitely many points in a feature space, the num-
ber of mapping functions is infinite. To attack this problem
we first cluster ZX and ZY into nX and nY clusters and con-
struct mapping functions to map clusters upon each other.
Thus a mapping function from ZX to ZY exists among the
finite set of possibilities with size (nY )nX .

However much information could be lost if the feature
vector only carries clustering information. To overcome this,
a feature vector zx is split into two vectors: a cluster vector
cx in a finite space and a vector carrying other detail infor-
mation vx in an infinite space. Next, the feature extraction
function EX is defined: cx, vx = EX(x). Similarly we have
EY . While there are (nY )nX possible mappings from the
cluster vector space of X to the cluster vector space of Y ,
vx is passed unchanged: vx!y = vx. The relation between
cx and vx can be understood using Fig. 1. While cx defines
the center of a cluster in the space, vx is a small vector devi-
ating from this center. With clusters numbers nx = ny = 1,
this model is identical to the shared latent space assumption
proposed by Liu et al. (2017). With nx ! 1, ny ! 1
and v ! 0, in theory it is possible to construct any arbitrary
mapping function. The process of mapping a data point x to
domain Y is:

cx, vx = EX(x)
cx!y = m(cx)

y = GY (cx!y, vx)
where GY is a function that decodes a feature vector back
into the domain Y , or ŷ = GY (EY (y)) where ŷ ⇡ y.

Figure 1: Relations between c and v and how a mapping
function works.

To find good mapping functions we apply two criteria
mentioned in the Introduction: previously experienced map-
ping and topology mapping. First, when previously experi-
enced pairs {(x1, y1), ...., (xnn, ynn)} are present, assuming

that cxi , vxi = EX(xi), the loss of a mapping function can
be measured by how well it matches clusters of given pairs:

Lpair =
nnX

i=1

wi · eval(m(cxi), cyi)

where eval(m(cxi), cyi) returns 0 if m(cxi) = cyi , 1 other-
wise, and wi is a weight assigned to each pair i.

Second, when topology mapping is used, we first assume
that the topology is preserved with the feature extraction
functions EX and EY so similar objects have small distance
in feature space. The next loss function measures how well
a mapping function m preserves the distances between clus-
ters of x:

Ltopo =
nXX

i=1

nXX

j=1

(d(cix, c
j
x)� d(m(cix),m(cjx)))

2

where cix represents the i-th cluster of the total nX clusters
and d(cix, c

j
x) 2 [0, 1] is the normalized Euclidean distance

between cix and cjx. Ltopo is called the stress function in
multidimensional scaling.

Given weights wtopo, the overall loss to be minimized is:

Lmap = Lpair + wtopoLtopo

An algorithm to find good solutions of Lmap is subject to the
criteria that the mapping functions should be able to model
individual differences. In this paper genetic algorithms are
used because their design can facilitate the modeling of flex-
ible and persistent (explorative and exploitative) individuals.

Network for Feature Encoding
The functions EX , GX , EY , GY are learned by a neural
network. We assume that cx, vx, cy , vy are of the same
dimensionality. Furthermore, cx, cy can be represented by
one-hot vectors hx, hy:

cx = HX(hx), cy = HY (hy)

We update EX so that: hx, vx = EX(x) and update m so
that hx!y = m(hx) (which does not change the function-
ality of EX and m). The same change is also made to EY .
Makhzani et al. (2015) have shown that this way it is possi-
ble for the encoder to learn cluster representations via one-
hot vectors.

The complete structure of the network is shown in Figure
2. It has two functions. When passing cx, vx to GX , it is an
autoencoder to reconstruct x, when passing HY (m(hx)), vx
to GY , it is a mapping network. For networks E and G,
similar structures to Liu et al. (2017) are used.

Training for autoencoding The two autoencoder
structures are trained independently. For autoencoder
(EX , HX , GX), we want reconstructions x̂ to approach
inputs x. Here L1 loss is used:

Lx
recon = E[||x� x̂||1]

where x̂ = GX(HX(hx), vx) and hx, vx = EX(x). vx
and vy need to follow the same distribution for the mapping
to work. We let them both follow the standard distribution
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Figure 2: Complete structure of CDMN.

