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Abstract
To a human storyteller, a story is more than a textual ar-
tifact. Rather, as stories are both generated and genera-
tive, each is also a blueprint for performances to come.
Tellers must draw on their own bodily affordances –
from voice and gesture to movement around a stage –
to bring stories to life, much as a conductor and an or-
chestra must translate a written score into actual music.
This paper explores the creative challenge of translating
from a story-text to a story-performance, from words to
physical actions and characters to embodied actors. The
mapping requires distinct models for gesture, narration,
dialogue and stage direction if computer-generated tales
are to transcend the limitations of their production pro-
cess. Using the Scéalability framework, we evaluate the
interlocking role of spatial metaphor and pantomime in
turning a narrative artifact into a coherent performance.

All The World’s A Stage
Cinema is a visual medium, so filmmakers understandably
live by the old Hollywood maxim, “Show, Don’t Tell.” Why
use exposition or dialogue to tell of a dramatic event when
you can show it directly on screen? Whether on stage or
on screen, actors don’t just speak their lines; they live them
out, with gesture, posture and meaningful spatial movement.
The same can be said of storytellers of any kind. We humans
put our backs into telling a story, so that our audiences can
experience narrative events as though they were really there.
Tellers are also performers, and their embodiment is key to
the audience’s identification with the characters in a tale.

Mapping from a narrative text – of the kind typically pro-
duced by story generation systems – to an embodied perfor-
mance requires a process not unlike the translation of a mu-
sical score into an orchestral performance. The composer’s
vision for the piece must be respected, but difficult decisions
that affect its realization must also be made. How many per-
formers are needed, who will play what, and how must they
be arranged, in space or in time? All the tricks of the theatre
must be used to get the most out of what is available. When
a piece has more roles than the cast has performers, the map-
ping is not an isomorphic one. As some roles are prioritized
(or focalized) over overs, embodied characters must allude
to the actions or feelings of those we cannot directly see or
hear. Physical actors must show and tell, to convey a story
world that is much bigger than them and their stage.

Figure 1: Two embodied, robotic agents telling a story. One
enacts a marriage proposal by iconically bending its knee.

We focus here on the embodied realization of computer-
generated stories with a mix of physical devices, specifically
Amazon’s Echo/Alexa and the NAO anthropomorphic robot.
Alexa serves as our omniscient narrator, while two NAOs,
named Kim and Bap, speak and act as the story’s characters.
Unlike past approaches to robotic storytelling, our robots
are actors who take on specific roles in the narrative, and so
they must act accordingly. Each robot speaks with a gender-
appropriate voice for their character, making apt and often
iconic gestures as they do, while moving about the stage in
ways that metaphorically convey their relationship to other
characters. In addition to speaking any dialogue given in the
story itself, they must often add their own so that each phys-
ical action is paired with a naturalistic speech-act. They use
this supplementary dialogue to comment on the tale itself, or
to compensate for the physical absence of lesser characters.

In some ways, compensation is key to the whole process.
Embodiment compensates for the weaknesses of the under-
lying story, by drawing our attention to how it is physically
enacted rather than how it was automatically created. It may
seem that clunky robots can do little to salvage a clunky tale,
but each one adds to the innate comedy potential of the other.
Consider Sunspring, an AI-generated sci-fi script that was
filmed as a short movie by Ross Goodwin and Oscar Sharp.
On the page, Sunspring is by turns absurd and seemingly un-
filmable, with stage directions such as “He is standing in the
stars and sitting on the floor.” Yet the human actors lean into
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the script, using their faces, gestures and body-language to
make the incongruous seem relatable on a human level. That
audiences find the experience affecting and memorable has
more to do with how it is embodied than how it was written.
Our performance framework, named Scéalability, makes use
of the Scéalextric story-generator (Veale 2017) for its tales,
but it can, in principle, use any automated generator that pro-
vides access to a tale’s surface form and its deep structure.
As in the case of Sunspring, our goal is to add coherence and
entertainment value to computational stories by appealing to
how we humans use gesture and space to create meaning.

This goal is unpacked in the following sections. We first
explore research in automated story generation, and on how
robots and other devices can be used to tell stories. We then
present the Scéalability framework, with a specific emphasis
on its models of dialogue, gesture and spatial metaphor. As
our concerns go beyond system-engineering, Scéalability is
also used to explore some hypotheses regarding the relative
merits of iconic/pantomimic gesture and spatial metaphor in
an embodied performance. Empirical studies are conducted
to determine if audiences really can discern and appreciate
the coherent use of space and gesture in the telling of a tale.

