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Abstract
This paper presents a large dataset of drum patterns and com-
pares two different architectures of artificial neural networks
that produce latent explorable spaces with some recognizable
genre areas. Adversarially constrained autoencoder interpo-
lations (ACAI) show better results in comparison with a stan-
dard variational autoencoder. To our knowledge, this is the
first application of ACAI to drum-pattern generation.

Introduction
In recent years, there have been many projects dedicated to
neural network-generated music. For an extended survey of
such methods see (Briot, Hadjeres, and Pachet 2019). Some
of them are dedicated to drum patterns in particular, however
there were several attempts to automate the process of mu-
sic composition long before the era of artificial neural net-
works. The well-developed theory of music inspired many
heuristic approaches to automated music composition. The
earliest idea that we know of dates as far back as the nine-
teenth century, see (Lovelace 1843). In the middle of the
twentieth century, a Markov chain approach for music com-
position was developed in (Hiller and Isaacson 1959). (Lin
and Tegmark 2017) have demonstrated that music, as well
as some other types of human-generated discrete time se-
ries, tends to have long-distance dependencies that cannot
be captured by models based on Markov-chains. Recur-
rent neural networks (RNNs) seem to be better at processing
data series with longer internal dependencies (Sundermeyer,
Schlüter, and Ney 2015), such as sequences of notes in tune,
see (Boulanger-Lewandowski, Bengio, and Vincent 2012).

Indeed, a variety of different recurrent neural networks
such as hierarchical RNN, gated RNN, Long-Short Term
Memory (LSTM) network, Recurrent Highway Network,
etc., were successfully used for music generation in (Chu,
Urtasun, and Fidler 2016), (Colombo et al. 2016), (John-
son 2017), (Yamshchikov and Tikhonov 2017). Google Ma-
genta released a series of projects dedicated to music gener-
ation. In particular, one should mention a music vae model
(Roberts et al. 2018) that could be regarded as an extension
of drum rnn1. It is important to distinguish the generative
models like music vae and the generative models for mu-
sic that use a straightforward language model approach and

1https://github.com/tensorflow/magenta/tree/master/magenta

predict the next sound using the previous one as an input.
For example, (Choi, Fazekas, and Sandler 2016) used a lan-
guage model approach to predict the next step in a beat with
an LSTM. Variational autoencoder (VAE), see (Bowman et
al. 2016) and (Semeniuta, Severyn, and Barth 2017), on the
other hand, allows us to construct a latent space in which
each point corresponds to a melody. Such spaces obtained
with VAE or any other suitable architecture are of particu-
lar interest for different tasks connected with computational
creativity since they can be used both to study and classify
musical structures, as well as to generate new tunes with
specified characteristics.

In this paper, we construct a latent explorable drum pat-
tern space with some recognizable genre areas. Two differ-
ent smoothing methods are used on the latent space of repre-
sentations. The obtained latent space is then used to sample
new patterns. We experiment with two techniques, namely,
variational autoencoder and adversarially constrained au-
toencoder interpolations (ACAI) (Berthelot et al. 2018).

The contribution of this paper is three-fold: (1) we pub-
lish a large dataset of drum patterns, (2) develop an overall
representation of typical beat patterns mapped into a two-
dimensional space, and (3) compare two different architec-
tures of artificial neural networks that produce explorable
spaces of latent representations and demonstrate that VAE
seems to produce space with better geometric interpretabil-
ity that allocates tacks of similar genres closer to each other,
yet this does not necessarily correspond to a better subjective
quality of the generated samples. ACAI is shown to outper-
form VAE in terms of the entropy-based quality estimates
of the generated percussion patterns as well as in terms of
subjective quality assessment.

Dataset
Most of the projects that we know of used small datasets
of manually selected and cleaned beat patterns. One should
mention a GrooveMonkee free loop pack2, free drum loops
collection3 and aq-Hip-Hop-Beats-60–110-bpm4 or (Gillick
et al. 2019).

