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Abstract
Modular creative systems employ specialized modules
that take on challenging responsibilities. Such modules
can be expensive to develop and are often imperfect,
leading to uncertainty in whether a system’s poor re-
sults are due to module imperfection or larger systemic
issues. Computational creativity research would bene-
fit from a method for validating the design of creative
systems before expending development resources im-
plementing them. We present ideal-module prototyping
(IMP), a design validation paradigm that serves these
needs by using modules that delegate responsibilities
to humans as an ideal against which to compare sys-
tem expectations and performance. We relate an ex-
periment we conducted in applying IMP to an existing
creative system to demonstrate the insights that can be
gained from this method. We argue for the widespread
adoption of modular creative system design validated
by ideal-module prototyping.

Introduction
Computational creativity research has as one of its goals the
invention of computational systems that can be said to ex-
hibit creativity. This is a lofty and challenging goal that ap-
proaches the limits of humans’ understanding of our own
mind and consciousness.

Given such a challenging goal, it is no wonder that suc-
cessful computational systems that advance closer to that
goal are complicated and at times difficult to understand
themselves. Explainability is a hot-button topic in many
stripes of AI research (Ehsan and Riedl 2020), as advanced
machine learning algorithms increasingly exceed their own
creators’ abilities to predict and control.

Computational creativity researchers, who create systems
that by necessity are complex and unpredictable, often face
similar challenges. The complexity of computationally cre-
ative systems, coupled with the vast spaces of possible out-
puts in a given creative medium, can result in systems that
produce low-quality output but whose internal design flaws
are difficult to diagnose.

One approach to solving these issues is to implement a
prototyping method that will reveal system flaws before they
result in low-quality output. Another is to develop tools
for more nuanced diagnosis of existing systems with low-
quality output. The development of a useful paradigm for

prototyping the designs of new creative systems and diag-
nosing the flaws of existing systems would be beneficial to
the computational creativity community.

Modular Creative Systems
Modular creative system designs use specialized modules
that compute tasks—such as knowledge lookup, transfor-
mation, combination, and evaluation—connected by higher-
level logic that organizes the flow of information between
them. The tasks implemented by these modules often rep-
resent challenging operations that attempt to reach human-
level performance. For example, a module could attempt to
represent knowledge similarly to a human or evaluate a cre-
ative artifact as a human would. Even tasks like computer
vision that do not seek to produce the same output as a hu-
man still often need to function on a level of performance
equal to that of a human.

Because these tasks are extremely challenging, the mod-
ules that implement them commonly represent the weak
links in a creative computational system. Conversely, if such
a module is working as intended, but the system as a whole
still produces low-quality results, it is important to make that
distinction and not expend effort on modifying a module that
already functions well.

With a number of interoperating parts, many of which are
attempting to complete such challenging tasks, it can be dif-
ficult to diagnose problems with a modular creative system
as a whole. When the quality of the system’s output is low,
what is the cause? The ability to tease apart the interplay
between modules and higher-level control would be useful
both to reduce diagnostic complexity and to analyze tricky
modules without conflating issues from other modules or in-
formation flow.

Ideal Modules
One approach to evaluating a modular creative system is to
compare its performance to a version of that system with
ideal modules. Each module that is replaced with an ideal
version is one that cannot be the source of flaws in the
system’s output. If all of the system’s modules are ideal,
then any flaws in its output must be the result of how those
modules are interconnected or some other holistic aspect of
the system design. Alternatively, if the system yields high-
quality output with ideal modules, then any reduction in out-
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put quality when the same system uses imperfect modules
can be attributed to the difference in module quality.

For some tasks such as mathematical operations, existing
computational modules represent the ideal. However, many
tasks that are useful in computational creativity do not cur-
rently have ideal computational implementations. We pro-
pose that for these types of modules, a useful definition of an
ideal module is one that delegates completion of the task to a
human. This conception of ideality serves creative systems
whose modules or output are intended to mirror human per-
formance, be compatible with a human audience, or achieve
human-level quality.

We will refer to such modules as human-delegated mod-
ules, to indicate that they complete tasks by presenting the
task to a human to solve. The inclusion of human-delegated
modules in a creative system would obviously discount it
from being considered an autonomous computationally cre-
ative system. However, we propose that testing a creative
system using ideal modules, even if they are not computa-
tional, is a powerful tool for prototyping and evaluating the
algorithmic validity of the system’s design. Once the de-
sign has been validated, effort can be expended to engineer
a purely computational implementation of the system.