Related Work and Ideas
Computational Storytelling
The generation of stories by mechanical means is a practice
that predates AI and the advent of the modern computer. In
1928, the Canadian author William Wallace Cook marketed
a system named Plotto, the master book of all plots, which
gave budding authors more than 1600 plot schemas, cross-
indexed for easy retrieval and recombination (Cook 1928).
Cook’s system was just one of several that exploited nothing
more sophisticated than the filing cabinet and the card index,
placing the emphasis squarely on good data over algorithms.
Yet, in retrospect, Plotto anticipates the AI approaches that
would follow, from case-based-reasoning to story grammars.

Early AI approaches would be just as schematic as Plotto,
while automating the tasks of planning and schema combi-
nation. One of the first, the Novel Writer system of (Klein et
al. 1973), generated murder-mystery plots, while the more
influential TALE-SPIN produced tales of woodland creatures
by first building a world of goals and related characters for
them to explore (Meehan 1977). Genre is also a tacit meta-
schema in its own right, one that lends the weight of conven-
tion to otherwise insubstantial tales. So, just as the Universe
system cranked out soap opera plots (Lebowitz 1985), the
Minstrel system navigated a very different genre with just as
many conventions: tales of courtly knights (Turner 1993).

The creative practices of human authors offer insights into
how machines can write (or aspire to) tales of comparable
quality. Dehn’s Author was the first AI system to explicitly
model authorial goals in story creation (Dehn 1981), though
more elaborate cognitive models have since been developed.
The Mexica system of (Pérez and Sharples 2001) posits a
two-phase cycle of creation called E-R, for Engagement-
Reflection, in which the story generator alternates between
bouts of incremental story development and subsequent con-
sideration of the new opportunities that these may open up.

Cook’s development of Plotto in 1928 coincided with the
flourishing of academic interest in the structuralist analysis
of folk tales and similar cultural artifacts. In his Morphol-
ogy of the Folk Tale, (Propp 1928) identified an inventory of
recurring building blocks from which old tales are built, and
from which new ones might be composed. His analysis re-
mains relevant today, and forms the schematic basis for such
generators as the PropperWryter system of (Gervás 2013).

These models are each symbolic in nature, and use logical
forms that would pose little difficulty to the users of Cook’s
Plotto book. In contrast, non-symbolic approaches sacrifice
this interpretability for trainability, robustness and scale. For
instance, the GPT-2 neural language model of (Radford et al.
2019) is trained on 40Gb of web text, and can “hallucinate”
coherent continuations to arbitrary story text prompts. For
instance, these authors show how continuations preserve the
genre and guiding conceit of even speculative prompts, such
as one that imagines the discovery of unicorns in the Andes.
But GPT-2 and its kind are text-in, text-out generators that do
not provide access to the plot-structure of the narrative text.
While GPT-2 has hidden depths, its outputs are all surface.

Relation to the previous research project Scéalability
needs access to the surface and deep structure of a story,
so that it can choose gestures, dialogue and spatial move-
ments to match the narrative intent behind the words. For
this reason, we opt instead for the Scéalextric generator of
(Veale 2017). Inspired by Cook’s Plotto, Scéalextric con-
structs its narratives from prefabricated segments of plot,
which it connects end-to-end or expands top-down using re-
cursive descent. Each plot segment comprises a sequence
of transitive story verbs, from an inventory of 800 possibil-
ities including fall in love with, rescue and murder. Each
verb has two pariticipants, either the generic A and B or
functionally-dependent roles such as Aspouse and Bfriend.
At heart, Scéalextric is a story-grammar for generating plots
that are then rendered into a narrative text using an idiomatic
mapping of story verbs to phrasal forms. It is its scale, ease
of extensibility and modularity that distinguishes it most
from other story generators. For instance, it provides a large
database of famous characters for use in its stories, to instan-
tiate the generic roles A and B (and their dependents) and to
lend vivid colour (specific locales, weapons, vehicles, cloth-
ing, etc.) to the rendered text. Additional modules can also
be inserted with relative ease, to attach physical gestures,
spoken dialogue, and other stage directions so as to turn a
narrative into a performance that shows as well as tells.

