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Abstract. We outline our motivations for using an evolutionary
robotics approach to investigating creativity. We propose two neces-
sary conditions that a robot must satisfy in order to demonstrate min-
imal creativity: agency; and novelty. Our preliminary results demon-
strate that this methodology can produce simulated robots that mark
their environments and interact with the lines that they have made.
Our simulated robots satisfy a ‘no strings attached’ form of agency,
but it is contentious whether their behaviour could be described as
novel. Furthermore, it is an open question whether even as we in-
crementally increase the complexity of the robot controllers their be-
haviour will be classified as creative and their markings rudimentary
drawings. However, we argue that a synthetic, bottom-up approach is
a fruitful methodology for generating and testing hypotheses about
creativity and generates concrete examples that can help to clarify
the necessary and sufficient conditions for creative behaviour.

1 A MINIMAL ACCOUNT OF CREATIVITY

Going back to the ancients and early moderns, many philosophical
theories of creativity go wrong right from the start, taking as their
explanandum a radical form of creativity or genius ([18], [9], [21]).
This is no less true of many contemporary philosophical and psy-
chological theories of creativity ([8], [19], [10], [11], [12], [13], [7]).
Such theories generally use a case study format, focussing on the
introspective reports and historical observations of one or a few his-
torically recognized geniuses. This loads the explanation in unhelp-
ful ways, since both introspection and behavioural observation are
fallible and, more importantly, geniuses provide undoubtedly excep-
tional examples of creativity. A theory would do well to start with
something less complex, but nonetheless common to both radical
and more mundane instances of creativity. What we are after then
is a notion of minimal creativity.

1.1 Agency and autonomy

To what, at minimum, do we attribute creativity? Linguistic intu-
itions only get us so far, but they do suggest two necessary condi-
tions. First, we attribute creativity only to things that result, in some
non-trivial sense, from agency. Agency can be understood in radi-
cally different ways. Philosophers, for example, analyze what con-
stitutes agency while researchers in artificial life tend to focus on
the origins of agency. These differences in approach sometimes re-
sult in differences in concept use. However, the second, bottom-up
approach might be understood instead as continuous with the first,
that is, as an alternative way to clarify the constituents of agency. By
default, we understand agency broadly. Some behaviour, artefact, or
event x is the product of the agency of A only if x would not have
occurred had A not acted in some autonomous way. We will not take
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‘autonomous’ to imply ‘intentional’ or ‘cognitive’, but just to mean
‘self-moving’: for example, an autonomous robot displays behaviour
that is not imposed by an external programmer.

The choice for construing autonomy and thus agency broadly is
motivated by our underlying research project. Our ultimate goal is
to see what can be learned about creativity and cognition using
synthetic, bottom-up modelling techniques. It is an open question
whether these techniques result in systems that possess or display ro-
bust autonomy, agency, or creativity. But the supposition that we can
produce autonomous agents using a bottom-up, synthetic approach
allows for fruitful methods of modelling and hypothesis generation.
This, we take it, is a methodological assumption that we share with
much of cognitive science.

1.2 Novelty

Linguistic intuitions also tell us that creativity requires novelty. Ab-
solute novelty is novelty simpliciter, or perhaps slightly weakened,
historical novelty, which is novelty given the history of ideas [1].
Boden contrasts this with psychological novelty, which is relative to
some particular mind. As a conceptual decision, we opt for relative
novelty. This decision invites an even trickier one, namely, select-
ing a suitable reference point. We are most interested in what we
call agent-relative novelty, which is broadened from the purely psy-
chological to include the bodily actions of a particular agent. A be-
haviour is novel, by this criterion, if it is new with respect to the pre-
vious behaviour of the agent. What sorts of changes underwrite this
kind of novelty? Intuitions tell us that a behavioural change which de-
pends not merely upon environmental change but upon some internal
change is needed for novelty. This intuition, which may or may not
be accurate, excludes purely reactive systems from acting in novel
ways. We want the most for our penny, however, and so resist hasty
dismissal of cheaper instances of novelty. In our initial experiments
we start with reactive agents that do not undergo internal change, but
that do influence aspects of their environment and in turn influence
their own (purely reactive) behavior. Our initial question is whether
such systems can display agent-relative novelty.