N (0, I) where I is the identity matrix. This is done by using
a VAE structure (Kingma and Welling 2014) that uses KL-
divergence loss:

Lx
KL = KL(EX(x)[1]||N(0, I))

where EX(x)[1] = vx and hx is expected to be a one-
hot vector representing unsupervised clustering information.
Adversarial training is used with a discriminator DX that
tries to tell hx from a random real one-hot vector hr

x of the
same dimensionality, resulting in loss function:

Lx
adve = E[log(1�DX(EX(x)[0]))] + E[log(Dx(h

r
x))]

where EX(x)[0] = hx. An illustration of the training pro-
cess is shown in Figure 3.

Figure 3: Network structure at training for autoencoding
loss.

Similarly, we have loss functions for y, and a total loss

Lae
total =wrecon · (Lx

recon + Ly
recon) + wkl · (Lx

KL + Ly
KL)

+ wadve · (Lx
adve + Ly

adve)

which is minimized by E, H and G while maximized by D.

Training for mapping There are two problems if the net-
work is only trained minimizing Lae

total. First, even though

LKL penalizes vx, vy that do not follow the Gaussian dis-
tribution, they nonetheless tend to deviate (Makhzani et al.
2015), especially in high dimensional spaces. This leads to
the situation that vx and vy follow different distributions and
the mapping GY (cy, vx) will only generate a noisy output.
Second, the clustering has strong bias — there could be one
cluster containing half of the training set while most other
clusters are empty. To overcome these issues, a joint train-
ing process is designed. With vx and a random vector hr

y ,
GY (HY (hr

y), vx) learns to generate a realistic image with
the help of a discriminator Dimg

Y for generated outputs:

Ly
GAN =E[log(1�Dimg

Y (GY (HY (h
r
y), EX(x)[1]))]

+ E[log(Dimg
Y (y))]

This ensures that GY learns the distribution of vx and also
the full distribution hy . Cycle consistence loss (Zhu et al.
2017a) is also used:

Ly
cyc = E[||vx, hr

y � EY (GY (HY (h
r
y) + vx))||1]

where vx = EX(x)[1]. These processes are illustrated in
Figure 4.

Figure 4: Network structure and training for mapping loss.

Similarly, we have the loss for y ! x and a total loss of:
Lmap
total = wGAN · (Lx

GAN +Ly
GAN ) +wcyc · (Lx

cyc +Ly
cyc)

which is minimized by E, H and G while being maximized
by D. During the training process, the network is trained on
Lae
total and Lmap

total iteratively.

Network for cross-modal temporal data Besides uni-
modal image-to-image translation tasks, a creative model
should also be able to solve cross-modal non-static (tem-
poral) translation tasks. Such tasks post more restrictions
on the autoencoder networks. A variant of the network
shown in Figure 2 is specifically designed for audio-to-video
translation with two generators consisting of LSTM convo-
lutional blocks (Xingjian et al. 2015). The new functions
are named Gm

X and Gm
Y : x̂,memt+1

x = Gm
X(cx, vx,memt

x)
where memt

x is the memory of the network Gm
X at time t.

Experiments
This section is divided into two parts. First, configurations
and technical properties of the model are studied. Then, sce-
narios are provided to study the model’s creative behaviour.

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

223



Performance Analysis
This section studies configurations and technical properties
of (1) an image-to-image mapping model, and (2) a music-
to-video mapping model. The results are mostly qualitative
as quantitative results can hardly be captured and evaluated.

Image-to-image mapping The evaluation is performed
using a dataset of clothing images that were obtained from
the Alibaba Tianchi Big Data Competition1 entitled ‘Key-
points Detection of Apparel – Challenge the Baseline’ and
converted to 64x64 pixels. Images of blouses (n ⇡ 5000)
are used for domain X , trousers and skirts (n ⇡ 15000) are
used for domain Y .

First, the network’s sensitivity to hyperparameter settings
is evaluated. Testing for distributions of v (either N(0, I) or
N(0, 0.1I)), decoder normalization (none or layer normal-
ization, cf. Meyer, Pfaffl, and Ulbrich (2010)), wadve, wreco,
wcyc, and wGAN , Figure 5 shows the results of five hyper-
parameter sets. Most sets were able to capture some dis-
tinctive features of each top clothing item but the relations
with bottom clothing items are difficult to observe. There
does not seem to be a heavy reliance on hyperparameters
and we arbitrarily selected set 3 (v ⇠ N(0.1I), no decoder
normalization, wadve, wreco, wcyc, wGAN = 10, 1, 1, 1) for
the remainder of this section.