Embodied Storytelling
Story-telling with performing robots has been studied from
a number of perspectives using robots of different kinds and
varying physical affordances. The storytelling capabilities
of an expressive robot face, called Reeti, was investigated
by (Striepe and Lugrin 2017). In their comparative study,
test subjects were presented with stories delivered by the
Reeti, an audio book, and a neutral robot speaker. These
authors use the same AttrakDiff questionnaire (Hassenzahl,
Burmester, and Koller 2003) for their study as we shall em-
ploy in our own evaluation to follow. While the Reeti lacks a
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body, it has an emotive face that is expressive enough to con-
vey even an ironic intent (Ritschel et al. 2019). We shall use
NAO robots that lack facial expression, with the expectation
that their spatial mobility will compensate in other ways.

Storytelling is more than reading a text, as stories are en-
riched by the most basic visual cues. Early studies by (Hei-
der and Simmel 1944) show that humans readily imbue sim-
ple geometric shapes that move about a screen with human-
like intentions and mental states. Audiences are just as will-
ing to attribute intention and emotion to anthropomorphic
robots that purposely gesticulate and stride about a stage.

Studies show that apt gestures can increase the expres-
siveness of an embodied storyteller (Csapo et al. 2012). Yet
most robotic storytellers draw upon a small set of prede-
fined gestures. For instance, the WikiTalk project of (Meena,
Jokinen, and Wilcock 2012) relies on just seven gestures,
which it uses to indicate discourse structure, as in the Open-
Hand-Palm-Up gesture to mark the start of a new para-
graph. WikiTalk uses a NAO robot to present the results
of Wikipedia queries with a mix of voice and gesture, and
shows how this integrated multimodality supports a natu-
ral interaction between human and machine (Jokinen and
Wilcock 2014). But there have also been attempts to cre-
ate custom gestures in order to suit an arbitrary speech con-
text. Recent work by (Rodriguez et al. 2019) uses a Gen-
erative Adversarial Network (GAN) to produce apt gestures
for a Pepper robot. Human gestures do not follow clear uni-
versal rules, so the generation of gestures is a non-trivial
task. Nonetheless, there is some cognitive evidence for
a schematic basis to many human gestures (Cienki 2005;
Mittelberg 2018), and the generation of non-verbal behav-
iors for a virtual avatar based on such schemas is presented
in (Ravenet, Clavel, and Pelachaud 2018).

Embodied Performance
Proxemics is the study of space for social interactions and
their actors in a mutual environment. Research by Pope et
al. investigated those interactions by theatre practitioners in
physical spaces, using 360-degree filming and virtual reality
(VR) (Pope et al. 2017).

Theatrical performances of robots on a stage require tech-
nological developments and a robust software framework.
A focus on those low-level challenges, which require strong
technical coordination has been presented in (Lin et al.
2009). In their study, a twin-wheeled, two-armed robot and
a bipedal robot were set in a theatrical performance to show
different performative challenges, e.g. story-telling conclud-
ing with a kiss between two robots.

A co-creative approach with a human and artificial per-
formers has been investigated as improvisational theatre by
(Mathewson and Mirowski 2017). The authors present two
versions of AI-based chat-bots. Pyggy is an ”Artificial Im-
provisor” using speech synthesis and speech recognition to
communicate with an audience. It is capable of an open dia-
log interaction and Pyggy is embodied by a virtual avatar (a
face with mouth movements synchronized to the speech). A
different version of the robot called A.L.Ex. utilized Neu-
ral Language Model-based Text Generation to overcome
Pyggy’s limited set of trained sentences.

In our research, we bring additional meaning from mo-
tion between our robotic actors, as well as orientation, pan-
tomime and gesture in a study of space, taking other re-
search, e.g. (Pope et al. 2017) into a computational do-
main. Our focus is not on these low-level challenges (Lin
et al. 2009), but on simpler and more general uses of space
and gesture in story-telling with improvisational elements
between the robots.

Relation to the previous research project Embodied
storytelling within a generative framework has previ-
ously been studied in (Wicke and Veale 2018b; 2018a;
Veale, Wicke, and Mildner 2019), who combined the
Scéalextric story-generator with a single anthropomorphic
NAO robot. Over 400 predefined gestures of the NAO are
mapped onto almost 800 story verbs of the plot-generation
system, so that a single robot teller makes an apt movement
for every action it narrates. An interactive variant was later
presented in (Wicke and Veale 2018a), in which the robot is
guided through the story-space by a user’s answers to the
robot’s questions. In a process that might be considered
co-creative, the robot uses the Scéalextric plot graph to ask
its questions and then branch according to the answer it
receives. Once all questions have been answered, the plot is
assembled and the tale is performed. A second device – the
smart speaker Alexa/Echo – is added to the mix in (Veale,
Wicke, and Mildner 2019). This pairing allows for banter
between the devices, who now share the responsibility of
narrating the tale (Alexa) and responding to it physically
(NAO). It allows for a comparative analysis of the two
devices, contrasting the disembodied voice of Alexa with
the embodied antics of NAO. Although both contribute
to the performance, it is always the embodied robot that
adds the strongest humorous dimension. For this reason,
Scéalability doubles down on its use of a robot by orches-
trating the actions of two NAOs in showing and telling a tale.