Notably, this comparison can be usefully made at the de-
sign stage of creative system development, before develop-
ing complex computational modules. By first prototyping
the system with ideal, human-delegated modules, its design-
ers can evaluate the performance potential of its high-level
design before investing effort in the expensive process of de-
veloping a fully computational system.

This new paradigm, which we call ideal-module prototyp-
ing or IMP, represents a powerful tool that is not currently
available to the computational creativity research commu-
nity. It gives researchers a method for validating the designs
of new creative systems and for diagnosing flaws in existing
creative systems by comparing them to an idealized version.

In this paper, we argue for the following position: compu-
tational creativity research should be conducted using mod-
ular system design evaluated via ideal-module prototyping.
We describe ideal-module prototyping in detail, relate an ex-
periment we conducted with applying IMP to an existing
creative system, present arguments to defend our position,
and discuss the impact that this paradigm could have on the
future of computational creativity research.

Ideal-module Prototyping (IMP)
This prototyping paradigm is powerful but not overly com-
plex. The main insight is that much can be learned about
a modular creative system by replacing its computational
modules with human-delegated versions that fulfill the same
task or operation. In this section we detail the paradigm, and
in the next we relate an experiment we conducted with it.

Note that although IMP is primarily intended for proto-
typing the design of a new creative system before the system
itself is engineered, it can also be retroactively applied to
evaluate and diagnose completed systems. The paradigm is
applied similarly in either case, with the main difference be-
ing that the computer modules of an existing creative system
are already well-defined and can be compared to directly.

Building Human-delegated Modules
When the goal of a creative system is to produce human-
compatible output, the generation of that output often re-
quires knowledge or computation that mimics human cogni-
tion to some degree. Modular creative systems have special-
ized modules that are called upon to perform these critical
tasks in the creative process. Because these tasks attempt to
operate at a human level, human cognition is naturally capa-
ble of completing them as well.

We note the obvious difference that exists between peo-
ple’s abilities to perform cognitive tasks relevant to the cre-
ative process, for example the difference between an ex-
pert and a layperson. We posit, however, that the differ-
ence in skill level between expert and layperson is much
smaller than the difference between a layperson’s skill and
the skill of state-of-the-art computational modules for many
tasks that are useful to the creative process. If the difference
between the state-of-the-art module and a layperson’s per-
formance is small, then a human-delegated module is likely
not worth developing for that task.

The first step in implementing ideal-module prototyping
is to identify the system’s modules and their inputs and out-
puts. Care should be taken to specify each human-delegated
input and output exactly so that that information is as simi-
lar as possible to what the computer module processes. Each
human-delegated module must be designed to be displayed
and answered via a human-friendly UI. Care should be taken
with any instructions issued to the human delegate to ensure
that the human has neither more nor less information than
the computer module when completing the task.

It is also important to account for differences between
how people and computers answer questions, especially
for modules that compute tasks with no input that reflects
knowledge of larger system goals or previously computed
tasks. When interacting with such modules, people will nat-
urally remember previous task inputs which could influence
their responses. For example, the story-writing system we
experimented with presents human delegates with analogy
completion tasks, the outputs of which are used as input
for later analogy tasks. If one person were to fill in these
successive analogies in sequence, memory of previous tasks
could influence their answers in a way that deviates from
the computer module’s stateless operation. This effect can
be mitigated by randomizing sequential tasks to reduce the
likelihood that one person’s responses will be influenced by
memory.

Various approaches can be taken to designing a user inter-
face that facilitates human participation in the creative sys-
tem. For example, in our experiment with applying IMP
to a story-writing system, we built a client-server web inter-
face for participants to interact with. This design allowed for
widespread deployment via the Internet to attract a diverse
set of participants to the experiment.

In order to design user interfaces that accomplish the re-
searchers’ design goals, useful techniques may be drawn
from the broader field of HCI. Lessons from Wizard-of-
Oz techniques (Fiedler, Gabsdil, and Horacek 2004), which
human-delegated modules may resemble from a UI or in-
teraction perspective, and participatory design (Muller and
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Druin 2007), which concerns inter-domain experiences, may
be of particular use. We reiterate, however, that the goal of
applying IMP is to validate the design of an ultimately com-
putational creative system; human-delegated modules will
be replaced by computational modules in the final system.