2https://groovemonkee.com/collections/midi-loops
3https://www.flstudiomusic.com/2015/02/35-free-drum-loops-

wav-midi-for-hip-hop-pop-and-rock.html
4https://codepen.io/teropa/details/JLjXGK
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Unfortunately, majority of these datasets are either re-
stricted to one or two specific genres or contain very limited
amount of midi samples that does not exceed a dozen per
genre. This amount of data is not enough to infer a genre-
related latent space. Inferring this space, however, could be
of utmost importance. Due to the interpolative properties
of the model that could work on such space, one can pro-
duce infinitely diverse patterns that still adhere to the genre-
specific macro-structure. Groove MIDI (Gillick et al. 2019)
to a certain extent goes in line with the material presented in
the papers yet it is not big enough for the inference of the
genre.

Here we introduce a completely new dataset of MIDI
drum patterns5 that we automatically extracted from a vast
MIDI collection available online. This dataset is based on
approximately two hundred thousand MIDI files, and as we
show later is big enough to infer the macroscopic structure
of the underlying latent space with unsupervised methods.

Data filtering
The pre-processing of the data was done as follows. Since
the ninth channel is associated with percussion according
to the MIDI standard, we assumed that we are only inter-
ested in the tracks that have non-trivial information in it. All
the tracks with trivial ninth channels were filtered out. This
filtering left us with almost ninety thousand tracks. Addi-
tional filtering included an application of a 4/4 time signa-
ture and quantization of the tracks. We are aware that such
pre-processing is coarse since it ultimately corrupts several
relatively popular rhythmic structures, for example, waltzes,
yet the vast majority of the rhythmic patterns are still non-
trivial after such pre-processing. We believe that 4/4 time
signature is not a prerequisite for the reproduction of the re-
sults demonstrated here and encourage researchers to exper-
iment and publish broad and diverse datasets of percussion
patterns. In order to reduce the dimensionality of the prob-
lem, we have simplified the subset of instruments merging
the signals from similar instruments. For example, all snares
are merged into one snare sound, low and low mid- toms
into a low tom, whereas and high tom and high mid-tom
into a high tom. Finally, we had split the percussion tracks
into percussion patterns. Every track was split into sepa-
rate chunks based on long pauses. If a percussion pattern
that was thirty-two steps long occurred at least three times
in a row, it was added to the list of viable patterns. Triv-
ial patterns with entropy below a certain minimal threshold
were discarded from the list of viable patters. Finally, every
pattern was checked to be unique in all its possible phase
shifts. The resulting dataset includes thirty-three thousand
of unique patterns in the collection and is published along-
side this paper which is an order of magnitude larger that
midi available data sources.

Data representation
The resulting dataset consists of similarly structured per-
cussion patterns. Each pattern has thirty-two-time ticks for

5https://github.com/altsoph/drum space/blob/master/dataset.tsv

// Filtering original MIDI dataset
for new_track in MIDI_dataset do
if new_track[9th_channel] is non-trivial

// Quantize with 4/4 signature
drum_track new_track[9th_channel].quantize()

// Merge different drums according to a predefined table
drum_track.merge_drums()

// Split drum track into chunks
for new_chunk in drum_track.split_by_pauses() do

if length(new_chunk) == 32 \
and new_chunk3 2 drum_track \
and entropy(new_chunk)>k

percussion_patterns.append(new_chunk)

// Filtering non-unique percussion patterns
for new_pattern in percussion_patterns do

// Create all possible shifts of a pattern
shifted_patterns new_pattern.all_shifts()
//Search for patterns that duplicate and delete them
for pattern in percussion_patterns do

if pattern 2 shifted_patterns
delete pattern

[new_pattern] + percussion_patterns

Table 1: Pseudo-code that describes filtering heuristics used
to form the dataset of percussion patterns.

fourteen possible percussion instruments left after the sim-
plification. Each pattern could be represented as a 14 ⇥ 32
matrix with ones on the positions, where corresponding
instruments makes a hit. Figure 1 shows possible two-
dimensional representations of the resulting patterns.