The novel contribution of this research over the closely
related research project is the addition of spatial movements
by the robotic actors, which is baked into the storytelling
system Scéalextric and coordinated by the Scéalability
framework. Those changes and additions will be outlined in
the next section. Moreover, an empirical evaluation presents
its successful integration.

The Scéalability Embodiment Framework
Scéalability is conceived as an approach to storytelling-as-
performance that places a definite emphasis on computer-
generated narrative. This emphasis has a practical rationale:
human-authored stories lack the semantic markup to allow
performers to look beyond a surface text to see the plot logic
within, while symbolic story generators offer transparent
access to any level of the story at which the machine can
reason. So, at the core of Scéalability sits a transparent
generator of just this kind. Specifically, the structured
outputs of the Scéalextric generator comprise a sequence of
multilevel story beats, each of which contains the following
elements:
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1. A single narrative event, framed by a single story verb
2. Generic case roles for this story verb (e.g., A and Bspouse)
3. The specific characters that fill these case roles (e.g. Neil

Armstrong and Princess Leia, or C-3PO and HAL 9000)
4. A surface-level textual rendering for this single event, that

incorporates character-specific details where possible
5. A logical connective that links this story beat to the next

one (e.g., so, then, but, yet, because, and)

These strands are easily unpicked by Scéalability so as to
weave its own performative elements into a narrative. While
any system that facilitates this separability of levels can be
used as the generative heart of the framework, we evaluate
the approach here with Scéalextric. Its various symbolic lev-
els allow us to strengthen its existing narrative model while
hooking in additional gesture, dialogue and spatial models.
Let’s now look at each of those additional models in turn.

The Gestural Model
As shown in (Wicke and Veale 2018b; 2018a; Veale, Wicke,
and Mildner 2019), storytelling can be gesturally-enhanced
by mapping (almost) every story verb onto one or more ges-
tures in the robot’s repertoire of physical flourishes. How-
ever, in those earlier systems, a single robot was expected to
gesticulate for all of the characters in a story, with no regard
for which character was making which gesture. With two
robots, one for each of the two central parts A and B, ges-
tures must be linked to specific case roles in each story verb
so that they are performed by the right robot, and at the right
time relative to the actions of other performers.

For a performance using n robots, we assume that only n
characters will be embodied on stage. Human theatrical per-
formances are more flexible than this, as real actors can play
different parts in different scenes (with costume changes, ac-
cents and makeup to match). But our rigid NAO robots are
not so flexible, and we wish to avoid confusing the audience
with double-jobbing performers. So, with n = 2 robots, one
can play role A as the other fills role B, and only the gestures
associated with those roles are ever performed. The model
must also indicate the order of gestures for a given verb (e.g.,
should A gesture before B for the story verb propose to?),
and whether they should be enacted before or after the nar-
rator (in this case, Alexa) vocalizes its narrative text.

The Dialogue Model
Scéalextric does not have its own dialogue model, since its
stories are rendered in a neutral third-person voice. While
we can expect a robot’s gestures to speak for themselves, to
an extent, such actions are rarely unambiguous, and it is just
more natural for gestures to accompany live speech than om-
niscient narration. Moreover, spoken dialogue and physical
action enrich each other when they are performed together.

The picture is complicated somewhat by the use of char-
acters in supporting roles that are not embodied in the show.
Roles such as Aspouse and Blawyer have no robot presence,
no gestures to perform, and no dialogue to utter, yet their
presence in the narrative must still be felt by the audience.
The model thus encompasses two kinds of dialogue: that

which is uttered by embodied actors as they enact an event in
which they appear, and that which they say to each other to
comment on the unseen actions of other, disembodied roles.
The former is embodied dialogue, the latter meta-dialogue.