Once all human-delegated modules have been created,
they can then be connected with the same high-level infor-
mation flow that the system would use if it had computer-
controlled modules. In that way, the complete human-
delegated system computes the same algorithm as a purely
computer-controlled version of the same system.

In the case that the human-delegated modules are de-
signed to match an existing creative system, it is likely that
the high-level information flow will need to be re-engineered
to accommodate for the asynchronous or event-driven nature
of human-computer interaction.

Finally, as the human-delegated systems implemented un-
der this paradigm are intended for evaluation and diagnos-
tics, the systems should include logging of useful data that
is generated as the program runs. In addition to the final
system output, any other data that will give system design-
ers insight into the system’s operation should be collected.
Input and output data from each module are likely to be very
useful for design analysis because they can be compared di-
rectly with corresponding data from computational versions
of those modules.

Running the Human-delegated System
After the system is complete, the next step is to recruit
people to participate in completing tasks for the system’s
modules. This may be approached in whatever way the re-
searchers believe will yield the best results for their system.
Commonly, the modules in a computationally creative sys-
tem compute tasks that are relatively simple for humans to
complete. This should permit the recruitment of participants
from a wide range of backgrounds and education levels.

We note that concerns such as population size and statis-
tical significance are likely of lesser importance when using
IMP to evaluate the performance of a creative system. At
the design stage, such evaluation is largely subjective and
depends on the researchers’ goals for their system. In this
way, testing a system’s design with human-delegated mod-
ules is similar to running a pilot study.

The number of participants to recruit depends mainly on
estimating how many people it will take to provide a suffi-
cient quantity of diverse module outputs to complete system
execution in a reasonable time period. It is a near certainty
that the human-delegated system will take more time to run
than a purely computational system. However, we anticipate
that with ideal, human-delegated modules a small number of
complete program runs should be sufficient to collect useful
data with which to evaluate the creative system.

Once the participants have been recruited and the creative
system has finished delegating tasks to them, the results can
be analyzed. With proper data collection, the results should
give insight into the performance of the system’s individual
modules as well as its holistic performance.

The primary question is whether the creative system’s out-
put is satisfactory. Although this criterion wholly depends

on the goals that the researchers have for the system, the
data collected by this method should aid any assessment of
whether the system achieves those goals.

If the output is satisfactory, then the researchers can move
forward with engineering a purely computational version of
the system, armed with the knowledge that their algorith-
mic design is valid. Alternatively, if the output is unsatisfac-
tory, the more granular data collected during execution can
be used to inform design improvements.

Data should be collected for each module in the system,
for example by recording all inputs and outputs to each mod-
ule during execution. This will allow for analysis of individ-
ual module performance, as well as diagnosis of how infor-
mation flows between modules. Recall that although simi-
lar analysis could be carried out on a purely computational
system, IMP features ideal modules that eliminate the con-
flation of flaw-causing behavior between imperfect modules
and flawed information flow.

If the individual modules’ inputs and outputs are found to
be satisfactory, then unsatisfactory system output may be the
result of flaws in the information flow between modules or
require remediation via the modification, addition, or sub-
traction of modules. In the former case, it may be possible
to redesign the connections between modules and simulate
execution using the recorded input/output data, alleviating
the need to recruit participants again. If that is not possible
or if other modules are needed, partial reuse of the recorded
data may still reduce the burden on participants.

It is possible that a given creative problem is not factoriz-
able into modular tasks. Analysis of whether a given prob-
lem is factorizable or not is outside the scope of this work.
However, we note that it may be useful to investigate the dis-
tinctions between problems that arise from an unfactorizable
creative problem, the incorrect factorization of a factorizable
problem, and software bugs in the implementations of a cor-
rectly factorized problem.

An alternative result of the evaluation is that one or more
modules do not perform satisfactorily. If the modules’ tasks
are delegated to humans, their performance should repre-
sent a cognitive ideal. Thus, any performance failings in the
modules that cannot be attributed to UI flaws warrant care-
ful consideration from the researchers. Useful questions to
ask may include what the purpose of the module is, why
calculation of that operation is out of reach for humans, and
whether it is tractable to build a computer module to com-
pute something that humans are apparently incapable of. It
may also be useful to consider whether an ideal computa-
tional module exists to complete the task, in which case that
should be used instead of a human-delegated one in both the
prototype and the final system.