1.3 What else do we need?

There is more to be said about both agency and novelty, but we as-
sume these two conditions as necessary for minimal creativity. Ne-
cessity aside, brief reflection reveals that satisfaction of these two
conditions is likely insufficient for creativity. I can right now, in the
privacy of my home, dance a little jig and sing the sentence ‘Beware
of the naked balloon guy’ to the tune Twinkle, Twinkle Little Star.
This is (and you must take this on faith) novel behaviour relative to
me and is no doubt a product of my agency. But it is not obviously
creative. So we will often need a third condition (or more) to suffice



for creativity. The problem is that we do not obviously have consis-
tent intuitions to take us beyond agency and novelty (assuming they
even take us that far). In fact, it may well be that our concept of cre-
ativity is indeterminate and, more importantly, context-variant. Thus
what completes the analysis depends upon certain, context-specific,
theoretical decisions and commitments. We leave open what addi-
tional necessary conditions are conjointly sufficient for creativity (in
some context or other). This should be no cause for concern: the two
identified conditions are necessary and must be satisfied irrespective
of any additional conditions one includes to complete an analysis of
creativity. Thus to model creative behaviour, we must model some-
thing that satisfies, at minimum, the following conditions:

1. Agency: x is creative only if x is the product of agency;
2. Novelty: x is creative only if x is agent-relative novel.

2 DESIGNING SITUATED AGENTS IS HARD

The initial aim of our research is to produce a simple model of min-
imal creativity that satisfies the two necessary conditions discussed
in the previous section: agency and novelty. As a first step we are fo-
cusing on the ‘no strings attached’ form of agency: a robotic model
whose behavior is determined solely by its sensory-motor activity
and is not controlled by an external observer. A robot that exhibits
this minimal agency is necessarily situated. Given the difficulty of
modelling robot-environment interactions, designing even simple,
situated robots is a non-trivial task.

An illustration of this problem comes from Scutt [22] who carried
out experiments with a Lego robot implementation of Braitenberg’s
Vehicle 2b [2]. The robot’s simple sensory-motor system consisted
of two wheels and two light sensors and its controller consisted of
a connection from each sensor to the wheel motor on the opposite
side. Each connection is configured so that the more its sensor is il-
luminated, the faster the connected wheel turns. If one of the sensors
is nearer to the light than the other, then there will be a faster wheel
speed on the less illuminated side and the robot will turn towards
the source; if both sensors are equally stimulated then the robot will
move straight ahead towards the light.

Braitenberg predicted this light seeking behaviour. Scutt found,
however, that in a real world environment vehicle 2b will display
more complex behaviour - avoiding any obstacles that are placed
between it and the light source due to the way that shadows fall
on the sensors. Scutt tested the robot with increasingly complex ar-
rangements of obstacles until there was no light falling directly on
the robot’s sensors. One might reasonably predict that in this situ-
ation the robot will not move. However, in Scutt’s experiments the
robot moved away from the obstacles and along the wall of the test-
ing arena, thereby avoiding all the intervening objects and eventu-
ally turning directly towards the light source. Neither Braitenberg
nor Scutt predicted this behaviour, which occurred because the test-
ing arena walls were painted white and the robot interacted with the
light reflecting off them. This case illuminates both the challenge and
promise of robotics: even rudimentary situated robots behave in un-
predicted and interesting ways.