Gestures and speech acts are expressions of the same urge
to communicate, albeit in different modalities, so embod-
ied dialogue is modeled in much the same way as physical
gestures. For every story verb in the generator’s inventory,
we simply define a set of apt vocalizations for the roles in-
volved. Take, for example, propose to: an actor in the agen-
tive role may say “Will you marry me?” or even “It’s time to
take our relationship to the next level,” while the actor in the
patient role may reply ”Wow, I don’t know what to say.” A
reply must sound natural while being suitably vague, since
the actors don’t yet know how the plot will unfold; the pro-
posal may well be rejected in the next beat. In any case, all
speech acts must be delivered in an appropriate sequence,
and timed to enhance the gestures that are linked to the verb.

Meta-dialogue is a special case that comprises speech-acts
that are uttered by actors in the central roles A and B, about
characters that cannot be seen. Although the narrator tells
us about these characters, the actors cannot show them to us.
Suppose the next story beat is ASpouse cheat with BLawyer.
Our robot actors do not portray these characters, and cannot
speak or gesticulate for them. Worse still, they have nothing
to do or to say when the narrator speaks of these characters.
Meta-dialogue allows A and B to talk to each other about
ASpouse and BLawyer, as though they were a Greek chorus.
For example, A may say “I could kill that lawyer of yours,”
to which B might reply “Just wait until you see the bill!”
These jokes are baked into the dialogue model, as speech
acts associated with the action ASpouse cheat with BLawyer.
Our goal here is not to invent new speech acts, but to give our
actors stock dialogue for events the generator can anticipate.

Nonetheless, not every speech act is entirely scripted in
advance. We allow our actors to ad-lib, by giving them un-
derspecified dialogue of the form “You are +quality” or
“You are �quality.” At the time it is spoken, +quality
is replaced with a simile that accentuates quality, while
+quality is replaced with one that ironically undermines it.
For instance, +welcome may be replaced by “as welcome
as a cool breeze on a summer’s day,” while +welcome can
make way for “about as welcome as a skunk at a garden
party.” The system has a large stock of 1000s of similes to
draw upon, but can also search on the web for fresh ones.

The Spatial Model
Our robot actors can do more than wave their arms and bend
their legs; they can move about the stage in ways that mean-
ingfully reflect their relationship to each other. Space is rich
in metaphorical potential, so we speak of close ties and dis-
tant acquaintances, of losing touch and of coming together,
of keeping our friends close and our enemies closer. These
spatial metaphors are rooted in deep-seated image schemas
(Johnson 1987) that conceptualize abstractions such as love
and hate, trust and fear in experiential terms. A basic image-
schematic model for reasoning about spatial metaphors was
developed in (Veale and Keane 1992). Dubbed Conceptual
Scaffolding, the model allows the semantics of non-spatial
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verbs to be specified using spatial primitives such as up and
down, connect and disconnect, and contain and release. By
retrofitting this model onto Scéalextric’s story verbs, we can
enable our robot actors to move about the stage in accor-
dance with the actions they are enacting in the narrative.

We focus here on the connect and disconnect primitives,
which allow us to signal the current state of the narrative via
the relative closeness of the robot actors. Certain disconnect
verbs, such as compete against, cause both to move apart,
as each takes a step back, while asymmetrical verbs, such as
resent and distrust, cause just one of the actors to move back.
Similarly, some connect verbs, such as live with, cause both
robots to move closer together, while others, such as spy on,
cause just one to take a step closer, and yet others, such as
pursue, cause one to move closer as the other moves away.
In every case, the unit of relative movement is a single step.
Each robot begins the performance at a distance of six steps
from the other. We hypothesize that audiences will register
their spatial dance at a semantic level, for as the plot brings
actors closer together and further apart, space will serve as a
conceptual scaffolding for the twists and turns of the plot.

Empirical Evaluation
Scéalability is designed to turn storytelling into a show. The
narrative text of a story is augmented with spoken dialogue,
gestures and stage directions for the actors to perform. Our
major concern here is the value that embodied actors add
to the telling, and so we focus on the relative contribution of
gestures, which are often showy and pantomimic, and spatial
movements, which more subtly achieve a cumulative effect.
We expect each form of embodiment to be more effective
when used coherently – that is to say, in line with the plot
– and to add to the audience’s appreciation of the story. We
also expect their contributions to be additive, so that a per-
formance with both is to be preferred over just one alone.