Figure 5: Comparison of five hyperparameter sets. Each
generated image is produced by Gx from the corresponding
vy and hx.

Next, our model is tested on known image-to-image trans-
lation datasets. These datasets are defined by that there is
only one mapping rule that is human-interpretable. For ex-
ample, in the ‘edges2shoes’ dataset (Zhu et al. 2017a) it
would only make sense to pair a shoe image with an edge
image if the contour of the shoe image is the same as the
edge image.

In Figure 6, the results of application to the ‘edges2shoes’
dataset are shown. The network is first trained to minimize
Lae
total and Lmap

total. Then, a single mapping function mdeter

is learned from previous pairs. Figure 6 shows generated
1tianchi.aliyun.com/competition/entrance/231670/information

shoe images that have similar contours as the correspond-
ing edge images although they do not match equally well
as other state-of-the-art networks (Liu, Breuel, and Kautz
2017). This might indicate that the network is unable to en-
code enough information into vector v.

Figure 6: Edges to shoes dataset. Mapping functions based
on previous pairs.

Next, the network is tested on a novel task: generating top
clothing to match bottom clothing. In this scenario multiple
mapping rules are needed, because different people, in dif-
ferent situations, have different rules of how clothing should
be paired. Here two rules are tested: (1) topology mapping,
and (2) color matching. The goal is to evaluate our model’s
adaptivity to different rules. Adaptation to topology map-
ping is expected to generate similar items of top clothing
when given similar images of bottom clothing. Adaptation
to color matching is expected to generate top clothing that
has the same color as the provided bottom clothing. Previ-
ous pairs for color matching are top and bottom items with
similar color.

In Figure 7, topology mapping CDMN output is com-
pared to that of UNIT (Liu, Breuel, and Kautz 2017) and
color matching CDMN output is compared to that of Pix2pix
(Isola et al. 2017). We see that while UNIT tends to gener-
ate tops that correspond to a given bottom (opposite color,
similar texture, and shape), topology mapping CDMN finds
a structural relation in which similar inputs result in sim-
ilar outputs without correspondence of color, texture, and
shape. Color matching CDMN can reproduce tops matching
several major colors, although Pix2pix is more accurate in
color matching. However, it is important to note that when
the mapping rule changes, Pix2pix must learn from the be-
ginning, while CDMN needs to find a new mapping function
only.

Figure 7: Comparison between outputs from different net-
works/ mapping functions.

Music visualization In this section, the model’s perfor-
mance on music-to-video mapping is assessed. Although we
focus on video generation from music, but not vice versa,
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since the network is trained bidirectionally even unidirec-
tional generation partially illustrates the model’s bidirec-
tional behaviour.

The music dataset used is an arbitrary selection from the
Million Song Dataset (Bertin-Mahieux et al. 2011) of 1000
songs that cover 10 genres and are reduced to 30 seconds
duration each. The video dataset contains 10 videos of 200
frames each showing generated ‘jumping’ circles, as illus-
trated in Figure 8.

Figure 8: Ten successive frames of one video of the jumping
circles dataset.

Figure 9 shows results from our model2 with four hy-
perparameter sets, differing in music window sizes, cluster
counts nX , nY , and numbers of LSTM convolutional blocks
in the decoder. Due to limited space we do not show the de-
tailed configurations of the four sets, but they are not essen-
tial for later observations. We observe that Set 1 generates
video that appears inconsistent and lacks an observable pat-
tern corresponding to the music input signal. Set 2 generates
a green blob in each frame that seems to expand with music
signal amplitude increases. Set 5 appears to results in sim-
ilar behaviour, but with very subtle frame differences. Us-
ing hyperparameter Set 7, the blue element at center-left of
the frames appears to shrink in anticipation of rising music
signal amplitudes, whereas it expands after the signal peak
passes.