2.1 Evolutionary robotics (ER)

The methodology of evolutionary robotics has been successfully ap-
plied to the design of situated robots [16]. In current ER research, the
fitness of candidate designs is tested either in simulation, in the real

Figure 1. Khepera robot

world or using a combination of the two. ER is a discovery method-
ology that is free to exploit any constraints arising from the interac-
tion of components in the controller and between the robot and en-
vironment, even when the human experimenter is not aware of them.
This can potentially produce simpler, more robust robots than con-
ventional design ([15], [17]). It can also produce robots that exhibit
unpredictable, and thus potentially novel, behaviour.

Another feature of ER suitable to our minimal approach to creativ-
ity is that it provides a means of generating novel designs that can, to
some extent, overcome inductive bias [20]. This is the phenomenon
where the explicit and implicit biases of an experimenter constrain
the possible space of designs that is explored. By artificially evolv-
ing control architectures from suitably low level primitives, the final
controller “need not be tightly restricted by human designers’ preju-
dices” [3, p.83]. ER therefore has the potential to produce models of
minimal creativity not dominated by our preconceptions, case stud-
ies, or, perhaps mistaken, theories of creativity.

Finally, artificially evolving neural networks as robot controllers
allows for open-ended evolution, since their architecture can be in-
crementally increased in complexity by adding processing units and
connections ([6], [4]). Thus, even if robot behavior does not exhibit
relative novelty at early stages in experimentation, incremental in-
creases in neural complexity may well make the relevant difference.

2.2 Simulation

The aim of the Drawbots project is to carry out experiments on phys-
ical robots. However, there are two reasons why initially the be-
haviour of the robots is tested in simulation, rather than in the real
world:

1. the testing procedure takes a long time and can be slowed down
further due to the power requirements of robots which might re-
quire batteries changing regularly;

2. robot hardware is generally not robust enough for long periods of
testing and at initial stages of the artificial evolutionary process
the robots can behave in ways that damage themselves.

There are difficulties involved in using ER simulations:

1. simulating physical environments is a non-trivial task and the pro-
cess of abstraction may introduce unintentional artifacts that are



Figure 2. Prototype Drawbot that will used to test evolved
controllers in the real world. To give a sense of scale, note that the

marker pen, which can be raised and lowered, is approximately
15cm in length.

exploited by the GA, but do not hold in the real world, therefore
preventing the evolved controllers from successfully transferring
to real robots;

2. getting the right level of noise in a simulation is critical, as if
there is a discrepancy between noise in the simulation and the real
world, again, the evolved controllers will not transfer: too much
can lead to the GA exploiting stochastic resonance effects (that
is, weak signals are boosted); too little can make a task easier in
simulation than in the real world.

The simulator used in the Drawbots experiments has been adapted
from software that has been successfully used in previous ER ex-
periments to evolve robots that successfully transferred from simula-
tion onto physical robots ([15]. We are currently developing a custom
robot platform for future real world experiments (Figure 2.).

2.3 Artificial neural networks

We have initially used artificial neural network (ANN) controllers
for our robots, based on Nolfi’s emergent modularity architecture
[14]. The low level primitives consist of the neurons, or process-
ing units, and the connections between them. The emergent modu-
larity architecture has been successfully evolved to control complex
robot behaviours. When evolving garbage collection robots, the ex-
perimenters demonstrated that this architecture performed better than
hand-designed controllers and argued “the engineering oriented ap-
proach based on decomposition and integration can have serious lim-
itations in the case of behavioural systems (such as mobile robots)
where the observed behavior is the result of the dynamical interac-
tion between the robot and the environment” [16, p.134].

In our experiment each robot controller consists of seven sensors
(six IR and one line detector) and six motor neurons (a pair of left
motor neurons, a pair of right motor neurons and a pair of pen motor
neurons). At each sensory-motor cycle, the most strongly activated
neuron out of each pair of motor neurons is selected to control the
appropriate motor. Each sensor connects to every motor neuron, giv-
ing �� connections in the network.

All six motor neurons in the controller are governed by:
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�
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�
�

����
�
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where � represents a sigmoid function, restricting the neuron activa-
tion values to the range ��� 	
, ��� represents the activation of neuron
� at time �, ��� the strength of the synaptic connection from neuron
� to neuron � (range ��	�� 	�
 ) and �� the bias (range ��	�� 	�
 ) of
neuron �.