We can also list all possible combinations of fourteen
instruments that can play at the same time tick. In this
representation, each pattern is described by thirty-two in-
tegers in the range from 0 to 16383. Such representation is
straightforward and could be convenient for processing fo
the data with modern models used for generation of discrete
sequences (think of a generative model with a vocabulary
consisting of 214 words). The dataset final dataset is pub-
lished in the following format:
• the first column holds the pattern code that consists

of thirty-two comma-separated integers in the range of
[0, 16383];

• the second column holds four comma-separated float val-
ues that represent the point of this pattern in the latent
four-dimensional space, that we describe below;

• the third column holds two comma-separated float values
of the t-SNE mapping from the four-dimensional latent
space into a two dimensional one, see details below.
The model that we describe further works with a two-

dimensional representation shown in Figure 1.

Models and experiments
In this papers we experiment with different autoencoders.
Let us first briefly clarify the underlying principles of these
architectures.
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Figure 1: Some examples of two-dimensional representation
for drum patterns.

Autoencoders
Autoencoders are a broad class of structures that process the
input x 2 Rdx through an ’encoder’ z = f✓(x) parametrized
by ✓ to obtain a latent code z 2 Rdz . The latent code is then
passed through a ’decoder’ x̂ = g�(z) parametrized by �
to produce an approximate reconstruction x̂ 2 Rd

x of the
input x. In this paper f✓ and g� are multi-layer neural net-
works. The encoder and decoder are trained simultaneously
(i.e. with respect to ✓ and �) to minimize some notion of
distance between the input x and the output x̂, for example
the squared L2 distance ||x� x̂||2.

Interpolating using an autoencoder describes the process
of using the decoder g� to decode a mixture of two latent
codes. Typically, the latent codes are combined via a con-
vex combination, so that interpolation amounts to comput-
ing x̂↵ = g�(↵z1 + (1 � ↵)z2) for some ↵ 2 [0, 1] where
z1 = f✓(x1) and z2 = f✓(x2) are the latent codes corre-
sponding to data points x1 and x2. Ideally, adjusting ↵ from
0 to 1 will produce a sequence of realistic datapoints where
each subsequent x̂↵ is progressively less semantically simi-
lar to x1 and more semantically similar to x2. The notion of
’semantic similarity’ is problem-dependent and ill-defined.

VAE assumes that the data is generated by a directed
graphical model p✓(x|h) and that the encoder is learning an
approximation q�(h|x) to the posterior distribution p✓(h|x).
This yields an additional loss component and a specific train-
ing algorithm called Stochastic Gradient Variational Bayes
(SGVB), see (Rezende, Mohamed, and Wierstra 2014) and
(Kingma and Welling 2014). The probability distribution
of the latent vector of a VAE typically matches that of the
training data much closer than a standard autoencoder.

ACAI has different underlying mechanism. It uses a critic
network, as is done in Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014). The critic is fed interpo-
lations of existing datapoints (i.e. x̂↵ as defined above). Its
goal is to predict ↵ from x̂↵. This could be regarded as a reg-
ularization procedure which encourages interpolated outputs

to appear more realistic by fooling a critic network which
has been trained to recover the mixing coefficient from in-
terpolated data.

Architecture
In this paper, we experiment with a network that consists
of a 3-layered fully connected convolutional encoder, and a
decoder of the same size. The encoder maps the beat ma-
trix (32*14 bits) into four-dimensional latent space. The
first hidden layer has sixty-four neurons; the second one has
thirty-two. The ReLU activations are used between the lay-
ers, and a sigmoid maps the decoder output back into the bit
mask. Figure 2 shows the general architecture of the net-
work.

The crucial part of the model that is valid for further
experiments is the space of latent codes or the so-called
’bottle-neck’ of the architecture shown in Figure 2. This is
a four-dimensional space of latent representations z 2 R4.
The structural difference between the VAE and ACAI mod-
els with which we experiment further occurs exactly in this
bottle-neck. The architectures of the encoder f✓ and decoder
g� are equivalent. Effectively, VAE and ACAI could be re-
garded as two smoothing procedures over the space of latent
codes.