A Pilot Study
Each of our studies is based on the same Scéalextric story.
Raters do not view the performances live, but watch video
recordings of different settings. In a pilot study that we will
only briefly summarize here, we showed our raters a record-
ing of a complete Scéalextric story, which takes 3 minutes
to view. All ratings are crowd-sourced on the Amazon Me-
chanical Turk (AMT) platform, and all questions are posed
in a random order. We have paid 53, 52, 53 and 52 work-
ers in 4 conditions (SpatialCoherent, SpatialIncoherent,
PantomimicCoherent, PantomimicIncoherent). The
length of this full story and its recording serves to dilute the
effect of key actions and their embodied delivery. Nonethe-
less, the pilot shows that audiences prefer gestures a little
more than spatial movements, and coherent over incoherent
uses of embodiment. Statistically significant differences are
found for each of these contrasts in user ratings on the At-
trakDiff scale. Specifically, a post-hoc t-test shows a signif-
icant difference between Spatial Movement and Pantomimic
Gesture (p = 0.002, Cohen’s D= 0.094) with means and
standard deviations µGesture = 4.591, �Gesture = 1.636
and µSpatial = 4.430, �Spatial = 1.785, and a significant

difference (p = 0.002) in favour of coherent action (Co-
hen’s D= 0.094). Coherent spatial movement scores signif-
icantly better on the AttrakDiff scale than incoherent move-
ment (Cohen’s D= 0.272).

A Refined Study Protocol
Since Scéalextric stories often contain many story beats,
with various twists and turns, we build on the pilot study to
show raters the following story excerpt that highlights just
two story beats, which they rate on the same questionnaire:

A=Hillary Clinton; B=Donald Trump;
B-friend=Melania Trump; N=Narrator

(two robots embody A and B)
N: Say hello to Hillary Clinton.
A:{waving}
N: And let us welcome Donald Trump.
B:{waving}

(white text on a black screen, also spoken by Alexa)
N: What if Hillary Clinton fell in love with Donald
Trump? Hillary was attracted to Donald because he
was rich, wealthy and privileged. In response, Donald
flirted outrageously with Hillary. So Hillary went
down on bended knee and proposed to Donald.

story beat: < A propose to B >
A: {gesture: move closer} ”It’s time we took our
relationship to the next level. Will you marry me?”

(white text on a black screen, also spoken by Alexa)
N: But Donald felt a deep love for Melania. So Donald
turned a cold eye to Hillary’s entreaties. Well, Hillary
took Donald hostage ...

story beat: < A release B >
B: {gesture: back-away} ”Just let me go.”
A: ”I will release you.”

(white text on a black screen, also spoken by Alexa)
N: Thereafter Hillary would say that it was the other
way around: that it was Hillary who dumped Donald!

Raters in the following two studies view this excerpt en-
acted with a mix of narration, dialogue, gesture and/or spa-
tial movement, and complete a questionnaire based on the
AttrakDiff model of (Hassenzahl, Burmester, and Koller
2003) as previously used by (Striepe and Lugrin 2017). All
ratings are crowd-sourced on the Amazon Mechanical Turk
(AMT) platform, and all questions are posed in a random
order. All crowd-sourced evaluations carry the risk that
some raters will not fully engage, since they are paid a small
sum per task, and provide unvarying or random responses.
So, to manage the risk and exclude potential “scammers,”
we add three gold-standard questions to the questionnaire.
Each has an obvious answer for those engaged in the task,
such as “How many robots are visible on screen?” (answer:
2). Those who fail the gold-standard questions are excluded
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from the study. Furthermore, we only allow raters with a
Master Worker Qualification on AMT to submit responses.
This qualification is granted to those who have provided a
large number of valid responses in previous tasks.

The same questionnaire is used in each study, and com-
prises 2 parts of 7 items each (excluding the 3 gold-standard
questions). In the first part, raters answer 7 questions of
the form ‘The performance of the robots is ...’ by choos-
ing a value from 1 to 7 on these 7 AttrakDiff dimensions:
(I) unpleasant/pleasant; (II) ugly/attractive; (III) disagree-
able/likeable; (IV) rejecting/inviting; (V) bad/good; (VI) re-
pelling/appealing; and (VII) discouraging/motivating. For
the second part, raters signal their agreement with the fol-
lowing 7 statements with a value from 1 (strongly disagree)
to 7 (strongly agree): (VIII) The robots appear human-like;
(IX) The robots show their intentions; (X) I could act like
one of the robots;(XI) The robot mirrored how I would re-
act; (XII) I sided with one of the robots; (XIII) I am curious
as to how the story continues; and (XIV) The robots’ move-
ments are appropriate to events in the story.