The nuanced outcomes of evaluating a creative system
in this manner show the power of ideal-module prototyp-
ing for teasing apart complex, interconnected interactions
between modules and accurately diagnosing the origins of
low-quality output.

IMP Checklist
To summarize IMP, we present a checklist of steps that
should be taken to apply the paradigm to a creative system,
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whether it is being designed or is already implemented. This
checklist should be applicable to any modular creative sys-
tem, and we encourage researchers to tailor its application
to the needs of their system.

1. Identify computational modules in the system.
2. Implement human-delegated versions of all modules for

which no ideal computational module exists, and engineer
a version of the system that uses those modules.

3. Experiment with the human-delegated system by recruit-
ing participants and having them complete the delegated
tasks. Log useful data generated during the experiment.

The result of applying this paradigm is a set of experimen-
tal data that can be used in various ways to validate the sys-
tem’s design or identify shortcomings in the system’s mod-
ules or information flow. Based on the results of the exper-
iment, it may be useful to apply IMP again after modifying
the system’s design.

HIEROS Experiment
In this section, we give an example of how ideal-module pro-
totyping can be applied to an existing creative system. It is
instructive to consider such an example both as an exemplar
of how to apply IMP and a concrete example of what can be
learned from doing so.

HIEROS
HIEROS (Spendlove and Ventura 2020) is a computation-
ally creative system that writes six-word stories, a genre of
microfiction that exhibits several properties that make it in-
teresting for study. Their short length reduces the amount of
data that needs to be generated and allows for rapid human
evaluation of results. Despite their brevity, however, they
are far from a trivial creative domain; effective six-word sto-
ries push the limits of semantic and linguistic constructs to
deliver impactful or emotional experiences to readers. Six-
word stories are also not far removed from raw analogy and
semantics. Because it does not contain filler or unnecessary
words, the quality of a six-word story is closely related to the
quality of the underlying relationships between the story’s
words.

HIEROS takes advantage of that final property to inform
its modular system design. Two of HIEROS’ three mod-
ules select the words that will form a six-word story, and the
third assigns a score to the story that reflects its quality. The
remainder of the HIEROS algorithm passes information be-
tween these same modules to search for higher-scoring sto-
ries. Consequently, the success of the system is very closely
related to the quality of its modules, making it an ideal can-
didate for evaluating using our ideal-module paradigm.

Figure 1 shows a diagram of how information flows be-
tween HIEROS’ modules. We will describe this information
flow and each module in turn.

Using human-written exemplar six-word stories scraped
from the web, HIEROS infers an underlying format for each
story. This format includes a hierarchy graph of the words
in the story computed using dependency parse information
provided by the Stanford Parser (De Marneffe, MacCartney,

Figure 1: The flow of information through HIEROS’ three
modules (in bold): root word selection, analogy completion,
and story scoring.

and Manning 2006). In this acyclic hierarchy graph, each
word is connected by an edge to a parent word—as deter-
mined by the dependency parse—except for a single root
word that has no parent.

The relationship between each parent and child word is
used to guide the selection of a new child word when pre-
sented with a new parent word. This task can be thought of
as a classic analogy completion question A : B :: C : ?,
with the original parent and child taking the place of A and
B, respectively, and the new parent taking the place of C.

HIEROS uses an analogy completion module to accom-
plish this task. The inputs to the module are words A, B,
and C. The module’s output is a word D that fulfills the
analogy A : B :: C : D and shares the same part of speech
as B. An optional input word E can be specified as a word
that should be excluded for consideration as output.

HIEROS generates new stories by first selecting a human-
written exemplar whose hierarchy graph will provide the
format for generating a new story. It then selects a new root
word via another module. The root word selection module
simply takes a part-of-speech indicator as input and returns
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a word of the appropriate part of speech on which to base
the story.

Starting with the newly selected root word, the analogy
completion module computes analogies for each edge be-
tween the root word and its children in the selected format’s
hierarchy graph. Then analogies are computed for those
children’s children and so on until all six words of the new
story have been selected. The words in this new six-word
story are not the same as the words in the original, but the
new words share similar relationships between one another
as the words in the original do, as guided by the format’s
hierarchy graph.