Figure 9: Illustration of video output for four different hy-
perparameter sets, and the music input signal. Each image
in a row represents a frame with 40 ms interval (25 Hz).

By comparing these four hyperparameter sets, it becomes
apparent that this model is difficult to tune for good video
output; ‘good’ in the sense that viewers observe patterns in
the video that temporally correspond with the music. This
does not imply that the model cannot uncover patterns in
the input music, but it could result in patterns within output
videos that are too subtle to observe. Defining a proper cri-
terion to ensure that changes in video are not too subtle nor
too dramatic remains an open problem.

2Music visualization videos at vimeo.com/368386488

Creativity Evaluation
The next important question is: how creative is this model?
We do not intend a thorough evaluation of creativity using
external criteria in this paper. Instead we provide informa-
tion and impression of the creative behaviour of our model
from a technical point of view. We using the criteria men-
tioned earlier: (1) features are distributed and representative;
(2) connections between domain spaces are flexible under
different circumstances; and (3) flexible and persistent in-
dividuals can be modeled. The first criterion is inherently
met through the application of autoencoders. We define two
tasks to assess our model’s agreement with criteria (2) and
(3).

The first task focuses on the flexibility of mappings,
specifically our model’s behaviour in the face of environ-
mental and intentional changes. Imagine a scenario where
a fashion designer has her own style based on many years
of experience. Recently she attended a fashion show, which
subconsciously changed her style preferences. Then she met
a new friend who is a famous fashion designer. Impressed by
his talent she wants to mimic his style. Next, she found that
her style was too similar to other designers, in particular to
that of her friend, and she decides to create her own unique
style. However, her old experiences and style are rooted and
not easy to change.

Can our model mimic such human-like behaviour? To
align this scenario with our artificial designer, let’s assume
that the designer’s job is that, when provided with a cloth-
ing bottom (trousers or skirt), she must create a top. Her
experience can be represented by the many pairs of tops and
bottoms that she has seen (Guide Set 1, Figure 10), while
the fashion show exposure is Guide Set 2, and her friend’s
style is Guide Set 3. Tops from all guide sets are randomly
selected to match the given bottoms. Items in the set Cre-
ation 1 are generated solely based on Guide Set 1. Items in
set Creation 2 are generated from Guide Sets 1 and 2 with
random weights for all pairs of Set 1 in [0.9, 1.1] and for
Set 2 in [0.8, 1]. Items in set Creation 3 are generated from
Guide Sets 1 and 2 with the same weights as previous and
random weights for all pairs from Guide Set 3 in [2, 3]. Fi-
nally, set Creation 4 is generated with random weights for
Set 1 in [0.9, 1.1], for Set 2 in [�0.2, 1], and for Set 3 in
[�3,�1]. Topology mapping with a small weight is also
added for each creation so clusters that are not covered by
the guide sets can be mapped.

Results are shown in Figure 10. These include creations
based on never-before-seen bottoms. We observe that Cre-
ation 1 matches Guide Set 1 well. Inclusion of Guide Set
2, as expected, only directly changes a few creations (e.g.
columns 5 and 8). However, this small impact may also
affect future creations. For example, in column 10 Guide
Set 2 contains a pink-red top. After learning from Guide
Set 3 which has no impact on column 10, the artificial de-
signer creates a red top. Creation 3 matches with Guide
Set 3 well. It is interesting to see that Creation 4 is sim-
ilar but not identical to Creation 1. This implies that the
artificial designer does not immediately disregard old expe-
rience (Guide Set 1) in the face of new experiences, but that
its style is shifted slightly. The experiment shows that the
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model can create flexible mapping functions under chang-
ing circumstances. These flexible behaviours simulate hu-
man creativity on some levels.

Figure 10: Guide sets and creations for flexibility evaluation.
Each image of a top in a guide set is paired with the bottom
in the same column. Each created image is based on the
input bottom of the same column.

Our second task evaluates the modeling of persistent and
flexible human individuals. While a persistent individual
aims to find a single best solution, a flexible individual tends
to explore for more possibilities, perhaps not all equally
good. This difference can be modeled through the design
choices of an evolutionary algorithm (EA). A persistent in-
dividual is modeled by a greedy EA with (1 + �) selection
where � are all offspring closest to the one parent. A flexi-
ble individual is modeled by an EA with (15, 30) selection.
Each (persistent or flexible) individual takes its previous in-
dividual as one solution in its first EA generation and then
runs the EA to minimize the loss of topology mapping.