Study I: Coherence of Performative Elements
Physical movements by robot actors can be eye-catching,
and reinforce the embodied nature of the performance. But
do they also add to the narrative in any semantic fashion? To
test whether gestures and spatial movements are understood
as meaningful contributions to the tale, we evaluate each un-
der two conditions: the coherent condition, in which ges-
tures or spatial movements are chosen to suit the semantics
of each story verb; and the incoherent condition, in which
gestures are chosen randomly, and spatial movements are
performed contrary to the underlying image schema (so con-
nect verbs are treated as disconnect verbs, and vice versa).

Methods: We present relevant parts of a sample story with
both coherent and incoherent embodiment to human raters
in a crowd-sourcing study on AMT. Two conditions (co-
herent / incoherent) for two embodiment strategies (gesture
and spatial movement) necessitates four independent trials.
Each rater is shown a 1-minute video that narrates the story
with on-screen text and a synthesized voice-over. To focus
their attention, the performance of just two story beats is pre-
sented on screen. These involve the story verbs propose to
and release, which are rendered in the four trials as follows:

1. Coherent Spatial Movement: Robots move closer together
(propose to) and later move further apart (release).

2. Incoherent Spatial Movement: Robots move further apart
(propose to) and later closer together (release).

3. Coherent Pantomimic Gesture: Robot A bends its knee
(propose to). Later robot B opens both its arms (release).

4. Incoherent Pantomimic Gesture: Robots A and B perform
random pantomimic gestures (for each verb).

40 raters were recruited for each trial (N = 40⇤4 = 160),
and each was paid 0.40$ for completing the questionnaire.

Analysis: Human ratings for each trial were acquired over
several weeks. Not counting excluded responses, the four
trials elicited 29 valid responses for Coherent Gesture, 28

Type A B A: mean/std B: mean/std p-value Cohen D
Coh. Incoh. 3.820/1.749 3.480/1.704 0.000066 0.197

Space Coh. Incoh. 3.728/1.794 3.458/1.675 0.047* 0.155
Gesture Coh. Incoh. 3.921/1.693 3.503/1.734 0.001* 0.244

Table 1: Post-hoc test for comparison of coherent and inco-
herent modes of spatial movement and pantomimic gestures.
*Bonferroni corrected p-value.

for Incoherent Gesture, 32 for Coherent Spatial Movement
and 29 for Incoherent Spatial Movement (N = 118). For an
overview of the statistical test results, see Table 1. The factor
of coherence shows a significant p-value for an ANOVA test
(p-value = 0.000061, mean squares = 48.138 and F-values
= 16.147). A post-hoc t-test results in significant differ-
ences for all coherent and incoherent conditions with Co-
hen’s D = 0.197 (small to medium effect size) in favor of
the coherent conditions. This is reflected in the average rat-
ing for all coherent conditions µCoherent = 3.820 and aver-
age rating of all incoherent conditions µIncoherent = 3.480.
The coherent condition for both Pantomimic Gesture and
Spatial Movement performs significantly better (Bonferroni-
corrected p � value = 0.001 and p � value = 0.047, re-
spectively) than the incoherent equivalent.

Results: Our hypothesis is thus supported, since we have
shown that coherent uses of our two embodied narration
strategies outperform the incoherent uses.

Study II: Relative Value of Embodied Strategies
In this experimental study, we focus on the value that coher-
ent gestures and spatial movements add to a performance,
whether individually (just one or the other) or both together.

Methods: This study evaluates three performance modes:

1. Pantomimic Gesture: the tale is performed with narration,
dialogue and gesture, but no schematic spatial moves.

2. Spatial Movement: the tale is performed with narration,
dialogue and schematic spatial moves, but no gestures.

3. Combined Action: the tale is performed with narration,
dialogue, gesture and schematic spatial movements.

As before, in the Spatial Movement condition the robots
face each other and move closer or further away as the plot
progresses. The relative position of the robots at any time
offers a spatial summary of their relationship status. For the
Pantomimic Gesture condition, the robots do not alter their
position in space, but do use iconic and showy gestures to
communicate each story verb. For the Combined Movement
condition, the robots apply both strategies together, i.e. they
move to and fro as the plot demands, and they also make
pantomimic gestures for each story verb in the plot.

The three one-minute videos1 are presented to 120 raters
(or 40 for each) on the AMT crowd-sourcing platform. Each
rater is shown just one of the three performances and then
asked to evaluate it using our 14 + 3 item questionnaire. In
return, each AMT rater is paid 0.40$ per questionnaire.