After generating a new story, HIEROS assigns it a score
via a story scoring module. This module simply takes a
story as input and returns a numerical score, for example
a real number between 0 and 1. The module should assign
high scores to stories of high quality and low scores to low-
quality stories.

Once a story has been scored, it is placed into a prior-
ity queue, after which the highest-scoring story is dequeued
and mutated to search for higher-scoring stories. A story
is mutated by selecting a non-root node in its correspond-
ing hierarchy graph, using its parent node to compute a new
analogy for that word in the story via the analogy comple-
tion module, and recomputing analogies for all words lower
in the hierarchy than the mutated word. The initial anal-
ogy recomputation provides the optional input word E to the
analogy module to specify that the output should not match
the pre-mutation word.

The mutated story is scored by the story scoring module
and inserted into the priority queue, after which the highest-
scoring story is dequeued and mutated, and the process re-
peats.

By generating, scoring, and mutating stories in this man-
ner, HIEROS refines its stories, searching for progressively
higher scoring stories. If a specified number of mutation
steps have passed without finding a higher scoring story, ex-
ecution terminates, and the highest scoring story seen during
execution is returned as the system’s creative output.

Thus, we completed step one of the IMP checklist. HI-
EROS’ three modules, as represented in Figure 1, are:

1. An analogy completion module which takes words A, B,
C, and an optional word E, and returns a word D such that
A : B :: C : D holds, D 6= E, and D has the same part
of speech as B.

2. A root word selection module which takes as input a
part-of-speech indicator and returns a word of that part
of speech that is an interesting word on which to base a
story.

3. A story scoring module which takes a six-word story as
input and returns a numerical score in a certain range, with
high scores being assigned to high-quality stories.

Note that each of these modules computes a task that is diffi-
cult to rigorously define. What does it mean for the relation
A : B :: C : D to hold between four words? What is the
definition of “an interesting word on which to base a story”?
What criteria should be used to assign a high or low score
to a story? The nature of these difficult-to-define questions

makes these modules both scientifically interesting and dif-
ficult to compute. HIEROS’ computer modules that attempt
to compute their respective tasks find some success but of-
ten fall short of ideal performance, and the system as a whole
produces somewhat poor stories.

The key question, then, is whether low-quality output is
the result of one or more flawed modules or is caused by
a more systemic design issue. In order to more clearly di-
agnose HIEROS’ shortcomings, and to gather useful data
that could be used to improve HIEROS’ design, we experi-
mented with applying our ideal-module evaluation paradigm
to the system.

Applying the Evaluation Paradigm
We re-engineered HIEROS to use human-delegated modules
via a web browser UI and recruited participants to interact
with it over the course of a week in order to test the system’s
performance with ideal modules.

We created a simple HTML and Javascript web page that
asks the participant to complete delegated tasks correspond-
ing to HIEROS’ three modules: providing a root word, com-
pleting an analogy, or scoring a story. The web page con-
nects to a server that runs the HIEROS algorithm and tells
the web page which task to present to the user. Each task
is used as module output in the system and advances the in-
ternal state as far as it can before requiring more tasks to be
completed. After completing a task, the web page displays
another task to the user, and users can complete as many or
as few tasks as they like.

Each task is worded to provide clear instructions to the
user without providing extra information that could be in-
corporated into the response. The tasks are designed to be
completed by any person who is fluent in English and can
understand and follow the instructions. Tasks are not explic-
itly randomized, but the server does not immediately give
users subsequent tasks that are generated from the previous
task they completed. This prevents a user from completing
the entire process of creating and scoring a single story.

The root selection task prompts the user to “enter an in-
teresting word to base a story on”, including a desired part
of speech.

The analogy completion task asks the user to “com-
plete this analogy”, followed by the analogy presented in
“A:B::C: ” format, including specifying parts of speech.
Neither the root word nor the analogy tasks enforce the part-
of-speech specification; if the human user makes a mistake
it is still considered valid input.

The scoring task presents a story and instructs the user
to “score this story” with an integer score between 1 and
100, with no instructions pertaining to which aspects of the
story to score. Integers were used instead of real numbers
for ease-of-use.