The activation of each of the six IR sensors is in the range ��� 	��

and is calculated from look up tables generated by sampling the re-
sponses of a real Khepera’s sensors placed at a range of distances
and different orientations from a wall. A small amount of noise is
added to the measured value (range ��� ����
 ). The line sensor is
�mm ��mm and positioned under the front of the robot. It the has
two states: 0 indicating that there is no mark under any part of the
sensor, 1 indicating the presence of a mark under the sensor.

A right and left integer wheel speed (range ��	�� 	�
 ) is generated
from the corresponding motor neuron using the following formula
(which shows the calculation of the right wheel speed):

�
�
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where ��� represents the right motor signal at time � and 	�
� is the

activation of the right motor neuron at time � (range ��� 	��
 ).
If the pen motor neuron activation is greater than ���� then the pen

is in the down position and the robot marks the arena floor when it
moves.

2.4 Genetic algorithms (GAs)

Our initial experiments use a genetic algorithm (GA) a technique
inspired by natural evolution and introduced by Holland ([5]) that
efficiently searches through a parameter set that defines a particu-
lar optimization problem in order to find an acceptable solution. A
population of trial solutions (phenotypes) is encoded as a string of
symbols (genotypes). The initial population is randomly generated,
with symbols on the genotype representing different values of the
parameters that define the problem. In our experiments, the geno-
types encode neural network parameters (the biases of the neurons
and the strengths of the connections between them) which are de-
coded into robot controllers. Each phenotype in the population is de-
coded in turn from its genotype and tested and assigned a fitness.
This is usually done automatically by a fitness function specified by
the programmer. A new generation of solutions is generated by ran-
domly selecting genotypes, with a bias towards the fitter ones, and
carrying out various operations on their data that are inspired by evo-
lution. The major operators are random mutation of the symbols in
the string and crossover of symbols between two strings. This pro-
cess of generate and test is repeated until an acceptable solution is
found to the problem.

In our preliminary experiment there was a mutation rate of ���	
per allele and we did not use crossover. Each of the robot controller
parameters (�� connection weights and  motor neuron biases) was
encoded as an � bit integer-valued vector (range ��� ���
 ) and muta-
tion consisted of flipping one of the � bits.The population size was
	�� and the experiments were run for �� generations.

2.5 Fitness function

In keeping with our approach to reducing inductive bias, the fitness
function used in our preliminary experiments does not specify the



type of marks the robots should make. Instead, it rewards correlated
changes in the state of the robot’s line sensor (line detected or no
line detected) and the pen position (up or down) within a short time
window (two sensory-motor cycles). For example, if a line is de-
tected and in the next sensory-motor cycle the pen is either raised
or lowered, the individual accumulates fitness. The fitness function
also rewards robots that make marks that are in separated regions of
the arena. The fitness function consists of � weighted elements, each
element in the range ��� 	
 and both elements summing to 	.

fitness � 
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where 
 and  are weighting values (��� and �� respectively), �
is the total number of time steps in the trial, ����� is determined by
the correlation between changes in the state of the light sensor and
changes in the state of the pen position and calculated as follows :

����� � �
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where

�
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�	 �

�
	 � line sensor changes state at time �
� � otherwise

(5)

�
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�
	 � pen changes state during ����

� � otherwise
(6)

where �� � 	, ����	� is the largest distance between any two of the
marks made by the robot in a given trial and ����	�	
� is calculated
over a moving time window �����	 (	� sensory-motor cycles).

����	�	
� �

�
	 � robot moves � ���
 in �����	

��	 � otherwise
(7)

where ���
 � �mm. If the robot crashes into an arena wall then
the trial is stopped but the fitness accumulated up to that point is still
averaged over the total number of time steps. This penalizes robots
that do not avoid obstacles.