1See all of the recordings here: https://tinyurl.com/wpes3jl
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Condition L Condition R L: Mean/Std R: Mean/Std p-value Cohen D
Space Gesture 3.728/1.792 3.921/1.691 0.316* -0.111
Space Combined 3.728/1.792 4.131/1.762 0.002* -0.227
Gesture Combined 3.921/1.691 4.131/1.762 0.206* -0.121

Table 2: Post-hoc test for all three conditions. L and R de-
note conditions named in first (L) and second (R) column.
*Bonferroni corrected p-value.

Analysis: All ratings were acquired over several weeks.
Not counting excluded responses from those who failed the
gold-standard questions, there are 32 valid responses for the
Spatial Movement condition, 29 for the Pantomimic Gesture
condition and 33 for the Combined Movement condition, for
a total of N = 94 valid responses. An ANOVA reveals sig-
nificant differences between the conditions, with p = 0.0019
(Sum of squares = 38.686, F-values = 6.292). A post-hoc t-
test results in a significant difference between the Spatial
Movement and Combined Movement conditions (p = 0.002
Bonferroni corrected). With a mean value µSpatial = 3.728
and standard deviation �Spatial = 1.792 for Spatial Move-
ment and a mean value µCombined = 4.131 and standard
deviation �Combined = 1.762 for Combined Movement, the
effect favours the latter (Cohen’s D = 0.227). Pairwise com-
parisons of Spatial Movement/Pantomimic Gesture and Pan-
tomimic Gesture/Combined Movement do not reveal any sig-
nificant results. An overview of our analysis can be found
in Table 2. Statistical tests have been conducted on the ac-
cumulated test construct (of all 14 items) and the results are
visualized in Fig. 2. The whiskers indicate the standard error
of the mean ( �p

N
).

Results: Our findings suggest that a mix of embodiment
strategies – what we have called the Combined Movement
condition – is more appealing to viewers than Spatial Move-
ment alone. However, there is no significant difference be-
tween the latter and Pantomimic Gesture. It seems that the
subtlety of the actors’ image-schematic use of space is just
as effective as their more showy pantomime actions, whether
that is going down on one knee to propose, or making a
servile bow to a dominant character. This result is important
for more practical reasons too. Pantomime is achieved by
a careful mapping of each story verb to one or more motor
scripts in the robot’s repertoire. The results are eye-catching
but often ad hoc, and depend more on cultural associations
than semantics. In contrast, the robots’ spatial movements
are governed by verb semantics, and follow generically from
those semantics without the need for ad-hoc mappings.

But it must also be noted that Combined Movement does
not significantly outperform pantomime on its own. Figure
2 shows that the margin of standard error around the mean
for Pantomimic Gesture overlaps with that of the other two
conditions. Even though the mean values µSpatial = 3.728,
µPantomime = 3.921 and µCombined = 4.131 obey an as-
cending order, a significant statistical difference can only be
found for the first and last of these. While a sample size of
N = 94 is enough to show some effect, a future study on a
larger scale should be more convincing on this front.

Figure 2: Mean ratings for the Spatial Movement, Pan-
tomimic Gesture and Combined Movement conditions. The
y-axis: mean ratings on the scale 1 to 7. The x-axis: three
conditions. Whiskers show the standard error of the mean.

Conclusions and Future Work
The core insight of the presented research shows how spa-
tial movement can be used to improve computational, em-
bodied storytelling. So far, related works use a minimal set
of scripted gestures tied to specific actions, which mostly
show combinatorial novelty or mere generation. Scaling
these storytelling performances to include new stories, new
actors and more actions is problematic for scripted move-
ments. Here, our approach of primitive motions shows its
strength by allowing scaling with multiple actors, new sto-
ries and actions that only need to be associated on one di-
mension (connect / disconnect). We have provided empiri-
cal evidence that such approach is comparable with purely
pantomimic performances (Study II).

With regards to interactive performance, we also see
a role for gestures and spatial movements by the human
audience. Robot performances are noisy affairs, and spoken
dialogue must be timed so as to not overlap with the din
of gears and servos in motion. So, what better way for the
audience to convey their inputs to the story than by their
own use of gesture and spatial metaphor? We are currently
experimenting with visual analysis of the audience, and
using emotion detection and pose estimation to recognize
non-verbal inputs in the form of facial expressions (of
surprise, anger, joy and sadness) and hand-gestures (thumbs
up and down, rude finger gestures, aggressive fist motions,
etc.). These won’t just allow audience members to naturally
influence the story line. They will make the audience
performers in their own right.
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