Implementing these tasks as human-delegated modules
constituted step two of the IMP checklist. Step three was
to recruit participants and carry out the experiment.

To recruit participants, we distributed a link to the web
page via social media and email. We did not collect demo-
graphic data. Users interacted with the web page over the
course of a week, generating 142 stories total, including all
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generated and mutated stories. To facilitate participant in-
teraction, the human-delegated system did not terminate ex-
ecution after a fixed number of mutation steps with no score
increase, in contrast to the original HIEROS system.

Results
Examining the results of the human-delegated system, we
find that the system’s stories are satisfactorily coherent, di-
verse, and interesting overall. This result provides strong
evidence that HIEROS’ design is sound. Furthermore, com-
paring the results of the human-delegated system to the orig-
inal computational system yields insights into which parts of
the original system could be improved.

Although only the highest scoring story would be returned
as its output, it is instructive to inspect all the stories the
human-delegated system generated. The nature of the sys-
tem’s scoring and mutation algorithm results in many sto-
ries that differ only by a few words. Filtering out very sim-
ilar stories, the top four scoring stories from the human-
delegated execution are:

Wilted. I Was a recent past.
Lonely outcast. Overgrown wildernesses. Farewell so-
ciety.
Brave outcast. Horror yearns. Expel society.
Super chewy. Dry Food. Creature Meal.

The first story was created using the format of the web-
scraped exemplar “Shit. I AM the adult supervision.”
and demonstrates an interesting difference in subject matter
while still adhering to similar inter-word relationships. The
second and third stories also differ intelligently from their
shared exemplar “Bitter taste. Swollen lips. Bye lover.”
and are examples of two mutations of similar stories. The
fourth story comes from the exemplar “Last human. Wrong
Planet. Alien Delicacy.” and demonstrates how the food-
related analogies present in the original influence the direc-
tion the new story takes after starting with the new root word
“creature”.

Conversely, stories written by the original HIEROS sys-
tem are less coherent and tend to represent unintelligent syn-
onym substitutions for most words in the exemplar story.
Examples follow, including the exemplar story in parenthe-
sis for comparison:

Cried ourselves helplessly. Sobbed them asleep. (Cried
myself asleep. Screamed myself awake.)
Ought Myself certainly rent one bullet? (Can I just buy
one bullet?)
There gets unending voluptuousness from fecundity.
(There is immense beauty in diversity.)
Be possibility to anybody that lives. (Be kind to every-
thing that lives.)

Despite the low quality of the original system’s stories,
the ideal system’s results demonstrate that HIEROS’ story
writing algorithm could be a viable method for writing in-
teresting and novel six-word stories. The only difference be-
tween the two systems is their modules, so it follows that the
difference between their stories’ quality can be accounted

for in the difference between the ideal modules and the com-
puter modules.

The primary module that guides HIEROS’ creation of six-
word stories is the analogy completer, which answers anal-
ogy questions of the form A : B :: C : ?. The computer
module that HIEROS uses to solve these tasks is structured
as follows.

A semantic vector is calculated for words A and B
(the parent and child words from the hierarchy graph, re-
spectively) by subtracting their word2vec word embed-
dings (Mikolov et al. 2013), effectively encoding the seman-
tic relationship between the words. That semantic vector can
then be added to the embedding of a new parent word C to
produce a new child word D that shares the same semantic
relationship, i.e. it satisfies the analogy A : B :: C : D.
Word D is then returned as the module’s output.

Examining the original system’s output, we observe that
the computer analogy completer often simply returns syn-
onyms of B (the word in the original story to be replaced)
as its output. The module does not seem to account for the
relationship between A and B and how it could be applied
to C, even though word2vec’s embeddings are often touted
as facilitating analogical reasoning via simple geometric op-
erations.

Meanwhile, the input and output data we collected from
the human analogy completion module demonstrates a more
nuanced and intelligent selection of analogous words. Three
groups of example analogies demonstrate patterns in how
participants completed this task.