Here we do not have solid quantitative evaluation of
music-visualization as it is very complex, if possible. In-
stead we evaluate it perceptually and qualitatively. We show
that this already provides valuable information. Results are
shown in Figure 11. We observe that persistent individuals
2 and 3 cannot create something new beyond persistent in-
dividual 1. Contrastingly, flexible individuals 2 and 3 are
not restricted by prior experience encoded in flexible indi-
vidual 1. However, judging by the loss, later generations
of flexible individuals do not necessarily improve on earlier
generations. Furthermore, even though persistent individu-
als have a lower loss, visually it is hard to say if the persistent
individuals find ‘better’ mapping functions than the flexible
individuals3. In fact, it is hard to assess whether or not an
elaborated mapping function is better than a completely ran-
dom mapping function!

Such difficulty implies that the model fails in carrying
through relevant information from the music input to the
visual output of the model. Perceptual consistency in the
mapping appears missing. For music frames x1, x2, x3, and
mapping x1 ! y1, x2 ! y2 and x3 ! y3, if a listener finds
that di↵erence(x1,x2) < di↵erence(x1,x3), one would ex-
pect that visually y1 appears more similar to y2 than to y3.
This is however not perceived in the output of our model.

Besides potential optimization issues for the network, this
also reveals the more profound problem that the nature of

3Visualization videos at vimeo.com/368390854

Figure 11: Six video sequences generated from the same
music sample. Each row shows 10 successive frames, cf.
Fig. 9.

finite cluster space and topology mapping make it hard to
find a ‘good’ mapping. Clustering discretizes and origi-
nally infinite space, forcing areas of the original space to
‘disappear’ from consideration. One-dimensional topology
mapping takes only Euclidean distance between clusters into
account, implying that multi-dimensional relations between
clusters are simplified and limiting the range of potentially
generated output. In terms of the domains, would it make
sense that a cluster of red jackets is closer to red T-shirts
than to blue jackets? However, at this point, finite cluster-
ing with topology mapping is the only method for mapping.
Future work may want to improve from here.

Conclusion
This work proposes the cross-domain mapping network
(CDMN), a method for adaptive mappings and cross-domain
content generation. It encodes finite cluster features and in-
finite individual variation thereupon from one domain, maps
these cluster features to cluster features of a second domain,
and from there generates (decodes) instances within the sec-
ond domain. Different from previous work, the separation
between encoding-decoding functions and mapping func-
tions is modelled more towards replication of human cre-
ative behaviour and enables the mapping functions to adapt
to changing situations. The use of mapping criteria based
on topological distances within both domains and previous
pairs helps the CDMN to show some complex human-like
behaviours, as demonstrated in our scenario-based experi-
ments.

We made an attempt to bridge creative cognition theory
and machine learning applications. On one hand, as a GAN
application this model achieves a higher level of creativity in
terms of better adaptivity and individuality, when compared
to prior work. Furthermore, as a realization of computa-
tional creativity theories, our model provides a highly auto-
mated method with which the unitary action control model
with feature distribution and connection is shown to be com-
putable. It shows the possibilities of using machine learning
tools as a convenient and powerful method to build creative
models and evaluate theories about creative cognition and
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psychology.
Possible future work is suggested in two directions. In

the direction of computational modelling, the limitations
brought by finite clustering and topology mapping should
be addressed. It is also possible to construct continuous fea-
ture spaces and design mapping functions conditional on re-
gionality within those feature spaces, as opposed to applying
indexed clustering in feature spaces. Moreover, it is not triv-
ial to tune hyperparameters as more in-detail analysis can be
performed with more detailed models. In the direction of
cognition theories, mapping rules used in this paper can ar-
guably model somewhat but limited human-like behaviors.
This is because the mapping rules proposed in this paper
are ad-hoc, which is due to the fact that how mapping func-
tions are controlled is not well-known in cognitive psychol-
ogy (Hommel and Wiers 2017). This paper addresses the
importance of such studies to achieve closer-to-human level
creativity in computational models.
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