Vizualization of the obtained latent space
To explore the obtained dataset, we have built an interactive
visualization that is available online6. and is similar to the
one described in (Yamshchikov and Tikhonov 2018). This
visualization allows us to navigate the resulting latent space
of percussion patterns. Training patterns are marked with
grey and generated patterns are marked with red. For the
interactive visualization, we use a t-SNA projection of the
VAE space since it has a more distinctive geometric struc-
ture, shown in Figure 3.

Moreover, this visualization, in some sense, validates the
data representation proposed above. Indeed, coarsely a third
of tracks in the initially collected MIDIs had genre labels in
filenames. After training VAE we used these labels to locate
and mark the areas with patterns of specific genres. Closely
looking at Figure 3 that shows a t-SNE projection of the ob-
tained latent space, one can notice that the geometric clusters
in the obtained latent space correspond to the genres of the
percussion patterns. The position of the genres on the Figure
were determined by the mean of coordinated of the tracks
attributed to the corresponding genre. One can see that re-
lated genres are closer to each other in the obtained latent
space and the overall structure of the space is meaningful.
For example the cloud of ’Punk’ samples is located between
’Rock’ and ’Metal’ clouds, whereas ’Hip-Hop’ is border-
ing ’Soul’, ’Afro’ and ’Pop’. The fact that VAE managed
to capture this correspondence in an unsupervised set-up (as
a by-product of training with a standard reconstruction loss)
demonstrates that chosen data representation is applicable to
the proposed task, and the proposed architecture manages to
infer a valid latent space of patterns.

6http://altsoph.com/pp/dsp/map.html
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Figure 2: Basic scheme of an autoencoder used to produce a latent space of patterns.

Figure 3: t-SNE projection of the latent percussion space
produced by VAE. Different areas correspond to specific
genres. One can see a clear macro-structure with hip-hop,
soul an afro beats grouped closer together and with rock,
punk and metal in another area of the obtained space.

As we have mentioned above, we compare two different
latent space smoothing techniques, namely, VAE and ACAI.
It is important to note here that the standard VAE produces
results that are good enough: the space mapping is clear and
meaningful, as we have mentioned above. At the same time,
the ACAI space seems to be smoother, yet harder to visual-
ize in two dimensions.

Figure 4 illustrates this idea, showing the two-
dimensional t-SNE mapping of the latent spaces produced
by both methods with patterns that correspond to the genre
METAL marked with red dots. One can see that ACAI map-
ping of a particular genre is not as dense as VAE. Due to this
reason, we use t-SNE projection of VAE space for the in-
teractive visualization mentioned above and throughout this
paper.

However, we argue that the latent space produced with
ACAI is better to sample from and discuss it in detail further.

Generation
The majority of the auto-encoder based methods generates
new samples according to the standard logic. One can sam-
ple an arbitrary point from the latent space and use the de-
coder to convert that point into a new pattern. In the case of
VAE one can also narrow the area of sampling and restrict
the algorithm in the hope of obtaining beats that would be
representative of the style typical for that area. However,
an objective metric that could be used for quality estima-
tion of the generated samples is still a matter of discussion.
Such objective estimations are even harder in this particular
case since the patterns are quantized and consist of thirty-
two steps and fourteen instruments. Indeed, virtually any
sequence could be a valid percussion pattern, and human
evaluation of such tasks is usually costly and, naturally, sub-
jective. We invite the reader to estimate the quality of the
generated samples on her own using the demo mentioned
above. At the same time we propose a simple heuristical
method that allows putting the quality of different architec-
tures into relative perspective.

Table 2 contains pseudo-code that was used for the fil-
tering of the original MIDI dataset. We suggest using per-
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Figure 4: The beats from the area that corresponds to the genre metal on the VAE space projection (left) and the ACAI space
projection (right). VAE maps the tracks of the same genre closer together and therefore is beneficial for the visualization of the
latent space.