The first group are analogies that cleverly apply an aspect
of the relation between A and B to the word C to derive an
output word D. Examples of this group include:

taste : bitter :: outcast : lonely
lips : swollen :: wildernesses : overgrown
smiles : someone :: rots : tree

A second group are analogies in which the left-hand side
is not interesting or evocative. In this case, participants often
fell back onto choosing a synonym of B, as displayed in
these examples:

tempted : twice :: expired : once
luck : still :: tears : seldom

Another interesting group of responses seems to occur
when there is a meaningful relationship between A and B,
but not one that can be easily applied to C. In this case,
participants chose words that were primarily related to C:

smiles : today :: eat : bread
supervision : adult :: past : history
went : anyway :: sought : fearlessly

All the data collected via this experimentation method is
open to interpretation and is intended to aid the researcher in
evaluating and improving their own system. As such, we do
not make any strong, statistical claims about the results, we
merely report our subjective observations of useful trends.

HIEROS’ scoring module is of critical importance to the
system’s overall performance. Even if the system’s story
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generation is somewhat flawed, an accurate scoring module
could still guide the system to high-quality output.

HIEROS’ scoring module succeeds in assigning low
scores to low-quality stories but is unable to consistently as-
sign high scores to high-quality stories. This results in a
large variance between scores assigned to generated stories,
confusing the system’s ability to search the space of similar
stories for higher quality stories.

The data collected from the human-delegated scoring
module reveals that participants were not as consistent in
their scoring as they were with analogy completion. Scoring
stories on a numeric scale with no guidance or context is a
difficult task for humans, and it was presented without mod-
ification in order to mirror the task that the computer module
computed.

Quality differences between two stories are highly subjec-
tive, making it difficult to analyze small differences between
human-assigned scores. Examination of broader trends in
the human-assigned scores, however, seems to indicate that
high-quality stories are indeed assigned higher scores than
low-quality stories. Compared to the previously presented
highest-scoring stories, the following lowest-scoring stories
demonstrate a markedly lower quality level:

Lonely outcast. Benjy yearns. Expel society.
Swallow the biscuit tree rots eternity.
Wilted. History Was a zookeeper penguin.

Aside from the expected result that humans are accurate
story scorers, a more nuanced insight emerges from examin-
ing patterns in the stories generated by the human-delegated
system.

Because the HIEROS algorithm selects stories to mutate
based on score, the system generated many stories that were
mutations of the same story. When a new story was intro-
duced, its first generation was often not of the same quality
as the current high-scoring story which had been iterated and
improved upon. This resulted in new stories never having a
chance to be refined because the system ignored them in fa-
vor of the reigning champion.

This suggests that a division be made between scored sto-
ries as they compete to be mutated. Instead of a single pri-
ority queue organized by score, the system would likely be
improved by keeping a separate list of newly generated sto-
ries from which stories are selected at random to mutate and
score. This would give newly-generated stories a number of
iterations to be refined before being discarded.

HIEROS could still maintain a priority queue but only use
it for refined stories whose scores surpass a certain thresh-
old. This more nuanced refinement algorithm should prevent
the priority queue from being dominated by already-refined
stories that exclude new stories and deny them the opportu-
nity to be refined.

We note that this insight was only made possible by the
ideal module experiment; HIEROS’ original scoring module
was not skilled enough to make such fine distinctions. By
running the system with ideal, human-delegated modules we
were able to gather unique information that informs a better
system design.

A New Prototyping Paradigm
Prototyping is an invaluable tool in any design disci-
pline (Thomke and Nimgade 2000; Gerber 2010). It allows
designers to evaluate a design while it is still in the early
stages of development and avoid expending time and re-
sources on implementing a design that will ultimately prove
unsatisfactory.

Computational creativity is a challenging field that re-
quires the design of complex systems. We argue that ideal-
module prototyping represents a powerful method for eval-
uating designs of new and existing creative systems and that
adoption of this paradigm will benefit the computational cre-
ativity community.

Improving Creative System Design
Ideal-module evaluation can aid the improvement of a wide
variety of creative systems in different ways depending on
the nature of their designs. Systems that attempt to improve
the results of an already functioning creative system, com-
pleted systems with unsatisfactory results, and entirely novel
systems can all benefit from applying this design evaluation
paradigm.

Meta-analysis of computational creativity research, such
as that conducted by Colton and Wiggins (2012), reveals
recurring patterns in the development of creative systems.
Colton and Wiggins describe one such observation that they
call the latent heat effect, which describes the phenomenon
that “as the creative responsibility given to systems in-
creases, the value of its output does not (initially) increase”.
As increasing the creative responsibility of computational
systems is an implicit goal of research in this field, it be-
hooves us to better understand and reason about this phe-
nomenon.