Figure 3. Typical increase in best and mean fitness over 600
generations: a rapid increase in fitness is followed by a slow
increase that plateaus before another small increase occurs

Figure 4. An example of low-fitness behaviour typical of a robot in
the first generation. It makes a continuous line up to the point that it
crashes into the arena wall. The robot robot does not change its pen
state during the whole trial and only gains a small amount of fitness

based on the maximum distance between points it has marked on
the arena floor.

3 INITIAL EXPERIMENTS

Each genotoype was instantiated as robot controller in a walled arena
(��mm ����mm) and each generation every individual was tested
over 	� trials where they were placed in a a random position and ori-
entation and tested for ��� (���) sensory-motor cycles. The robots
were all tested on the same series of initial positions and orientations
each generation, and these changed every generation. The pen was
always placed in the down state at the beginning of a trial.

3.1 Preliminary results

Initially, the robots either were unable to move or crashed into the
arena walls (Figure 4.). However, within 	� generations the majority
of the population were able to avoid obstacles and starting to raise
and lower their pen. As fitness increased, robots started to move
backwards and forwards over marks, co-ordinating the raising and
lower of their pens with the activity of the line sensor. Figure 5 shows
the marks resulting from this behaviour. After ��� generations, the
fittest individuals followed the walls leaving a long interrupted line.
When they had completed a circuit of the arena and sensed the lines
they had previously drawn they began to swerve left and right over
the line, raising and lowering their pen and leaving marks parallel to
the line marked on the initial circuit (Figure 6.).

4 CONCLUSION

Our project is in the early stages of conceptual and experimental de-
velopment and it is a contentious issue whether our preliminary re-
sults demonstrate agent-relative novelty. The ANN controllers are
feed forward and the connection strengths are fixed: the robots are
purely reactive and their behaviour is a consequence of the current
sensory-motor activity. Any novelty is therefore driven by changes
in the environment. However, what makes the experimental results
interesting conceptually is that the there is reciprocal feedback be-
tween the robot and the environment, which is changed by the mark
making behaviour of the robot. Moreover, if we hold the starting con-
ditions and testing arena constant, different agents (individuated by



Figure 5. Performance of a mid fitness robot in an early generation.
The image shows the line made in the arena - the robot started near

the top left hand corner and moved across to the right top hand
corner, raising and lowering the pen during this movement. The

grey region is magnified to show the more complex marks the robot
made at the end of the trial period: it made short line segments and
moved forwards and backwards over them. The robot thereby gains
fitness for correlated activity between changes in its pen state (‘up to

down’ or ‘down to up’) and changes in its line sensor state (‘on to
off’ or ‘off to on’).

Figure 6. Performance of a high fitness individual after 500
generations. The robot completes one circuit of the arena with its

pen down by following the walls. On its second circuit it sweeps left
and right over the line, marking line segments parallel to the line it

had previously left.

their ANN controllers) respond differently. And some, we are in-
clined to say, act in unexpected ways which are novel relative to other
agents in the population (demarcated by the set of starting and testing
conditions in question). Sometimes these behaviours enhance fitness,
sometimes not. Our results are promising at such an early stage, and
with incremental increases in complexity of the ANNs (for exam-
ple, using recurrent and plastic connections), the behavior is likely
to become less and less predictable and, we hope, more and more
creative.

The research project can be seen as an ‘embodied thought exper-
iment’ and the resulting models may not uncontroversially demon-
strate the necessary conditions for creativity. The project will still be
successful, however, if it helps to clarify how those conditions can
be incorporated into future models. The general methods of evolu-
tionary robotics and our particular hybrid application of simulation
and real world situated agency provide a promising way to incor-

porate such conditions and thus model minimally creative processes
and behaviour. As some have it, this is ‘blue sky science’, full of
open-ended possibilities and requiring patient theorization. We are
confident that, given time, it will reveal a number of interesting fea-
tures of creativity.
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