Model % of patterns after filtering

AE 28%
VAE 17%
ACAI 56%
Empirical patterns 82%

Table 2: Comparison of the two smoothing methods. ACAI
seems to be way more useful for sampling since it produces
a valid percussion pattern out of a random point in the latent
space more than 50% of the time and is three times more ef-
fective than VAE based architecture. In terms of the heuristic
entropy filter, VAE performs even worse than AE, generat-
ing a lot of ”dull” samples with entropy below the threshold.

cussion related part of this filtering heuristic to estimate the
quality of generated percussion patterns. Indeed one can
generate a set of random points in the latent space, sam-
ple corresponding percussion patterns with the decoder, and
then apply the filtering heuristics. The resulting percentage
of the generated beats that pass the filter could be used as an
estimate of the quality of the model.

The percentage of the real MIDI files from the training
dataset that pass the final entropy filter could be used as a
baseline for both architectures.

To have a lower baseline, we also trained a classic auto-
encoder without any smoothing of the latent space whatso-
ever. The examples of the tracks generated by it are also
available online7.

This simple heuristic filtering shows that VAE-generated
beats have a quality of about 17%. In other words, on av-
erage, one out of six generated beats passes the simple filter

7https://github.com/altsoph/drum space

successfully. In the case of ACAI, quality happens to be sig-
nificantly higher. Namely, 56% of the produced beats satisfy
the filtering conditions. More than half of the generated pat-
terns passed the filters.

In order to have a baseline to compare both methods, one
can look at the percentage of empirical MIDI files that pass
through the last entropy-based filter. One can see that in
this context the patterns randomly sampled with ACAI are
comparable with the empirical ones that were present in the
original MIDI dataset.

Discussion
Deep learning enables the rapid development of various gen-
erative algorithms. There are various limitations that hin-
der the arrival of algorithms that could generate discrete
sequences that would be indistinguishable from the corre-
sponding sequences generated by humans. In some contexts,
the potential of such algorithms might still be limited with
the availability of training data; in others, such as natural
language, the internal structure of this data might be a chal-
lenge; finally, some of such tasks might be simply too inten-
sive computationally and therefore too costly to use. How-
ever, percussion patterns do not have such limitations. The
structure of the data can be formalized reasonably well and
without significant loss of nuance. In this paper, we pro-
vide thirty-three thousand thirty-two step 4/4 signature per-
cussion drums and demonstrate that such a dataset allows
training a good generative model. We hope that as more and
more data is available for experiments, percussion could be
the first chapter to be closed in the book of generative music.

Nevertheless, even within the percussive component of
music generation, there are a lot of open problems to be
solved. For example, there are several works on genera-
tive song structure, but they are mostly either heuristically
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motivated or anecdotal rather than data-driven. Genera-
tive models capable of smooth interpolations between differ-
ent rhythmic patterns represent another set of new research
questions. Finally, nuances of percussion alongside with the
datasets and the models that could capture these nuances, for
example see (Gillick et al. 2019), need further research.

Conclusion
This paper presents a new huge dataset of MIDI percussion
patterns that could be used for further research of generative
percussion algorithms.

The paper also explores two autoencoder based archi-
tectures that could be successfully trained to generate new
MIDI beats. Both structures have similar fully connected
three-layer encoders and decoders but use different methods
for smoothing of the produced space of latent representa-
tions. Adversarially constrained autoencoder interpolations
(ACAI) seem to provide denser representations than the ones
produced by a variational autoencoder. More than half of the
percussion patterns generated with ACAI passes the simple
heuristic filter used as a proxy for the resulting generation
quality estimation. To our knowledge, this is the first appli-
cation of ACAI to drum-pattern generation.

The interactive visualization of the latent space is avail-
able as a tool to subjectively assess the quality of the gener-
ated percussion patterns.
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