Ideal-module prototyping provides a tool with which to
probe and validate system designs, and applying it to de-
signs that take on increased creative responsibility will allow
researchers to better diagnose the causes of the latent heat
effect. Increasing such responsibilities likely involves the
addition of new modules to a system or a significant modi-
fication to the system’s information flow. Applying IMP to
the newly designed system will allow the designers to verify
that those changes did not invalidate the system’s capability
to generate high-quality output when operating with ideal
modules.

Thus, this new paradigm can help explain the latent heat
effect and provide a strong argument that although a sys-
tem with increased responsibility currently produces inferior
output, it has the potential to generate high-quality output in
the future.

We anticipate that IMP evaluation will be most benefi-
cial when it is applied early in the design of a creative sys-
tem. Embarking on the development of a new system re-
quires trust that the design will prove fruitful in the end. Ex-
perimenting with an ideal-module prototype before invest-
ing development effort into building complex new compu-
tational modules allows researchers to determine ahead of
time whether it will be worth expending that effort.

Building ideal, human-delegated modules requires pre-
cise definitions of those modules’ interfaces. This forces de-
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signers to carefully define the exact responsibilities of those
modules early in design, an exercise that is beneficial to sys-
tem designers in its own right.

In addition to saving time by alerting researchers to un-
productive design routes early, careful application of this
paradigm could result in a system in which human-delegated
modules can be swapped in place for computational versions
without requiring changes to the higher-level control logic,
thereby reducing development time.

Although IMP is primarily intended to be applied early in
design, existing creative systems with lackluster output can
benefit from its application as well. As detailed in our exper-
iment with HIEROS, this method can provide more exact in-
sight into why a system is failing and give its designers data
that they can use to improve its design. We are hopeful that
by accurately diagnosing their flaws and pointing the way to-
ward how to improve them, the introduction of this paradigm
will aid in rescuing unsatisfactory creative systems that have
previously been shelved.

Collaboration & Modular Systems
Beyond application to single creative systems, we anticipate
that adopting IMP will have a positive effect on the compu-
tational creativity research community as a whole.

The requisite thresholds of trust and confidence re-
quired to invest resources into developing a creative sys-
tem are multiplied when dealing with collaborative research
projects. IMP provides a means by which such confidence
can be established before serious collaborative investment is
made. Researchers seeking collaboration could first evalu-
ate their design via this method to demonstrate its validity.
Alternatively, this method opens up opportunities for useful
replication or analysis of previously presented creative sys-
tems.

Modular designs lend tractability and flexibility to com-
putationally creative systems. Researchers in the compu-
tational creativity community should design modular cre-
ative systems with precisely defined module interfaces and
responsibilities. In addition to simply being better design
practice, this will allow researchers to take advantage of
the power of applying ideal-module prototyping to their de-
signs.

Modular designs also present unique opportunities for
collaboration. If multiple creative systems are designed to
use an identical module, any effort spent developing and
refining that module will pay off multiple times. Existing
computational modules such as word2vec, WordNet (Miller
1995), and GPT-2 (Radford et al. 2019) are examples of
modules that are widely used by different systems. By em-
ploying this ideal-module prototyping to validate shared-
module systems before developing such computational mod-
ules, all involved parties can have assurance that their efforts
will not be in vain.

Conclusion
The computational creativity community would benefit from
a robust prototyping tool that allows creative system designs
to be validated before putting in the challenging effort to

implement them computationally. We have presented ideal-
module prototyping (IMP), an evaluation paradigm for mod-
ular systems that compares imperfect computational mod-
ules with ideal human-delegated versions.

IMP can be applied to new system designs or retroactively
to existing systems, as we demonstrated with our experi-
ments with HIEROS. The results of the human-delegated
system allow researchers to make strong claims about the
validity of their system designs or accurately diagnose flaws
in existing modular systems.

Researchers in the computational creativity community
should design modular creative systems with well-defined
module interfaces and employ ideal-module prototyping to
validate their designs. Adopting IMP will allow for the im-
provement of existing creative systems, greater confidence
in the development of new systems, and increased opportu-
nities for collaboration.
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